Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Animal ; 13(5): 1009-1019, 2019 May.
Article in English | MEDLINE | ID: mdl-30306885

ABSTRACT

Growth rate is a major component of feed efficiency when estimating residual feed intake (RFI). Quantile regression (QR) methodology can be used to identify animals with different growth trajectories. The objective of this study was to evaluate the use of QR to identify phenotypic and genetic differences in pigs selected for low RFI. Using performance data on 750 Yorkshire pigs selected for low RFI, individual average daily gain (ADG), average daily feed intake (ADFI), RFI and Gompertz growth curve parameters (asymptotic weight (a), inflection point (b) and decay parameter (c)) were estimated for each pig. Using QR methodology, three Gompertz growth curves were estimated for the whole population for three quantiles (0.1, 0.5 and 0.9) of the BW data. Each animal was classified into one of the quantile regression groups (QRG) based on their overall Euclidian distance between each observed and estimated BW from the quantile growth curves. These three curves were also estimated using only part of the data (generations -1 to 3, and -1 to 4) in order to evaluate the agreement classification rate of animals from later generations into QRGs. We evaluated the effect of QRG on growth parameters and performance traits. Genetic parameters were estimated for these traits, as well as for QRG. In addition, genetic trends for each QRG were estimated. Three distinct growth curves were observed for animals classified into either quantiles 0.1 (QRG0.1), 0.5 (QRG0.5) or 0.9 (QRG0.9). When only part of the data was used to estimate quantile growth curves, all animals from QRG0.1 were correctly classified in their group. Animals in QRG0.1 had significantly lower ADFI, ADG and RFI, and greater a, b and c than animals in the other groups. Quantile regression groups analysed as a trait was highly heritable (0.41) and had high (0.8) and moderate (0.46) genetic correlations with ADG and RFI, respectively. Selection for reduced RFI increased the number of animals classified as QRG0.1 in the population. Overall, downward genetic trends were observed for all traits as a function of selection for reduced RFI. However, QRG0.1 was the only group that had a positive genetic trend for ADG. Altogether, these results indicate that selection for reduced RFI changes the shape of growth curves in Yorkshire in pigs, and that QR methodology was able to identify animals having different genetic potential for feed efficiency, bringing a new opportunity to improve selection for reduced RFI.


Subject(s)
Animal Husbandry/methods , Eating , Swine/growth & development , Animal Feed/analysis , Animals , Body Weight , Male , Phenotype , Regression Analysis , Selection, Genetic , Swine/genetics , Swine/physiology
2.
R. bras. Ci. avíc. ; 16(3): 319-328, July-Sept. 2014. tab, graf
Article in English | VETINDEX | ID: vti-15733

ABSTRACT

The objectives of the present study were to determine the parameters of Gompertz equations and to determine curves and growth rate, feed intake and body component deposition, as well as allometric coefficients of body water, protein, and fat relative to live weight of male and female broilers of intermediate performance (C44) and high performance (Cobb-500) genetic strains. In total, 384 one-d-old chicks were distributed into four treatments: male Cobb 500, male C44, female Cobb 500, and female C44, with six replicates of 16 birds, according to a completely randomized experimental design. Average body weight, weight gain, and feed intake were weekly determined, and six birds, representing the average weight of each treatment, were sacrificed to determine body composition. Growth curves were built applying Gompertz function, with excellent fit, and growth, feed intake, and tissue deposition rates were obtained by its derivatives. Superior growth rate was obtained for Cobb 500 male broilers. This genetic strain has higher feed intake capacity, which is achieved earlier than in the C44 strain. Protein and fat deposition maturity was reached earlier in males than in females in Cobb 500. The allometric coefficients showed earlier maturity for body water in C44 and females. In terms of body protein, male Cobb 500 broilers reached maturity earlier than females and C44. Body fat deposition maturity was reached earlier in Cobb 500 than in C44. The Gompertz equations obtained in the present study efficiently described body growth, feed intake, and deposition of body components, with a coefficient of determination higher than 0.99.(AU)


Subject(s)
Animals , Poultry/growth & development , Poultry/metabolism , Body Composition
3.
Article in English | VETINDEX | ID: vti-718096

ABSTRACT

The objectives of the present study were to determine the parameters of Gompertz equations and to determine curves and growth rate, feed intake and body component deposition, as well as allometric coefficients of body water, protein, and fat relative to live weight of male and female broilers of intermediate performance (C44) and high performance (Cobb-500) genetic strains. In total, 384 one-d-old chicks were distributed into four treatments: male Cobb 500, male C44, female Cobb 500, and female C44, with six replicates of 16 birds, according to a completely randomized experimental design. Average body weight, weight gain, and feed intake were weekly determined, and six birds, representing the average weight of each treatment, were sacrificed to determine body composition. Growth curves were built applying Gompertz function, with excellent fit, and growth, feed intake, and tissue deposition rates were obtained by its derivatives. Superior growth rate was obtained for Cobb 500 male broilers. This genetic strain has higher feed intake capacity, which is achieved earlier than in the C44 strain. Protein and fat deposition maturity was reached earlier in males than in females in Cobb 500. The allometric coefficients showed earlier maturity for body water in C44 and females. In terms of body protein, male Cobb 500 broilers reached maturity earlier than females and C44. Body fat deposition maturity was reached earlier in Cobb 500 than in C44. The Gompertz equations obtained in the present study efficiently described body growth, feed intake, and deposition of body components, with a coefficient of determination higher than 0.99.

4.
Article in English | LILACS-Express | VETINDEX | ID: biblio-1490082

ABSTRACT

The objectives of the present study were to determine the parameters of Gompertz equations and to determine curves and growth rate, feed intake and body component deposition, as well as allometric coefficients of body water, protein, and fat relative to live weight of male and female broilers of intermediate performance (C44) and high performance (Cobb-500) genetic strains. In total, 384 one-d-old chicks were distributed into four treatments: male Cobb 500, male C44, female Cobb 500, and female C44, with six replicates of 16 birds, according to a completely randomized experimental design. Average body weight, weight gain, and feed intake were weekly determined, and six birds, representing the average weight of each treatment, were sacrificed to determine body composition. Growth curves were built applying Gompertz function, with excellent fit, and growth, feed intake, and tissue deposition rates were obtained by its derivatives. Superior growth rate was obtained for Cobb 500 male broilers. This genetic strain has higher feed intake capacity, which is achieved earlier than in the C44 strain. Protein and fat deposition maturity was reached earlier in males than in females in Cobb 500. The allometric coefficients showed earlier maturity for body water in C44 and females. In terms of body protein, male Cobb 500 broilers reached maturity earlier than females and C44. Body fat deposition maturity was reached earlier in Cobb 500 than in C44. The Gompertz equations obtained in the present study efficiently described body growth, feed intake, and deposition of body components, with a coefficient of determination higher than 0.99.

SELECTION OF CITATIONS
SEARCH DETAIL