Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 219
Filter
1.
Sex Med ; 12(2): qfae026, 2024 Apr.
Article in English | MEDLINE | ID: mdl-39119244

ABSTRACT

Background: Ovotesticular disorder of sexual development (OT-DSD) is a rare sexual development disorder defined by the simultaneous existence of testicular and ovarian tissues (including follicular) in the same- or opposite-sex glands of an individual, with an incidence rate of about 1 in 100 000. Aim: This report aims to supplement the clinical presentation, pathology, diagnosis, and treatment of OT-DSD and to improve the diagnostic ability of clinicians for modified disease. Methods: This article is a retrospective analysis of a case of OT-DSD at our institution. Additionally, a comprehensive search of the PubMed database with the keywords "ovotesticular disorder of sexual development" or "true hermaphroditism" was conducted between 1956 and 2024, resulting in approximately 250 cases, and the results of the search are summarized. Results: The patient, a 44-year-old male, sought treatment at our hospital on February 6, 2023, primarily due to "intermittent hematospermia for over a month." He stated that it was discovered during infancy that his right scrotum was empty and lacking a testicle. Due to the low local medical services and the low-income family's economic conditions, he did not seek further diagnosis and treatment. After admission, the patient underwent computed tomography and magnetic resonance imaging and decided to undergo robot-assisted pelvic mass resection, which was pathologically confirmed as OT-DSD. Outcomes: The patient's definitive diagnosis was provided by postoperative pathology, and although the patient ultimately had a favorable outcome, diagnosis and treatment were delayed due to his atypical clinical presentation. Strengths and Limitations: This is a single case report; however, uncommon clinical presentations of rare diseases were identified, and a literature review was conducted. Unfortunately, there are some important missing data in the patient's medical history, including hormone assessment (testosterone, luteinizing hormone, follicle-stimulating hormone), tumor marker examination, semen analysis, scrotal ultrasound, and chromosomal analysis. Conclusion: Patients with OT-DSD have diverse types of gonads, chromosomal karyotypes, and phenotypes of external genitalia, and further exploration and research are needed for early diagnosis and treatment. In addition, cases of OT-DSD with fertility and no ambiguous genitalia are even rarer. This case guides us for adult patients with no ambiguous genitalia: if there is an inability to palpate 1 or both gonads and there is intermittent hematospermia, the possibility of OT-DSD should be suspected.

2.
Genes (Basel) ; 15(7)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39062708

ABSTRACT

Jinhu groupers, the hybrid offspring of tiger groupers (Epinephelus fuscoguttatus) and potato groupers (Epinephelus tukula), have excellent heterosis in fast growth and strong stress resistance. However, compared with the maternal tiger grouper, Jinhu groupers show delayed gonadal development. To explore the interspecific difference in gonadal development, we compared the transcriptomes of brain, pituitary, and gonadal tissues between Jinhu groupers and tiger groupers at 24-months old. In total, 3034 differentially expressed genes (DEGs) were obtained. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses showed that the osteoclast differentiation, oocyte meiosis, and ovarian steroidogenesis may be involved in the difference in gonadal development. Trend analysis showed that the DEGs were mainly related to signal transduction and cell growth and death. Additionally, differences in expression levels of nr4a1, pgr, dmrta2, tbx19, and cyp19a1 may be related to gonadal retardation in Jinhu groupers. A weighted gene co-expression network analysis revealed three modules (i.e., saddlebrown, paleturquoise, and greenyellow) that were significantly related to gonadal development in the brain, pituitary, and gonadal tissues, respectively, of Jinhu groupers and tiger groupers. Network diagrams of the target modules were constructed and the respective hub genes were determined (i.e., cdh6, col18a1, and hat1). This study provides additional insight into the molecular mechanism underlying ovarian stunting in grouper hybrids.


Subject(s)
Bass , Transcriptome , Animals , Female , Transcriptome/genetics , Bass/genetics , Bass/growth & development , Bass/metabolism , Male , Gene Expression Profiling/methods , Hypothalamo-Hypophyseal System/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Gonads/metabolism , Gonads/growth & development , Pituitary Gland/metabolism , Ovary/metabolism , Ovary/growth & development , Hypothalamic-Pituitary-Gonadal Axis
3.
Reprod Biol Endocrinol ; 22(1): 82, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010074

ABSTRACT

BACKGROUND: Exploring the molecular mechanisms of primordial germ cell (PGC) migration and the involvement of gonadal somatic cells in gonad development is valuable for comprehending the origins and potential treatments of reproductive-related diseases. METHODS: Diaphanous related formin 1 (Diaph1, also known as mDia1) was screened by analyzing publicly available datasets (ATAC-seq, DNase-seq, and RNA-seq). Subsequently, the CRISPR-Cas9 technology was used to construct Diaph1 knockout mice to investigate the role of Diaph1 in gonad development. RESULTS: Based on data from public databases, a differentially expressed gene Diaph1, was identified in the migration of mouse PGC. Additionally, the number of PGCs was significantly reduced in Diaph1 knockout mice compared to wild type mice, and the expression levels of genes related to proliferation (Dicer1, Mcm9), adhesion (E-cadherin, Cdh1), and migration (Cxcr4, Hmgcr, Dazl) were significantly decreased. Diaph1 knockout also inhibited Leydig cell proliferation and induced apoptosis in the testis, as well as granulosa cell apoptosis in the ovary. Moreover, the sperm count in the epididymal region and the count of ovarian follicles were significantly reduced in Diaph1 knockout mice, resulting in decreased fertility, concomitant with lowered levels of serum testosterone and estradiol. Further research found that in Diaph1 knockout mice, the key enzymes involved in testosterone synthesis (CYP11A1, 3ß-HSD) were decreased in Leydig cells, and the estradiol-associated factor (FSH receptor, AMH) in granulosa cells were also downregulated. CONCLUSIONS: Overall, our findings indicate that the knockout of Diaph1 can disrupt the expression of factors that regulate sex hormone production, leading to impaired secretion of sex hormones, ultimately resulting in damage to reproductive function. These results provide a new perspective on the molecular mechanisms underlying PGC migration and gonadal development, and offer valuable insights for further research on the causes, diagnosis, and treatment of related diseases.


Subject(s)
Cell Proliferation , Formins , Germ Cells , Gonads , Mice, Knockout , Animals , Mice , Female , Male , Formins/genetics , Formins/metabolism , Cell Proliferation/genetics , Gonads/metabolism , Germ Cells/metabolism , Apoptosis/genetics , Testis/metabolism , Testis/growth & development , Testis/cytology , Cell Movement/genetics , Ovary/metabolism , Ovary/growth & development , Mice, Inbred C57BL
4.
J Steroid Biochem Mol Biol ; 243: 106594, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39084493

ABSTRACT

The estrogen receptor (ER), a ligand-dependent transcription factor, is critical for vertebrate reproduction. However, its role in bivalves is not well understood, with ongoing debates regarding its function in regulating reproduction similarly to vertebrates. To investigate ER's function, we conducted a 21-day RNA interference experiment focusing on its role in gonadal development in bivalves. Histological analyses revealed that ER inhibition significantly suppressed ovarian development in females and, conversely, promoted gonadal development in males. Additionally, levels of 17ß-estrogen (E2) were markedly reduced in the gonads of both sexes following ER suppression. Transcriptomic analysis from RNA-seq of testes and ovaries after ER interference showed changes in the expression of key genes such as Vtg, CYP17, 3ß-HSD, and 17ß-HSD. These genes are involved in the estrogen signaling pathway and steroid hormone biosynthesis. Furthermore, ER suppression significantly affected the expression of genes linked to gametogenesis and the reproductive cycle. Our findings highlight ER's crucial, yet complex and sex-specific roles in gonadal development in bivalves, emphasizing the need for further detailed studies.


Subject(s)
Bivalvia , Gonads , Ovary , Receptors, Estrogen , Testis , Animals , Bivalvia/genetics , Bivalvia/growth & development , Bivalvia/metabolism , Female , Male , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Ovary/metabolism , Ovary/growth & development , Gonads/metabolism , Gonads/growth & development , Testis/metabolism , Testis/growth & development , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , RNA Interference
5.
Article in English | MEDLINE | ID: mdl-38897035

ABSTRACT

Anisakidae parasitism is a prevalent disease in wild populations of Coilia nasus, and can result in a significant loss of germplasm resources. To elucidate the immune response mechanism of C. nasus livers to Anisakidae infection, we collected and analysed 18 parasitic and 18 non-parasitic livers at gonadal developmental stages II, III, and V using histopathology, molecular biology and transcriptome methods. The hepatic portal area of the parasitic group exhibited an increase in the fibrous stroma and thickened hepatic arteries with positive Ly-6G staining, indicating inflammation and immune responses in the liver. Hepatocyte cytokine levels and the expression of liver function-related genes indicated that fish livers responded similarly to Anisakidae parasitism across different gonadal developmental stages. Oxidative stress indices showed more intense changes in stage II samples, whereas gene expression levels of Nrf2 and C3 were significantly increased in parasitised livers during stage III and V. Liver transcriptome sequencing identified 2575 differentially expressed genes between the parasitic and non-parasitic groups at the three gonadal developmental stages. KEGG pathway analysis showed that natural killer cell-mediated cytotoxicity, the NOD-like receptor signaling pathway, neutrophil extracellular trap formation, and other immune pathways were significantly enriched. Expression patterns varied across developmental stages, suggesting that innate immunity was primarily responsible for the liver immune response to Anisakidae infection during C. nasus migration, possibly related to water temperature changes or shifts in the gonadal developmental stage. In summary, this study investigated the immune response of C. nasus to Anisakidae parasitism under natural conditions, focusing on reproductive aspects and environmental changes, thereby establishing a foundation for elucidating the molecular mechanisms underlying the immune response of Anisakidae in C. nasus.

6.
Animals (Basel) ; 14(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38891632

ABSTRACT

The hybrid yellow catfish exhibits advantages over pure yellow catfish in terms of fast growth, fast development, a high feeding rate, and strong immunity; additionally, it is almost sterile, thus ensuring the conservation of the genetic stock of fish populations. To investigate the sterility mechanism in hybrid yellow catfish (P. fulvidraco (♀) × P. vachelli (♂)), the mRNA and miRNA of the gonads of P. fulvidraco, P. vachelli, and a hybrid yellow catfish were analyzed to characterize the differentially expressed genes; this was carried out to help establish gene expression datasets to assist in the further determination of the mechanisms of genetic sterility in hybrid yellow catfish. In total, 1709 DEGs were identified between the hybrid and two pure yellow catfishes. A KEGG pathway analysis indicated that several genes related to reproductive functions were upregulated, including those involved in the cell cycle, progesterone-mediated oocyte maturation, and oocyte meiosis, and genes associated with ECM-receptor interaction were downregulated. The spermatogenesis-related GO genes CFAP70, RSPH6A, and TSGA10 were identified as being downregulated DEGs in the hybrid yellow catfish. Sixty-three DEmiRNAs were identified between the hybrid and the two pure yellow catfish species. The upregulated DEmiRNAs ipu-miR-194a and ipu-miR-499 were found to target the spermatogenesis-related genes CFAP70 and RSPH6A, respectively, playing a negative regulatory role, which may underscore the miRNA-mRNA regulatory mechanism of sterility in hybrid yellow catfish. The differential expression of ipu-miR-196d, ipu-miR-125b, and ipu-miR-150 and their target genes spidr, cep85, and kcnn4, implicated in reproductive processes, was verified via qRT-PCR, consistent with the transcriptome sequencing expression trends. This study provides deep insights into the mechanism of hybrid sterility in vertebrate groups, thereby contributing to achieving a better understanding and management of fish conservation related to hybrid sterility.

7.
Genes (Basel) ; 15(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38927693

ABSTRACT

The identification and expression of germ cells are important for studying sex-related mechanisms in fish. The vasa gene, encoding an ATP-dependent RNA helicase, is recognized as a molecular marker of germ cells and plays a crucial role in germ cell development. Silurus asotus, an important freshwater economic fish species in China, shows significant sex dimorphism with the female growing faster than the male. However, the molecular mechanisms underlying these sex differences especially involving in the vasa gene in this fish remain poorly understood. In this work, the vasa gene sequence of S. asotus (named as Savasa) was obtained through RT-PCR and rapid amplification of cDNA end (RACE), and its expression in embryos and tissues was analyzed using qRT-PCR and an in situ hybridization method. Letrozole (LT) treatment on the larvae fish was also conducted to investigate its influence on the gene. The results revealed that the open reading frame (ORF) of Savasa was 1989 bp, encoding 662 amino acids. The SaVasa protein contains 10 conserved domains unique to the DEAD-box protein family, showing the highest sequence identity of 95.92% with that of Silurus meridionalis. In embryos, Savasa is highly expressed from the two-cell stage to the blastula stage in early embryos, with a gradually decreasing trend from the gastrula stage to the heart-beating stage. Furthermore, Savasa was initially detected at the end of the cleavage furrow during the two-cell stage, later condensing into four symmetrical cell clusters with embryonic development. At the gastrula stage, Savasa-positive cells increased and began to migrate towards the dorsal side of the embryo. In tissues, Savasa is predominantly expressed in the ovaries, with almost no or lower expression in other detected tissues. Moreover, Savasa was expressed in phase I-V oocytes in the ovaries, as well as in spermatogonia and spermatocytes in the testis, implying a specific expression pattern of germ cells. In addition, LT significantly upregulated the expression of Savasa in a concentration-dependent manner during the key gonadal differentiation period of the fish. Notably, at 120 dph after LT treatment, Savasa expression was the lowest in the testis and ovary of the high concentration group. Collectively, findings from gene structure, protein sequence, phylogenetic analysis, RNA expression patterns, and response to LT suggest that Savasa is maternally inherited with conserved features, serving as a potential marker gene for germ cells in S.asotus, and might participate in LT-induced early embryonic development and gonadal development processes of the fish. This would provide a basis for further research on the application of germ cell markers and the molecular mechanisms of sex differences in S. asotus.


Subject(s)
Catfishes , DEAD-box RNA Helicases , Fish Proteins , Letrozole , Animals , Letrozole/pharmacology , Female , Male , Fish Proteins/genetics , Fish Proteins/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Catfishes/genetics , Catfishes/growth & development , Catfishes/metabolism , Gene Expression Regulation, Developmental/drug effects , Germ Cells/metabolism , Germ Cells/drug effects , Germ Cells/growth & development , Phylogeny
8.
Front Endocrinol (Lausanne) ; 15: 1385901, 2024.
Article in English | MEDLINE | ID: mdl-38721146

ABSTRACT

In mammals, the development of male or female gonads from fetal bipotential gonads depends on intricate genetic networks. Changes in dosage or temporal expression of sex-determining genes can lead to differences of gonadal development. Two rare conditions are associated with disruptions in ovarian determination, including 46,XX testicular differences in sex development (DSD), in which the 46,XX gonads differentiate into testes, and 46,XX ovotesticular DSD, characterized by the coexistence of ovarian and testicular tissue in the same individual. Several mechanisms have been identified that may contribute to the development of testicular tissue in XX gonads. This includes translocation of SRY to the X chromosome or an autosome. In the absence of SRY, other genes associated with testis development may be overexpressed or there may be a reduction in the activity of pro-ovarian/antitesticular factors. However, it is important to note that a significant number of patients with these DSD conditions have not yet recognized a genetic diagnosis. This finding suggests that there are additional genetic pathways or epigenetic mechanisms that have yet to be identified. The text will provide an overview of the current understanding of the genetic factors contributing to 46,XX DSD, specifically focusing on testicular and ovotesticular DSD conditions. It will summarize the existing knowledge regarding the genetic causes of these differences. Furthermore, it will explore the potential involvement of other factors, such as epigenetic mechanisms, in developing these conditions.


Subject(s)
Testis , Humans , Male , Testis/pathology , Testis/metabolism , Animals , Female , 46, XX Disorders of Sex Development/genetics , 46, XX Disorders of Sex Development/pathology , Sex Differentiation/genetics , Disorders of Sex Development/genetics , Disorders of Sex Development/pathology
9.
Sci Total Environ ; 935: 173172, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38740210

ABSTRACT

Chronic hypoxia can affect the growth and metabolism of fish and potentially impact gonadal development through epigenetic regulation. Trachinotus blochii (Golden pompano) is widely cultured near the coast and is sensitive to low oxygen conditions. We found that hypoxia and reoxygenation processes acted on multiple targets on the HPG axis, leading to endocrine disorders. Changes in the expression of key genes in the brain (gnrh), pituitary (fsh and lh), ovaries (cyp19a1a, foxl2, and er), and testes (dmrt1, ar, sox9, and gsdf) were associated with significant decreases in estrogen and testosterone levels. Hypoxia and reoxygenation lead to changes in DNA methylation levels in the gonads. Hypoxia upregulated the expression of dnmt1, dnmt3a, dnmt3b, tet1, and tet2 in females and dnmt3a and dnmt3b in males, while reoxygenation down-regulated the expression of dnmt1, dnmt3a, dnmt3b, tet1, and tet2 in males. Whole genome methylation sequencing showed that the number of differentially methylated regions was highest on chromosome 10 (5192) and lowest on chromosome 24 (275). Differentially methylated genes in females and males, as well as between males and females, were enriched in the oxytocin signaling pathway, fatty acid metabolism pathway, and HIF-1a pathway. In summary, hypoxia and reoxygenation can induce endocrine disorders, affect the expression of HPG axis genes, change the methylation pattern and modification pattern of gonad DNA, and then have potential effects on gonad development.


Subject(s)
DNA Methylation , Animals , Male , Female , Gonads/metabolism , Hypoxia , Epigenesis, Genetic , Fishes/genetics
10.
Reprod Toxicol ; 127: 108603, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38759877

ABSTRACT

Hypobaric Hypoxia (HH) negatively affects the cardiovascular and respiratory systems as well as gonadal development and the therefore next generation. This study investigated the effects of HH on zebrafish and SD rats, by exposing them to a low-pressure environment at 6000 m elevation for 30 days to simulate high-altitude conditions. It was indicated that parental zebrafish reared amh under HH had increased embryo mortality, reduced hatchability, and abnormal cartilage development in the offspring. Furthermore, the HH-exposed SD rats had fewer reproductive cells and smaller litters. Moreover, the transcriptome analysis revealed the down-regulation of steroid hormone biosynthesis pathways. The expression of the gonad-associated genes (amh, pde8a, man2a2 and lhcgr), as well as the gonad and cartilage-related gene bmpr1a, were also down-regulated. In addition, Western blot analysis validated reduced bmpr1a protein expression in the ovaries of HH-treated rats. In summary, these data indicate the negative impact of HH on reproductive organs and offspring development, emphasizing the need for further research and precautions to protect future generations' health.


Subject(s)
Fertility , Hypoxia , Rats, Sprague-Dawley , Zebrafish , Animals , Female , Male , Bone Development , Embryo, Nonmammalian , Rats
11.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38809688

ABSTRACT

Aspongopus chinensis Dallas, 1851 (Hemiptera: Dinidoridae), an edible and medicinal insect, usually found in China and Southeast Asia, offers substantial potential for various applications. The reproductive cycle of this particular insect occurs annually because of reproductive diapause, leading to inadequate utilization of available natural resources. Despite its considerable ecological importance, the precise mechanisms underlying diapause in A. chinensis are not yet well understood. In this study, we conducted an analysis of comparing the microRNA (miRNA) regulation in the diapause and non-diapause gonads of A. chinensis and identified 303 differentially expressed miRNAs, among which, compared with the diapause group, 76 miRNAs were upregulated and 227 miRNAs downregulated. The results, regarding the Enrichment analysis of miRNA-targeted genes, showed their involvement in several essential biological processes, such as lipid anabolism, energy metabolism, and gonadal growth. Interestingly, we observed that the ATP-binding cassette pathway is the only enriched pathway, demonstrating the capability of these targeted miRNAs to regulate the reproductive diapause of A. chinensis through the above essential pathway. The current study provided the role of gonadal miRNA expression in the control of reproductive diapause in A. chinensis, the specific regulatory mechanism behind this event remained unknown and needed more investigation.


Subject(s)
Diapause, Insect , Hemiptera , MicroRNAs , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Hemiptera/genetics , Hemiptera/metabolism , Hemiptera/growth & development , Hemiptera/physiology , Gonads/metabolism , Gonads/growth & development , Female , Male , Reproduction
12.
Genes (Basel) ; 15(5)2024 05 09.
Article in English | MEDLINE | ID: mdl-38790234

ABSTRACT

It is widely known that all-female fish production holds economic value for aquaculture. Sebastes schlegelii, a preeminent economic species, exhibits a sex dimorphism, with females surpassing males in growth. In this regard, achieving all-female black rockfish production could significantly enhance breeding profitability. In this study, we utilized the widely used male sex-regulating hormone, 17α-methyltestosterone (MT) at three different concentrations (20, 40, and 60 ppm), to produce pseudomales of S. schlegelii for subsequent all-female offspring breeding. Long-term MT administration severely inhibits the growth of S. schlegelii, while short term had no significant impact. Histological analysis confirmed sex reversal at all MT concentrations; however, both medium and higher MT concentrations impaired testis development. MT also influenced sex steroid hormone levels in pseudomales, suppressing E2 while increasing T and 11-KT levels. In addition, a transcriptome analysis revealed that MT down-regulated ovarian-related genes (cyp19a1a and foxl2) while up-regulating male-related genes (amh) in pseudomales. Furthermore, MT modulated the TGF-ß signaling and steroid hormone biosynthesis pathways, indicating its crucial role in S. schlegelii sex differentiation. Therefore, the current study provides a method for achieving sexual reversal using MT in S. schlegelii and offers an initial insight into the underlying mechanism of sexual reversal in this species.


Subject(s)
Methyltestosterone , Sex Differentiation , Animals , Methyltestosterone/pharmacology , Male , Female , Sex Differentiation/drug effects , Perciformes/genetics , Perciformes/growth & development , Perciformes/metabolism , Testis/drug effects , Testis/metabolism , Testis/growth & development , Fishes/genetics , Fishes/growth & development , Fishes/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism
13.
Aquat Toxicol ; 272: 106947, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38776607

ABSTRACT

Seahorses are characterized by unique characteristics such as a male pregnancy reproductive strategy and grasping preferences, which make these species vulnerable to various environmental risks. Zinc (Zn) is one of the most frequently occurring toxic elements in coastal waters; however, little is known about the effect of Zn exposure on seahorses. In the present study, line seahorses (Hippocampus erectus) were exposed to waterborne Zn (0.2 and 1.0 mg/L) and the impact on growth and gonadal development was investigated. Zn exposure induced growth improvement, but also led to gonadal dysfunction in the lined seahorse. Female seahorses exhibited high testosterone levels, immature follicles, and weight increase after Zn exposure, which is the typical characteristics of a polycystic ovary syndrome (PCOS)-like phenotype. Transcriptomic data suggested that the Zn-induced growth promotion resulted from the dysregulated expression of fat accumulation genes. Further investigation of gene expression profiles in the brain, ovaries, and testes indicated that Zn affected the expression of genes involved in growth, immunity, tissue remodeling, and gonadal development by regulating serum steroid hormone levels and androgen receptor expression. This study not only clarifies the complex impact of Zn on seahorses using physiological, histological, and molecular evidence but can also provide new insights into the mechanism underlying PCOS in reproductive-aged women. Moreover, this work demonstrates the risk of the common practice of Zn supplementation in the aquaculture industry as the consequent growth yield may not represent a healthy condition.


Subject(s)
Smegmamorpha , Water Pollutants, Chemical , Zinc , Animals , Smegmamorpha/genetics , Zinc/toxicity , Female , Male , Water Pollutants, Chemical/toxicity , Ovary/drug effects , Testis/drug effects , Gonads/drug effects , Testosterone/blood , Transcriptome/drug effects
14.
J Steroid Biochem Mol Biol ; 241: 106529, 2024 07.
Article in English | MEDLINE | ID: mdl-38670516

ABSTRACT

Mud crab (Scylla paramamosain) has become an important mariculture crab along the southeast coast of China due to its strong adaptability, delicious taste, and rich nutrition. Several vertebrate steroid hormones and their synthesis-related genes and receptors have been found in crustaceans, but there are few reports on their synthesis process and mechanism. 3-beta-hydroxysteroid dehydrogenase (HSD3B) is a member of the Short-chain Dehydrogenase/Reductase (SDR) family, and an indispensable protein in vertebrates' steroid hormone synthesis pathway. In this study, the SpHsd3b gene sequence was obtained from the transcriptome data of S. paramamosain, and its full-length open reading frame (ORF) was cloned. The spatial and temporal expression pattern of SpHsd3b was performed by quantitative real-time PCR (qRT-PCR). SpHsd3b dsRNA interference (RNAi) and HSD3B inhibitor (trilostane) were used to analyze the function of SpHSD3B. The results showed that the SpHsd3b gene has an 1113 bp ORF encoding 370 amino acids with a 3ß-HSD domain. SpHSD3B has lower homology with HSD3B of vertebrates and higher homology with HSD3B of crustaceans. SpHsd3b was expressed in all examined tissues in mature crabs, and its expression was significantly higher in the testes than in the ovaries. SpHsd3b expression level was highest in the middle stage of testicular development, while its expression was higher in the early and middle stages of ovarian development. RNAi experiment and trilostane injection results showed that SpHSD3B had regulatory effects on several genes related to gonadal development and steroid hormone synthesis. 15-day trilostane suppression could also inhibit ovarian development and progesterone level of hemolymph. According to the above results, crustaceans may have steroid hormone synthesis pathways like vertebrates, and the Hsd3b gene may be involved in the gonadal development of crabs. This study provides further insight into the function of genes involved in steroid hormone synthesis in crustaceans.


Subject(s)
Brachyura , Phylogeny , Animals , Brachyura/genetics , Brachyura/growth & development , Brachyura/metabolism , Brachyura/enzymology , Female , Male , Amino Acid Sequence , 3-Hydroxysteroid Dehydrogenases/genetics , 3-Hydroxysteroid Dehydrogenases/metabolism , Ovary/metabolism , Ovary/growth & development , Cloning, Molecular , RNA Interference , Dihydrotestosterone/analogs & derivatives
15.
Gen Comp Endocrinol ; 353: 114512, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38582176

ABSTRACT

Eels are gonochoristic species whose gonadal differentiation initiates at the yellow eel stage and is influenced by environmental factors. We revealed some sex-related genes were sex dimorphically expressed in gonads during gonadal sex differentiation of Japanese eel (Anguilla japonica); however, the expression of sex-related genes in the brain-pituitary during gonadal sex differentiation in eels is still unclear. This study aimed to investigate the sex-related gene expressions in the brain-pituitary and tried to clarify their roles in the brain and gonads during gonadal sex differentiation. Based on our previous histological study, the control eels developed as males, and estradiol-17ß (E2) was used for feminization. Our results showed that during testicular differentiation, the brain cyp19a1 transcripts and aromatase proteins were increased significantly; moreover, the cyp19a1, sf-1, foxl2s, and esrs (except gperb) transcripts in the midbrain/pituitary also were increased significantly. Forebrain gnrh1 transcripts increased slightly during gonadal differentiation of both sexes, but the gnrhr1b and gnrhr2 transcripts in the midbrain/pituitary were stable during gonadal differentiation. The expression levels of gths and gh in the midbrain/pituitary were significantly increased during testicular differentiation and were much higher in males than in E2-feminized females. These results implied that endogenous estrogens might play essential roles in the brain/pituitary during testicular differentiation, sf-1, foxl2s, and esrs may have roles in cyp19a1 regulation in the midbrain/pituitary of Japanese eels. For the GnRH-GTH axis, gths, especially fshb, may be regulated by esrs and involved in regulating testicular differentiation and development in Japanese eels.


Subject(s)
Aromatase , Brain , Pituitary Gland , Sex Differentiation , Animals , Sex Differentiation/genetics , Sex Differentiation/physiology , Male , Aromatase/genetics , Aromatase/metabolism , Female , Brain/metabolism , Pituitary Gland/metabolism , Anguilla/genetics , Anguilla/metabolism , Anguilla/growth & development , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism , Testis/metabolism , Gonads/metabolism , Gonads/growth & development
16.
J Fish Biol ; 105(1): 186-200, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38684177

ABSTRACT

The objective of this study is to provide information on the reproductive biology of tomato hind grouper, Cephalopholis sonnerati (Valenciennes, 1828) for conservation and management purposes. Fish caught by artisanal fishermen from September 2019 to August 2021 were analysed. A total of 280 females, 31 males, and 4 transitional and 178 sex-undetermined fish were analysed. The female to male sex proportion was 9:1, and the fish reached a maximum total body length of 38.5 and 54.5 cm for females and males, respectively. The following microscopic stages were identified: immature, developing, ripe, running ripe/releasing, and spent in both males and females. Several asynchronous development patterns were observed in the studied gonads, including multiple oocyte stages and early and advanced stages of sexual transition. High gonadosomatic index (GSI) for both males and females was recorded in March, May, and November. Running ripe and releasing stages in females were identified in the months from March to June, which indicates the spawning season. The absolute and relative fecundity of the species ranged from 162,723 ± 207,267 and 239 ± 285, respectively. An exponential relationship was found between fecundity and total body length (TL), fecundity and total body weight (TW), and fecundity and gonad weight (GW).


Subject(s)
Reproduction , Animals , Female , Male , India , Fertility , Bass/physiology , Bass/growth & development , Gonads/growth & development , Gonads/physiology , Seasons , Sex Ratio , Perciformes/physiology
17.
Front Biosci (Landmark Ed) ; 29(2): 63, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38420816

ABSTRACT

BACKGROUND: Largemouth bass (Micropterus Salmoides) is an economically important fish species in China. Most research has focused on its growth, disease resistance, and nutrition improvement. However, the sex-determining genes in largemouth bass are still unclear. The transforming growth factor-beta (TGF-ß) gene family, including amh, amhr2 and gsdf, plays an important role in the sex determination and differentiation of various fishes. These genes are potentially involved in sex determination in largemouth bass. METHODS: We performed a systematic analysis of 5 sex-related genes (amh, amhr2, gsdf, cyp19a1, foxl2) in largemouth bass using sequence alignment, collinearity analysis, transcriptome, and quantitative real-time polymerase chain reaction (qRT-PCR). This included a detailed assessment of their sequences, gene structures, evolutionary traits, and gene transcription patterns in various tissues including gonads, and at different developmental stages. RESULTS: Comparative genomics revealed that the 5 sex-related genes were highly conserved in various fish genomes. These genes did not replicate, mutate or lose in largemouth bass. However, some were duplicated (amh, amhr2 and gsdf), mutated (gsdf) or lost (amhr2) in other fishes. Some genes (e.g., gsdf) showed significant differences in genomic sequence between males and females, which may contribute to sex determination and sex differentiation in these fishes. qRT-PCR was applied to quantify transcription profiling of the 5 genes during gonadal development and in the adult largemouth bass. Interestingly, amh, amhr2 and gsdf were predominantly expressed in the testis, while cyp19a1 and foxl2 were mainly transcribed in the ovary. All 5 sex-related genes were differentially expressed in the testes and ovaries from the 56th day post-fertilization (dpf). We therefore speculate that male/female differentiation in the largemouth bass may begin at this critical time-point. Examination of the transcriptome data also allowed us to screen out several more sex-related candidate genes. CONCLUSIONS: Our results provide a valuable genetic resource for investigating the physiological functions of these 5 sex-related genes in sex determination and gonadal differentiation, as well as in the control of gonad stability in adult largemouth bass.


Subject(s)
Bass , Animals , Female , Male , Bass/genetics , Sequence Alignment , Testis , Ovary , Transcriptome
18.
Front Cell Dev Biol ; 12: 1328365, 2024.
Article in English | MEDLINE | ID: mdl-38322165

ABSTRACT

Genes involved in gonadal sex differentiation have been traditionally thought to be fairly conserved across vertebrates, but this has been lately questioned. Here, we performed the first comparative analysis of gonadal transcriptomes across vertebrates, from fish to mammals. Our results unambiguously show an extraordinary overall variability in gene activation and repression programs without a phylogenetic pattern. During sex differentiation, genes such as dmrt1, sox9, amh, cyp19a and foxl2 were consistently either male- or female-enriched across species while many genes with the greatest expression change within each sex were not. We also found that downregulation in the opposite sex, which had only been quantified in the mouse model, was also prominent in the rest of vertebrates. Finally, we report 16 novel conserved markers (e.g., fshr and dazl) and 11 signaling pathways. We propose viewing vertebrate gonadal sex differentiation as a hierarchical network, with conserved hub genes such as sox9 and amh alongside less connected and less conserved nodes. This proposed framework implies that evolutionary pressures may impact genes based on their level of connectivity.

19.
Int J Mol Sci ; 25(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338678

ABSTRACT

This study investigates the role of lysosomal acid lipase (LIPA) in sex hormone regulation and gonadal development in Macrobrachium nipponense. The full-length Mn-LIPA cDNA was cloned, and its expression patterns were analyzed using quantitative real-time PCR (qPCR) in various tissues and developmental stages. Higher expression levels were observed in the hepatopancreas, cerebral ganglion, and testes, indicating the potential involvement of Mn-LIPA in sex differentiation and gonadal development. In situ hybridization experiments revealed strong Mn-LIPA signaling in the spermatheca and hepatopancreas, suggesting their potential role in steroid synthesis (such as cholesterol, fatty acids, cholesteryl ester, and triglycerides) and sperm maturation. Increased expression levels of male-specific genes, such as insulin-like androgenic gland hormone (IAG), sperm gelatinase (SG), and mab-3-related transcription factor (Dmrt11E), were observed after dsMn-LIPA (double-stranded LIPA) injection, and significant inhibition of sperm development and maturation was observed histologically. Additionally, the relationship between Mn-LIPA and sex-related genes (IAG, SG, and Dmrt11E) and hormones (17ß-estradiol and 17α-methyltestosterone) was explored by administering sex hormones to male prawns, indicating that Mn-LIPA does not directly control the production of sex hormones but rather utilizes the property of hydrolyzing triglycerides and cholesterol to provide energy while influencing the synthesis and secretion of self-sex hormones. These findings provide valuable insights into the function of Mn-LIPA in M. nipponense and its potential implications for understanding sex differentiation and gonadal development in crustaceans. It provides an important theoretical basis for the realization of a monosex culture of M. nipponense.


Subject(s)
Palaemonidae , Animals , Male , Palaemonidae/metabolism , Semen/metabolism , Gonadal Steroid Hormones/metabolism , Cholesterol/metabolism , Triglycerides/metabolism , Arthropod Proteins/genetics , Arthropod Proteins/metabolism
20.
Int J Mol Sci ; 25(4)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38396857

ABSTRACT

The differentiation and developmental trajectory of fish gonads, significantly important for fish breeding, culture, and production, has long been a focal point in the fields of fish genetics and developmental biology. However, the mechanism of gonadal differentiation in leopard coral grouper (Plectropomus leopardus) remains unclear. This study investigates the 17ß-Hydroxysteroid Dehydrogenase (Hsd17b) gene family in P. leopardus, with a focus on gene characterization, expression profiling, and functional analysis. The results reveal that the P. leopardus's Hsd17b gene family comprises 11 members, all belonging to the SDR superfamily. The amino acid similarity is only 12.96%, but conserved motifs, such as TGxxxGxG and S-Y-K, are present in these genes. Hsd17b12a and Hsd17b12b are unique homologs in fish, and chromosomal localization has confirmed that they are not derived from different transcripts of the same gene, but rather are two independent genes. The Hsd17b family genes, predominantly expressed in the liver, heart, gills, kidneys, and gonads, are involved in synthesizing or metabolizing sex steroid hormones and neurotransmitters, with their expression patterns during gonadal development categorized into three distinct categories. Notably, Hsd17b4 and Hsd17b12a were highly expressed in the testis and ovary, respectively, suggesting their involvement in the development of reproductive cells in these organs. Fluorescence in situ hybridization (FISH) further indicated specific expression sites for these genes, with Hsd17b4 primarily expressed in germ stem cells and Hsd17b12a in oocytes. This comprehensive study provides foundational insights into the role of the Hsd17b gene family in gonadal development and steroidogenesis in P. leopardus, contributing to the broader understanding of fish reproductive biology and aquaculture breeding.


Subject(s)
17-Hydroxysteroid Dehydrogenases , Bass , Animals , Male , Female , In Situ Hybridization, Fluorescence , Gonads/metabolism , Testis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL