Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Food Chem X ; 19: 100753, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37780306

ABSTRACT

In this study was correlate the effects of drying time and intermittence of paddy rice on the physical, physicochemical, and morphological quality of polished and brown rice using near-infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. Rice grain batches from mechanized harvesting with moisture contents between 24 and 20% (w.b.) were immediately subjected to drying and intermittence (average temperature of the grain mass of 40 °C) for a time of 14 h (number of times that the product underwent the drying and intermittence processes). For each drying time, grain sampling was performed to evaluate the physical quality of paddy rice and the physicochemical and morphological quality of polished and brown rice. The accumulated drying time provided an increase in the temperature of the grain mass, altering the physicochemical and morphological quality of polished and brown rice. The intermittence process did not contribute for the quality of the polished rice.

2.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37167440

ABSTRACT

Cereal grains are the predominant starch source (SS) for dairy cows; however, starch digestibility varies greatly depending on source, grain processing, and potentially interactions between these factors. The objective was to study the effects of the interactions between SS, and particle sizes (PS) on ruminal fermentation, nutrient flow, starch digestibility, and lactation performance of dairy cows. Four ruminally cannulated multiparous Holstein cows were used in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Two SS (corn or sorghum) used in this study were either finely or coarsely ground (using a 1- or 4-mm screen sieve). Digesta flow was quantified using the reticular sampling technique, applying the triple-marker method. Data were analyzed using the GLIMMIX procedure of SAS version 9.3 (SAS Institute Inc., Cary, NC, USA). For ruminal pH, data were analysed with time as repeated measure. There were no interactions between SS and PS on production or intake, flow, and digestibility of nutrients. Dry matter intake was greater for the corn diet compared to the sorghum diet (25.15 vs. 21.98 kg/d), which consequently affected nutrient intake, however, PS did not affect intake. Milk yield was not affected by SS; however, it was greater for cows fed fine grains than cows fed coarser grains (25.32 vs. 23.16 kg/d). Milk fat and milk protein were not affected by SS or PS. Interactions (SS × PS) were observed for ruminal pH, reticular pH, and volatile fatty acids (VFA) concentrations but not for ruminal NH3-N concentration. Ruminal and reticular pH were greater for sorghum when coarsely ground and the total VFA concentration was decreased, compared to coarse corn and fine sorghum; however, coarsely grinding corn did not affect ruminal or reticular pH nor VFA concentration. Acetate concentration was lower for corn when finely ground; however, finely grinding sorghum did not affect acetate. Decreasing PS increased ruminal digestibility of starch (87.18% vs. 83.43%), reduced the flow of starch to the reticulum (0.79 vs. 0.96 kg/d) but decreased neutral detergent fiber digestibility in the rumen (30.23% vs. 34.88%). Although SS were differently affected by processing, the effects of PS on production, intake, flow, and digestibility of nutrients were observed regardless of the SS. Furthermore, the effects of decreasing PS on pH and VFA concentrations were more pronounced in sorghum compared to corn.


Starch digestibility varies greatly depending on starch source (SS), grain processing, and potentially interactions between these factors. Four ruminally cannulated lactating Holstein cows were fed a total mixed ration that varied in SS and particle sizes (PS) to evaluate the interactions between SS and PS on ruminal fermentation, nutrient flow, starch digestibility, and lactation performance of dairy cows. There were no interactions between SS, and PS on production, intake, flow, and digestibility of nutrients; however, interactions were observed for ruminal pH, reticular pH, volatile fatty acids (VFA) concentrations, and in some VFA molar proportions.


Subject(s)
Lactation , Starch , Female , Cattle , Animals , Starch/metabolism , Fermentation , Particle Size , Animal Feed/analysis , Digestion , Fatty Acids, Volatile/metabolism , Diet/veterinary , Nutrients , Rumen/metabolism , Zea mays/metabolism
3.
Crit Rev Food Sci Nutr ; 63(9): 1170-1186, 2023.
Article in English | MEDLINE | ID: mdl-34357823

ABSTRACT

Sorghum grain is a staple food for about 500 million people in 30 countries in Africa and Asia. Despite this contribution to global food production, most of the world's sorghum grain, and nearly all in Western countries, is used as animal feed. A combination of the increasingly important ability of sorghum crops to resist heat and drought, the limited history of the use of sorghum in Western foods, and the excellent functional properties of sorghum grain in healthy diets, suggests a greater focus on the development of new sorghum-based foods. An understanding of the structural and functional properties of sorghum grain to develop processes for production of new sorghum-based foods is required. In this review, we discuss the potential of sorghum in new food products, including sorghum grain composition, the functional properties of sorghum in foods, processing of sorghum-based products, the digestibility of sorghum protein and starch compared to other grains, and the health benefits of sorghum. In the potential for sorghum as a major ingredient in new foods, we suggest that the gluten-free status of sorghum is of relatively minor importance compared to the functionality of the slowly digested starch and the health benefits of the phenolic compounds present.


Subject(s)
Sorghum , Animals , Sorghum/chemistry , Edible Grain/chemistry , Starch/chemistry , Animal Feed/analysis , Africa
4.
Foods ; 11(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36553732

ABSTRACT

Slightly acidic electrolyzed water (SAEW) was prepared and used as wheat tempering water. This study explored the impacts of tempering with SAEW on microbial load and diversity and quality properties of wheat flour. As SAEW volume ratio increased, the residual level of total plate counts (TPC) and mould/yeast counts (MYC) decreased dramatically (p < 0.05). Based on genomics analysis, bacterial 16S rRNA gene and fungal ITS1 gene region were performed to characterize the changes in microbial communities' composition and diversity in response to SAEW treatment. SAEW optimal volume ratio (6.5:10, v/v) of SAEW with distilled water influenced wheat microbiome composition, with a higher microbial diversity and abundance discovered on the control grains. Bacteroidetes of predominant bacterial phylum and Ascomycota of the most abundant fungal phylum were reduced after SAEW optimal volume ratio tempering. The flour yield is higher and ash content is lower than the control samples. Falling number and "b*" in terms of colour markedly increased. DSC (Differential Scanning Calorimetry) test showed that To (onset temperature), Tp (peak temperature), and Tc (conclusion temperature) were significantly decreased in thermal characteristics of flour. Gluten content, protein content, ΔH and pasting properties tests showed no significant change. It can be concluded that SAEW should be applied on wheat tempering for producing clean wheat flour. ANOVA and Tukey's honestly significant difference (HSD) test were used for the analysis of variance and differences between the experimental and control groups, with p < 0.05.

5.
Vet Clin North Am Food Anim Pract ; 38(3): 405-419, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36243462

ABSTRACT

Many researchers have evaluated different nonantibiotic, dietary interventions to reduce liver abscessation including degree of grain processing, roughage particle size, ionophore inclusion level, and supplemental prebiotics or probiotics; however, these alternatives have been inconsistent in outcomes and have not proven to be successful. New technologies and methodologies that allow for description and characterization of the microbiome within cattle, their environment, and liver abscesses themselves may help elucidate the etiology of liver abscess formation and allow for targeting interventions that will provide solutions to replace or reduce antimicrobial use that is currently used for the reduction of liver abscess prevalence.


Subject(s)
Dietary Fiber , Liver Abscess , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Digestion , Ionophores , Liver Abscess/veterinary
6.
Foods ; 11(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36140970

ABSTRACT

The improvement of grain processing capacity is crucial to the realization of grain security. Enterprises are important grain processing bodies and their productivity directly determines grain processing capacity. Chinese grain processing enterprises still have difficulties, and how to further improve grain processing capacity and the total factor productivity of grain processing enterprises may be an important aspect. We used the meta-frontier Malmquist index to measure the total factor productivity of grain enterprises as well as judge the change trend and regional gap, applying the classical regression model to test the convergence of China's overall and regional grain enterprises' total factor productivity. This research finds that the total factor productivity of grain processing enterprises increased by 1.18% annually during the sample period, and that of the central region rose more quickly than the other areas of China. Technical progress contributes more to enterprises' total factor productivity, but technical efficiency may become a key factor in determining it. The difference in the growth rate of the grain processing enterprises' total factor productivity among different ones in the eastern and western regions is gradually narrowing, while that of the central region is gradually expanding; there is an obvious technological catch-up effect between and within the regions, especially in the central area of China.

7.
J Anim Sci ; 100(6)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35666767

ABSTRACT

Five ruminally cannulated steers (body weight = 390 ± 7.86 kg) were used in three experiments to evaluate effects of corn processing, flake density, and starch retrogradation on in situ ruminal degradation. In experiment 1, corn was left whole or processed with no screen, ground through a 6-mm screen, or ground through a 1-mm screen. In experiment 2, we produced steam-flaked corn at four densities: 309, 335, 360, and 386 g/L. These four flake densities were sifted for 20 s through a 4-mm screen to produce two particle sizes within each flake density: sifted flakes (>4 mm) and sifted fines (<4 mm). In experiment 3, sifted flakes (335 g/L) were stored for 3-d at either 23 °C (starch availability = 55%) or 55 °C to induce starch retrogradation (starch availability = 41%). All samples for each of the three experiments were weighed into nylon bags and ruminally incubated for 0-h to estimate the soluble fraction. The residue remaining was analyzed for nutrient composition. In experiment 1, whole shelled corn had lesser (P < 0.01) ruminal solubility of all nutrients measured compared with ground corn. Corn ground with a screen (6 and 1 mm) had greater (P < 0.01) ruminal solubility of all nutrients measured compared with corn ground with no screen. Corn ground through a 1-mm screen had greater (P < 0.03) ruminal solubility of DM, total starch, CP, ADF, AHF, P, Mg, K, S, Zn, Fe, and Mn compared with corn ground through a 6-mm screen. In experiment 2, increasing flake density linearly decreased (P < 0.02) the soluble fraction of DM, total starch, CP, ADF, AHF, P, K, S, and Zn of sifted flakes. The soluble DM fraction of sifted fines tended to decrease (P = 0.06) linearly with increasing flake density. Total starch, CP, NDF, and Zn soluble fractions of sifted fines were not influenced by flake density. In experiment 3, storage of sifted flakes in heat-sealed foil bags at 55 °C for 3-d decreased (P < 0.04) the soluble fractions of DM, total starch, CP, NDF, P, Mg, K, S, and Fe. With each increase in the degree of corn processing, there was an increase in the solubility of nutrients. Increasing flake density can decrease ruminal solubility of flakes; however, the soluble fraction of sifted fines is not influenced as much by changes in flake density. Inducing starch retrogradation decreases ruminal solubility of starch, nonstarch OM, and minerals.


Grain processing has been used for decades to improve digestibility of finishing cattle diets, leading to improved growth performance and feed efficiency. The soluble fraction of a feed can be defined as the fraction that disappears immediately in the rumen and its measurement can be useful for understanding kinetic properties of feed digestion. Grain processing methods that result in changes in particle size, flake density, or starch retrogradation have been shown to affect the soluble fraction of dry matter in the rumen. However, it is unknown how the solubility of different nutrients are affected by these changes. The objective of this experiment was to characterize how corn processing, flake density, particle size, and starch retrogradation influence the soluble fraction of starch, protein, fiber, and minerals. With each increase in the degree of corn processing, there was an increase in the solubility of nutrients. Increasing flake density can decrease ruminal solubility of flakes; however, the soluble fraction of sifted fines is not influenced as much by changes in flake density. Inducing starch retrogradation decreases ruminal solubility of starch, nonstarch OM, and minerals. Understanding the factors influencing ruminal solubility of processed corn is important when modeling digestion in beef cattle.


Subject(s)
Starch , Zea mays , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Fiber/metabolism , Digestion , Food Handling , Minerals/metabolism , Rumen/metabolism , Solubility , Starch/metabolism , Zea mays/chemistry
8.
Foods ; 11(6)2022 Mar 13.
Article in English | MEDLINE | ID: mdl-35327246

ABSTRACT

Grain processing products constitute an essential component of the human diet and are among the main sources of heavy metal intake. Therefore, a systematic assessment of risk factors and early-warning systems are vital to control heavy metal hazards in grain processing products. In this study, we established a risk assessment model to systematically analyze heavy metal hazards and combined the model with the K-means++ algorithm to perform risk level classification. We then employed deep learning models to conduct a multi-step prediction of risk levels, providing an early warning of food safety risks. By introducing a voting-ensemble technique, the accuracy of the prediction model was improved. The results indicated that the proposed model was superior to other models, exhibiting the overall accuracy of 90.47% in the 7-day prediction and thus satisfying the basic requirement of the food supervision department. This study provides a novel early-warning model for the systematic assessment of the risk level and further allows the development of targeted regulatory strategies to improve supervision efficiency.

9.
J Anim Sci ; 99(11)2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34669937

ABSTRACT

Five ruminally cannulated steers (body weight = 390 ± 7.86 kg) were used in two experiments to evaluate the effects of flake density and starch retrogradation on in situ ruminal degradation of steam-flaked corn. In experiment 1, sifted flakes with flake densities of 257, 296, 335, 373, and 412 g/L (enzymatic starch availabilities: 87%, 76%, 66%, 43%, and 49%, respectively) were evaluated in a randomized complete block design experiment. In experiment 2, the experimental design was a randomized complete block design with a 3 × 2 factorial arrangement of treatments. Three steam-flaked corn fractions corresponding to different particle sizes were used: flakes + fines (not sifted; >4 and <4 mm), sifted flakes (>4 mm), and sifted fines (<4 mm). Particle size fractions were stored for 3 d at either 23 °C or 55 °C (starch availabilities averaged across particle sizes: 53.3% and 25.5%, respectively) in heat-sealed foil bags. Samples were ruminally incubated for 0, 3, 6, 12, 24, 48, 72, or 96 h. Degradation data were modeled to obtain the rate and extent of degradation and passage rate was set to 6% per hour. In experiment 1, the rate of degradation decreased linearly (P < 0.01) and in situ ruminal dry matter (DM) degradability decreased linearly (P < 0.01) from 78.9% to 57.3% as flake density increased from 257 to 412 g/L. In experiment 2, storage of steam-flaked corn samples at 55 °C for 3 d decreased (P < 0.01) the rate of degradation by 37.6% across all particle sizes. Storing samples at 55 °C for 3 d decreased (P < 0.01) in situ ruminal DM degradability of flakes + fines, sifted flakes, and sifted fines by 20.9%, 22.6%, and 14.7%, respectively. Using data from experiment 1 and 2, enzymatic starch availability of sifted flakes was positively correlated (R2 = 0.97; P < 0.01) with in situ ruminal DM degradability. The results demonstrate that decreased starch availability resulting from either starch retrogradation or increased flake density is associated with decreased ruminal digestibility. Decreases in starch availability and in situ ruminal degradability may indicate that increasing flake density or starch retrogradation could potentially alter the site of digestion in cattle. Using prediction equations, decreases in ruminal starch digestibility of steam-flaked corn caused by increasing flake density or increasing starch retrogradation could increase energetic efficiency, depending on the rate of passage and if small intestinal starch digestibility is maintained.


Subject(s)
Starch , Zea mays , Animal Feed/analysis , Animals , Cattle , Diet , Digestion , Food Handling , Rumen , Steam
10.
J Equine Vet Sci ; 104: 103690, 2021 09.
Article in English | MEDLINE | ID: mdl-34416994

ABSTRACT

The aim of this study was to investigate, the effect of different levels of concentrates and grain processing on feeding behavior, nutrient digestibility, fecal pH and blood metabolites in the horse. Sixteen 5 to 11 years old Turkmen horses with an initial body weight 433±50 kg were used in this experiment based on completely randomized design. Four treatments were studied, in three treatments were used 20, 25 and 30% of concentrate containing processed grains (A20, A25 and A30, respectively), and in one treatment was used 25% of concentrate containing whole grain (B25). The amount of feed intake, chewing and swallowing rate and total intake for forage and concentrate were not affected by experimental treatments (P> .05). By increasing the concentrate level up to 30%, the digestibility coefficients of dry matter, organic matter, crude protein, ash-free neutral detergent fiber, ash-free acid detergent fiber and digestible energy increased. The highest digestibility coefficients were observed in A30 treatment (P< 0.05). The digestibility of organic matter, crude protein, ash-free neutral detergent fiber and digestible energy in A25 treatment significantly increased compared to B25 (P< 0.05). The concentration of total protein, triglycerides, cholesterol and low-density lipoprotein were not affected by experimental treatments (P> 0.05). The concentration of glucose increased with increasing concentrate for treatment A30 (P< 0.05). In conclusion, comparing the two levels of 25% concentrate showed that the use of processed grains compared to unprocessed grains had no effect on feeding behavior, fecal pH and blood parameters. The use of 30% concentrate containing processed grains improved digestion without adversely affecting feeding behavior and fecal pH.


Subject(s)
Animal Feed , Digestion , Animal Feed/analysis , Animals , Diet , Feeding Behavior , Horses , Hydrogen-Ion Concentration , Nutrients
11.
J Anim Sci ; 99(7)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34015088

ABSTRACT

Measuring enzymatic starch availability is commonly used as a quality control method to ensure steam-flaked corn manufacturing consistency in commercial cattle feeding operations. However, starch availability estimates can be variable. We conducted five experiments to evaluate factors influencing starch availability estimates of steam-flaked corn. In Exp. 1, sample handling methods were evaluated. Sifted flakes were immediately placed into a plastic bag, air equilibrated for 240 min, oven-dried, or freeze-dried. Directly oven-drying samples at 55°C decreased (P < 0.01) starch availability compared to other sample handling methods. In Exp. 2, sifted flakes were air equilibrated for 0, 15, 30, 60, 120, or 240 min. Air equilibration time did not influence (P ≥ 0.54) starch availability. In Exp. 3, samples were evaluated for effects of sifting through a 4-mm screen (flakes + fines vs. sifted flakes) and air equilibration time (0 vs. 240 min). Both sifting steam-flaked corn samples and air equilibration for 240 min increased starch availability (P < 0.01 and P = 0.02, respectively). In Exp. 4, we evaluated the effects of air equilibration time (0 vs. 240 min) on the two sifted portions (sifted flakes vs. sifted fines). There was an air equilibration time × sifted portion interaction for starch availability because air equilibration time increased (P < 0.01) starch availability of sifted fines but did not influence starch availability of sifted flakes. Concentrations of crude protein, soluble crude protein, neutral and acid detergent fiber, ether extract, and acid-hydrolyzed fat, Ca, P, K, Mg, S, Fe, Zn, Mg, and Cu were greater (P < 0.01) for sifted fines compared to sifted flakes. Starch availability and total starch concentration were greater (P < 0.01) for sifted flakes compared to sifted fines. In Exp. 5, effects of air equilibration time (0 vs. 240 min) and storage temperature (23°C vs. 55°ºC) on flakes + fines were evaluated. Storage of flakes + fines in heat-sealed foil bags at 55°C for 3-d decreased (P < 0.01) starch availability by 40.7%. Sifted flakes contained less moisture, greater total starch concentrations, and greater starch availability than sifted fines. Moisture, sifting, air equilibration time, and storage temperature influence starch availability of steam-flaked corn. Adoption of the strategies discussed in the current study will lead to more consistent estimates of starch availability.


Subject(s)
Starch , Zea mays , Animal Feed/analysis , Animals , Cattle , Diet , Digestion , Food Handling , Rumen , Specimen Handling/veterinary , Steam , Temperature
12.
Animal ; 15(3): 100172, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33589350

ABSTRACT

Some grain processing by-products rich in digestible fiber are good feed resources for ruminants. This experiment was conducted to investigate the effects of replacing a portion of corn and corn stover with the combinations of corn bran and soybean hulls in the diet of fattening lambs on nutrient digestion, rumen microbial protein synthesis, and growth performance. A total of 36 Dorper × Small Thin-Tailed crossbred ram lambs (BW = 22.2 ±â€¯0.92 kg; mean ±â€¯SD) were randomly divided into three groups, and each group was fed 1 of 3 treatment diets: 1) 0% corn bran and soybean hulls (control); 2) 9% corn bran and 9% soybean hulls (18MIX); and 3) 17% corn bran and 17% soybean hulls (34MIX). The feeding experiment was conducted for 70 days, with the first 10 days for adaption. The DM intake was higher for 34MIX (1635.3 g/d) than for control diet (1434.7 g/d; P = 0.001). Lambs fed 18MIX and 34MIX diets (230.2 and 263.6 g/d, respectively) had higher average daily gain and feed efficiency than those fed control diet (194.8 g/d; P < 0.01). Dry matter and NDF digestibility for 34MIX group (60.9 and 49.5%) were higher than for control (55.2 and 41.3%; P < 0.01). No difference was observed in nitrogen digestibility among treatment diets (P = 0.778). The lambs fed 34MIX diet excreted more urinary purine derivatives, indicating that more microbial protein was yielded than those fed control diet (P < 0.01), while 18MIX was not different from the other two diets (P > 0.05). The metabolizable protein supplies were improved with increasing co-products inclusion rate. The results indicated that corn bran and soybean hulls in combination can effectively replace a portion of corn and corn stover in the ration of finishing lambs with positive effect on nutrient digestion and growth performance.


Subject(s)
Glycine max , Rumen , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Digestion , Male , Nutrients , Sheep , Zea mays
13.
Animals (Basel) ; 11(1)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33419121

ABSTRACT

Continental crossbred beef heifers were used in a randomized complete block design experiment to evaluate the effects of replacement of dry-rolled corn with unprocessed rye on the finishing-phase growth performance and efficiency of dietary net energy (NE) use. Fifty-six heifers (433 ± 34.0 kg) were transported 241 km from a sale barn in North Central South Dakota to the Ruminant Nutrition Center in Brookings, SD. Heifers were blocked by weight grouping and allotted to treatment pens (n = 7 heifers/pen and 4 pens/treatment). Treatments included a finishing diet that contained 60% grain (diet dry matter basis) as dry-rolled corn (DRC) or unprocessed rye grain (RYE). On study day 14, all heifers were consuming the final diet and were implanted with 200 mg of trenbolone acetate and 28 mg of estradiol benzoate (Synovex-Plus, Zoetis, Parsippany, NJ, USA). The RYE heifers had decreased (p ≤ 0.01) final body weight, average daily gain, and gain efficiency; however, they tended (p = 0.08) to have a greater dry matter intake compared to DRC heifers. RYE heifers had decreased (p ≤ 0.01) observed dietary NE and decreased (p ≤ 0.01) observed-to-expected dietary NE ratio for maintenance and gain compared to DRC heifers. The dressing percentage, 12th rib fat thickness, ribeye area, and the distribution of yield and quality grades were not altered (p ≥ 0.12) by dietary treatment. The hot carcass weight, calculated yield grade, estimated empty body fat (EBF), and body weight at 28% EBF decreased (p ≤ 0.02) and retail yield increased (p = 0.01) in RYE compared to DRC heifers. These data indicate that unprocessed rye is a palatable feed ingredient for inclusion in finishing diets for beef cattle and that rye inclusion only minimally influences the carcass quality grade. The feeding value of unprocessed rye is considerably less (21.4%) than that of dry-rolled corn using current standards and approximately 91% of the NE value of processed rye (processing index = 78.8%). Rye grain fed as processed or unprocessed grain has an NE value that is less than 90% of that of dry-rolled corn.

14.
J Anim Sci ; 98(4)2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32227169

ABSTRACT

The objectives were to determine the effects of forage level and grain processing on whole-body urea kinetics, N balance, serosal-to-mucosal urea flux (Jsm-urea), and messenger ribonucleic acid (mRNA) abundance of urea transporter-B (UT-B; SLC14a1) and aquaporins (AQP) in ovine ruminal, duodenal, and cecal epithelia. Thirty-two wether lambs were blocked by body weight into groups of four and assigned to one of four diets (n = 8) in a 2 × 2 factorial design. Dietary factors were forage level (30% [LF] vs. 70% [HF]) and corn grain processing (whole-shelled [WS] vs. steam-flaked [SF]). Four blocks of lambs (n = 4) were used to determine urea kinetics and N balance using 4-d [15N15N]-urea infusions with concurrent fecal and urine collections. Lambs were killed after 23 d of dietary adaptation. Ruminal, duodenal, and cecal epithelia were collected to determine Jsm-urea and mRNA abundance of UT-B and AQP. Lambs fed LF had greater intakes of dry matter (DMI; 1.20 vs. 0.86 kg/d) and N (NI; 20.1 vs. 15.0 g/d) than those fed HF (P < 0.01). Lambs fed SF had greater DMI (1.20 vs. 0.86 kg/d) and NI (20.6 vs. 14.5 g/d) than those fed WS (P < 0.01). As a percentage of NI, total N excretion was greater in lambs fed HF compared with those fed LF (103% vs. 63.0%; P < 0.01) and was also greater in lambs fed WS compared with those fed SF (93.6% vs. 72.1%; P = 0.02). Retained N (% of NI) was greater in lambs fed LF compared with those fed HF (37.0% vs. -2.55%; P < 0.01). Lambs fed SF had a greater (P = 0.02) retained N (% of NI; 28.0% vs. 6.50%) compared with those fed WS. Endogenous urea production (UER) tended (P = 0.09) to be greater in lambs fed HF compared with those fed LF. As a proportion of UER, lambs fed HF had a greater urinary urea-N loss (0.38 vs. 0.22) and lower urea-N transferred to the gastrointestinal tract (GIT; 0.62 vs. 0.78) or urea-N used for anabolism (as a proportion of urea-N transferred to the GIT; 0.12 vs. 0.26) compared with lambs fed LF (P < 0.01). Ruminal Jsm-urea was unaffected by diet. Duodenal Jsm-urea was greater (P < 0.01) in lambs fed HF compared with LF (77.5 vs. 57.2 nmol/[cm2 × h]). Lambs fed LF had greater (P = 0.03) mRNA expression of AQP3 in ruminal epithelia and tended (P = 0.06) to have greater mRNA expression of AQP3 in duodenal epithelia compared with lambs fed HF. Expression of UT-B mRNA was unaffected by diet. Our results showed that feeding more ruminally available energy improved N utilization, partly through a greater proportion of UER being transferred to the GIT and being used for anabolic purposes.


Subject(s)
Energy Intake , Nitrogen/metabolism , Sheep/physiology , Urea/metabolism , Animal Feed/analysis , Animals , Aquaporins/genetics , Diet/veterinary , Edible Grain , Epithelium/metabolism , Feces/chemistry , Fermentation , Gastrointestinal Tract/metabolism , Kinetics , Male , Membrane Transport Proteins/genetics , Random Allocation , Sheep/genetics , Zea mays , Urea Transporters
15.
Transl Anim Sci ; 2(4): 428-438, 2018 Oct.
Article in English | MEDLINE | ID: mdl-32704725

ABSTRACT

The objective of this in situ study was to evaluate the rumen degradability of kernels from short-season corn hybrids grown for silage in Western Canada (Lacombe, AB) and determine whether decreasing kernel particle size would enhance ruminal degradability in a similar manner for all hybrids. The study was a completely randomized design with 3 beef cows (replicates) and a 6 (hybrid) × 3 (particle size) factorial arrangement of treatments. Kernels were processed to generate three different particle sizes: large (2.3 mm), medium (1.4 mm), and small (0.7 mm). Processed samples were incubated in the rumen for 0, 3, 6, 12, 24, and 48 h using the in situ method and degradation kinetics of DM and starch were determined. Effective rumen degradability (ED) was estimated using a passage rate of 0.04 (ED4), 0.06 (ED6), and 0.08/h (ED8). Hybrids exhibited a range in whole plant DM content (23.7 to 25.0%), starch content (15.9 to 28.1% DM), kernel hardness (21.9 to 34.4 s/20 g) and density (3.57 to 4.18 g/mL), and prolamin content (8.24 to 11.34 g/100 g starch). Differences in digestion kinetics among hybrids were generally more pronounced for starch than DM. The hybrids differed in starch degradability (P < 0.05), with earlier maturing hybrids having lower A fraction, lower k d, and lower ED, with hybrid effects on ED being accentuated with faster passage rate. Kernel DM content (r = -0.85, -0.87), hardness (r = -0.89, -0.86), and density (r = -0.84, -0.85) were negatively correlated with ED4 and ED8 of starch, respectively, due mainly to decreased k d of fraction B. Reducing the particle size of kernels increased ED of starch due to increased A fraction and k d of the B fraction. A tendency (P = 0.09) for hybrid × processing effects for ED6 and ED8 indicated that processing had greater effects on increasing ED of starch for earlier maturing hybrids. We conclude that short-season hybrids that mature early may have lower ED of DM and starch and would benefit from prolonged ensilage time. Kernel processing during silage making is recommended for short-season corn hybrids as a means of enhancing rumen availability of starch.

16.
Animal ; 11(8): 1295-1302, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28098049

ABSTRACT

Chemical and physical treatments of barley grain increase ruminally resistant starch and can improve the rumen fermentation pattern. The objective of the present study was to evaluate the effects of chemical (addition of citric acid, CA) and physical (grinding to two different particle sizes, PS) treatment of barley grain on performance, rumen fermentation, microbial protein yield in the rumen and selected blood metabolites in growing calves. In all, 28 male Holstein calves (172±5.1 kg initial BW) were used in a complete randomised design with a factorial arrangement of 2 barley grain particle sizes×2 levels of citric acid. The diets were as follows: (i) small PS (average 1200 µm) barley grain soaked in water (no CA addition); (ii) small PS barley grain soaked in a CA solution (adding 20 g CA/kg barley); (iii) large PS (average 2400 µm) barley grain soaked in water (no citric acid addition) and (iv) large PS barley grain soaked in a citric acid solution (adding 20 g CA/kg barley). Barley grain was then incorporated at 35% in a total mixed ration and fed to the calves for 11 weeks. Feeding small PS barley decreased feed intake (P=0.02) and average daily weight gain (P=0.01). The addition of CA to barley grain did not affect intake but increased weight gain (P0.05). However, the molar proportion of propionate was increased (P=0.03) when barley was more finely ground, and that of acetate was increased (P=0.04) when CA was added to barley grain. The ruminal concentration of ammonia nitrogen was increased (P<0.01) and microbial nitrogen synthesis in the rumen tended to decrease by adding CA to barley. Treating barley grain with citric acid increased fibre digestibility of total mixed rations, attenuated the decrease in ruminal pH, and improved weight gain and feed efficiency in male Holstein growing calves fed a high-cereal diet (550 g cereal grain/kg diet).


Subject(s)
Animal Feed , Cattle/physiology , Citric Acid/pharmacology , Hordeum , Ammonia/metabolism , Animals , Cattle/growth & development , Diet/veterinary , Digestion/drug effects , Edible Grain , Fermentation , Hydrogen-Ion Concentration , Male , Nitrogen/metabolism , Particle Size , Random Allocation , Rumen/metabolism , Weight Gain
17.
J Dairy Sci ; 98(9): 6433-48, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26188584

ABSTRACT

The present study aimed to investigate the long-term effect of feeding barley grain steeped in lactic acid (La) with or without thermal treatment on reticuloruminal pH dynamics and metabolic activity of the liver in 12 primiparous and 18 multiparous early-lactating dairy cows. All cows were included on d 21 postpartum and sampled until d 90 postpartum. Cows were fed a diet based on differently processed ground barley grain: untreated grain (control diet, CON), or grain treated with 1% La alone for 24 h before feeding (La), or with an additional oven-heating at 55°C for 12 h (LaH). The reticuloruminal pH and temperature were measured via indwelling sensors that allowed for continuous (every 10min) and long-term measurement from d 21 to 80 postpartum. Blood samples were taken on d 21, 40, and 90 of lactation and analyzed for liver enzymes aspartate aminotransferase (AST), gamma-glutamyltransferase, and glutamate dehydrogenase, as well as bilirubin, bile acids, and serum amyloid A. Dry matter intake was higher in multiparous cows (20.7±0.27 kg/d) compared with primiparous cows (18.2±0.33 kg/d), but was not affected by dietary treatment. Overall, the relatively short duration (51±5min/d) of reticuloruminal pH <5.8 suggests low risk of subacute ruminal acidosis throughout the experiment. Results indicated that La treatment of barley, with or without heat, lowered the time duration of pH <5.8 compared with CON, but only in primiparous cows (from 118±13 to 46±11 and 25±11min/d for CON, La, and LaH, respectively). In multiparous cows, the opposite effect of feeding the La-treated barley on time duration of pH <5.8 (11±8 vs. 46±9 vs. 57±9min/d for CON, La, and LaH, respectively) was observed. Multiparous cows generally showed higher pH readings and shorter periods in which the ruminal pH dropped below the threshold of pH 5.8. The reticuloruminal temperature was not affected by dietary treatment, whereas parity affected the time duration of reticuloruminal temperature >39.5°C, being 60±19min/d shorter in primiparous cows. The measured activities of the liver enzymes AST, gamma-glutamyltransferase, and glutamate dehydrogenase, as well as bilirubin, bile acids, and the acute phase protein serum amyloid A, were not affected by grain feeding. Additionally, only one small effect of parity on investigated serum variables was noticed, showing slightly but significantly higher values of AST in multiparous (80.5±1.4 U/L) compared with primiparous cows (76.0±1.7 U/L). In conclusion, our results indicate greater risk for primiparous cows to develop subacute ruminal acidosis-like conditions during early lactation than multiparous cows. The study also suggests limited benefits of feeding processed barley grain with La with or without thermal treatment to modulate ruminal tolerance of grain feeding, whereby differing effects in primiparous cows were observed compared with multiparous cows.


Subject(s)
Biomarkers , Food Handling , Lactation , Liver/enzymology , Rumen/metabolism , Acidosis/veterinary , Animal Feed/analysis , Animals , Aspartate Aminotransferases/metabolism , Bile Acids and Salts/metabolism , Bilirubin/metabolism , Cattle , Diet/veterinary , Female , Glutamate Dehydrogenase/metabolism , Hordeum/chemistry , Hydrogen-Ion Concentration , Longitudinal Studies , Nutritive Value , Portion Size , Postpartum Period , Random Allocation , Serum Amyloid A Protein/metabolism , Temperature , Whole Grains/chemistry , gamma-Glutamyltransferase/metabolism
18.
Braz. arch. biol. technol ; 57(5): 695-700, Sep-Oct/2014. tab
Article in English | LILACS | ID: lil-723064

ABSTRACT

Feed processing can affect rumen development in new born calves, and potentially define animal performance. Two feed management systems, extruded starter (Ruter) with possible early weaning and ground starter (control), were evaluated in thirty-two Holstein calves (16 females and 16 males). Animals were randomly assigned to the treatments using a randomized block design with birth weight as a covariate. They were weaned when starter intake reached 800 g for two consecutive days. Twenty-one days after the weaning, males were slaughtered and the stomach compartments were isolated. Rumen and omasum fragments were processed for morphological evaluation. Animal performance, clinical condition and stomach compartment weight did not differ between the treatments (P> 0.05), despite weaning weight of animals receiving extruded starter being 5.68% higher than the control animals. Extruded starter stimulated cell proliferation of the ruminal epithelium (P <0.05), but did not affect the dimensions of the papillary rumen and omasum mitotic index (MI). The Ruter feeding system was potentially beneficial for weight gain and morphofunctional rumen development in lactating animals; however, this treatment did not allow early weaning as proposed by the feeding system.

19.
Arq. bras. med. vet. zootec ; 60(5): 1128-1134, out. 2008. tab
Article in Portuguese | LILACS | ID: lil-500080

ABSTRACT

Cinco vacas holandesas pluríparas, com cânulas no rúmen e no duodeno, foram distribuídas em delineamento de quadrado latino 5 x 5. As vacas foram submetidas a cinco rações experimentais contendo 40 por cento de cana-de-açúcar, 60 por cento de concentrado e cerca de 30 por cento de amido. As rações diferiram quanto ao processamento ou à fonte principal do amido utilizado: milho grosseiramente moído, milho finamente moído, milho floculado a 310g/l, milho floculado a 360g/l ou raspa de mandioca. Não houve diferença (P>0,05) no consumo de matéria seca entre os tratamentos. A digestibilidade ruminal do amido foi maior na ração que continha raspa de mandioca. As digestibilidades ruminal da fibra em detergente neutro e da fibra em detergente ácido não diferiram entre os tratamentos. Os dados médios de pH ruminal se mantiveram acima de 6,0, exceto às 2 e às 4h após a alimentação com a dieta que continha raspa de mandioca. Não houve efeito significativo dos tratamentos sobre a concentração de ácidos graxos voláteis totais. O processo de floculação promoveu aumento da digestibilidade do amido do milho, em relação à moagem de forma grosseira. A digestibilidade ruminal do amido presente na raspa de mandioca foi maior do que a do milho, independentemente da forma de processamento utilizada.


Five multiparous lactating Holsteins cows, cannulated in the rumen and proximal duodenum, were used in a 5 x 5 latin square. Cows were fed a 40:60 forage: concentrate diet (40 percent fresh sugar cane and 60 percent concentrate). Diets were formulated to have 30 percent of starch and treatments were starch sources and ration processing forms: cracked corn, finely ground corn, flaked corn at 310g/l, flaked corn at 360g/l, or cassava scrapings. No difference (P>0.05) was observed among treatments for dry matter intake. Starch ruminal digestibility was higher for cassava scrapings treatment. NDF and ADF digestibility were similar among treatments. Average values of ruminal pH were above 6, except at 2 and 4h after feeding the cassava diet. There was no effect of treatment on concentrations of total volatile fatty acids. The flocculation process increased corn starch digestibility. Ruminal degradability of the cassava scrapings starch was higher than corn, without effect of processing form.


Subject(s)
Animals , Female , Cattle , Fatty Acids, Volatile , Manihot/adverse effects , Rumen , Starch and Fecula
SELECTION OF CITATIONS
SEARCH DETAIL
...