Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 779
Filter
1.
Front Microbiol ; 15: 1402796, 2024.
Article in English | MEDLINE | ID: mdl-38993491

ABSTRACT

Background: Understanding the biology of methicillin resistant Staphylococcus aureus (MRSA) is crucial to unlocking insights for new targets in our fight against this antimicrobial resistant priority pathogen. Although proteomics and metabolomic profiling offer the potential to elucidating such biological markers, reports of methodological approaches for carrying this out in S. aureus isolates remain limited. We describe the use of a dual-functionality methanol extraction method for the concurrent extraction of protein and metabolites from S. aureus and report on the comparative analysis of the proteomic and metabolomic profiles of MRSA versus methicillin sensitive S. aureus (MSSA). Methods: Bacterial reference strains MRSA ATCC43300 and MSSA ATCC25923 were used. The conventional urea methodology was used for protein extraction and a methanol based method was used for concurrent proteins and metabolites extraction. Proteomic and metabolomic profiling was carried out using TimsTOF mass spectrometry. Data processing was carried out using the MaxQuant version 2.1.4.0. Results: This study represents the first report on the utilization of the methanol extraction method for concurrent protein and metabolite extraction in Gram positive bacteria. Our findings demonstrate good performance of the method for the dual extraction of proteins and metabolites from S. aureus with demonstration of reproducibility. Comparison of MRSA and MSSA strains revealed 407 proteins with significantly different expression levels. Enrichment analysis of those proteins revealed distinct pathways involved in fatty acid degradation, metabolism and beta-lactam resistance. Penicillin-binding protein PBP2a, the key determinant of MRSA resistance, exhibited distinct expression patterns in MRSA isolates. Metabolomic analysis identified 146 metabolites with only one exclusive to the MRSA. The enriched pathways identified were related to arginine metabolism and biosynthesis. Conclusion: Our findings demonstrate the effectiveness of the methanol-based dual-extraction method, providing simultaneous insights into the proteomic and metabolomic landscapes of S. aureus strains. These findings demonstrate the utility of proteomic and metabolomic profiling for elucidating the biological basis of antimicrobial resistance.

2.
Cureus ; 16(5): e60542, 2024 May.
Article in English | MEDLINE | ID: mdl-38887355

ABSTRACT

Introduction Antimicrobial resistance poses a significant global healthcare challenge in the management of bacterial infections, which is frequently attributed to rapid bacterial adaptations. This study aims to develop an antibiogram for a tertiary care hospital, providing comprehensive antibiotic sensitivity profiles for Gram-positive and Gram-negative bacteria. It informs healthcare providers of antibiotic resistance trends, enabling informed treatment decisions and enhanced infection control measures. Methods We conducted a six-month prospective observational study, during which we gathered and analyzed data from the microbiology laboratory to identify patterns of antimicrobial sensitivity. Subsequently, the data underwent analysis and interpretation using the respected WHONET software, a readily available tool designed for this specific task. Our methodology adhered to the guidelines established by the Clinical & Laboratory Standards Institute for the standardization of antibiogram generation procedures, and these guidelines are easily integrated into the WHONET software for analytical purposes. Results There were a total of 357 isolates across various hospital departments, comprising 13 distinct bacterial species. Among them, nine were identified as Gram-negative bacteria, accounting for 262 (73.3%) isolates. Escherichia coli accounted for 131 (36.6%) isolates, while Klebsiella accounted for 62 (17.3%), emerging as the predominant species among them. The remaining four bacterial species were identified as Gram-positive bacteria, totaling 95 (26.6%) isolates, with Staphylococcus aureus being the most frequently isolated species at 51 (14.2%), followed by Enterococcus at 26 (7.2%). Subsequent analysis using the WHONET software facilitated the creation of an antibiogram. Among the Gram-negative bacteria, E. coli displayed high sensitivity (100%) to aztreonam and clindamycin, followed by nitrofurantoin (98%), imipenem (94%), and meropenem (95%). However, it exhibited decreased sensitivity to ampicillin (25%), cefuroxime (34%), and ceftriaxone (39%). Conversely, among the Gram-positive bacteria, S. aureus demonstrated 100% sensitivity to ampicillin, amoxiclav, cefazolin, teicoplanin, linezolid, rifampicin, nitrofurantoin, and cefotaxime. However, it exhibited zero sensitivity to vancomycin and only 6% sensitivity to cotrimoxazole. Conclusion This study advances the understanding of antibiotic susceptibility in a tertiary care setting and provides an invaluable tool for optimizing treatment strategies, enhancing infection control measures, and combating antibiotic resistance.

3.
Sci Rep ; 14(1): 14753, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926522

ABSTRACT

The development of nanomaterials has been speedily established in recent years, yet nanoparticles synthesized by traditional methods suffer unacceptable toxicity and the sustainability of the procedure for synthesizing such nanoparticles is inadequate. Consequently, green biosynthesis, which employs biopolymers, is gaining attraction as an environmentally sound alternative to less sustainable approaches. Chitosan-encapsulated nanoparticles exhibit exceptional antibacterial properties, offering a wide range of uses. Chitosan, obtained from shrimp shells, aided in the environmentally friendly synthesis of high-purity zinc oxide nanoparticles (ZnO NPs) with desirable features such as the extraction yield (41%), the deacetylation (88%), and the crystallinity index (74.54%). The particle size of ZnO NPs was 12 nm, while that of chitosan-ZnO NPs was 21 nm, and the bandgap energies of these nanomaterials were 3.98 and 3.48, respectively. The strong antibacterial action was demonstrated by ZnO NPs, chitosan-ZnO NPs, and chitosan-ZnO/PVP, particularly against Gram-positive bacteria, making them appropriate for therapeutic use. The photocatalytic degradation abilities were also assessed for all nanoparticles. At a concentration of 6 × 10-5 M, chitosan removed 90.5% of the methylene blue (MB) dye, ZnO NPs removed 97.4%, chitosan-coated ZnO NPs removed 99.6%, while chitosan-ZnO/PVP removed 100%. In the case of toluidine blue (TB), at a concentration of 4 × 10-3 M, the respective efficiencies were 96.8%, 96.8%, 99.5%, and 100%, respectively. Evaluation of radical scavenger activity revealed increased scavenging of ABTS and DPPH radicals by chitosan-ZnO/PVP compared to individual zinc oxide or chitosan-ZnO, where the IC50 results were 0.059, 0.092, 0.079 mg/mL, respectively, in the ABTS test, and 0.095, 0.083, 0.061, and 0.064 mg/mL in the DPPH test, respectively. Moreover, in silico toxicity studies were conducted to predict the organ-specific toxicity through ProTox II software. The obtained results suggest the probable safety and the absence of organ-specific toxicity with all the tested samples.


Subject(s)
Anti-Bacterial Agents , Chitosan , Zinc Oxide , Chitosan/chemistry , Chitosan/pharmacology , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Catalysis , Nanoparticles/chemistry , Microbial Sensitivity Tests , Metal Nanoparticles/chemistry , Biphenyl Compounds/chemistry , Green Chemistry Technology
4.
Article in English | MEDLINE | ID: mdl-38902152

ABSTRACT

OBJECTIVES: This study aimed to evaluate the effectiveness of dalbavancin as sequential therapy in patients with infective endocarditis (IE) due to gram positive bacteria (GPB) in a real-life heterogenous cohort with comorbid patients. METHODS: A single center retrospective cohort study including all patients with definite IE treated with dalbavancin between January 2017 and February 2022 was developed. A 6-month follow-up was performed. The main outcomes were clinical cure rate, clinical and microbiological relapse, 6-month mortality, and adverse effects (AEs) rate. RESULTS: The study included 61 IE episodes. The median age was 78.5 years (interquartile range [IQR] 63.2-85.2), 78.7% were male, with a median Charlson comorbidity index of 7 (IQR 4-9) points. Overall, 49.2% suffered native valve IE. The most common microorganism was Staphylococcus aureus (26.3%) followed by Enterococcus faecalis (21.3%). The median duration of initial antimicrobial therapy and dalbavancin therapy were 27 (IQR 20-34) and 14 days (IQR 14-28) respectively. The total reduction of hospitalization was 1090 days. The most frequent dosage was 1500mg of dalbavancin every 14 days (96.7%). An AE was detected in 8.2% of patients, only one (1.6%) was attributed to dalbavancin (infusion reaction). Clinical cure was achieved in 86.9% of patients. One patient (1.6%) with Enterococcus faecalis IE suffered relapse. The 6-month mortality was 11.5%, with only one IE-related death (1.6%). CONCLUSION: This study shows a high efficacy of dalbavancin in a heterogeneous real-world cohort of IE patients, with an excellent safety profile. Dalbavancin allowed a substantial reduction of in-hospital length of stay.

5.
mBio ; : e0048824, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940556

ABSTRACT

Conjugative type 4 secretion systems (T4SSs) are the main driver for the spread of antibiotic resistance genes and virulence factors in bacteria. To deliver the DNA substrate to recipient cells, it must cross the cell envelopes of both donor and recipient bacteria. In the T4SS from the enterococcal conjugative plasmid pCF10, PrgK is known to be the active cell wall degrading enzyme. It has three predicted extracellular hydrolase domains: metallo-peptidase (LytM), soluble lytic transglycosylase (SLT), and cysteine, histidine-dependent amidohydrolases/peptidases (CHAP). Here, we report the structure of the LytM domain and show that its active site is degenerate and lacks the active site metal. Furthermore, we show that only the predicted SLT domain is functional in vitro and that it unexpectedly has a muramidase instead of a lytic transglycosylase activity. While we did not observe any peptidoglycan hydrolytic activity for the LytM or CHAP domain, we found that these domains downregulated the SLT muramidase activity. The CHAP domain was also found to be involved in PrgK dimer formation. Furthermore, we show that PrgK interacts with PrgL, which likely targets PrgK to the rest of the T4SS. The presented data provides important information for understanding the function of Gram-positive T4SSs.IMPORTANCEAntibiotic resistance is a large threat to human health and is getting more prevalent. One of the major contributors to the spread of antibiotic resistance among different bacteria is type 4 secretion systems (T4SS). However, mainly T4SSs from Gram-negative bacteria have been studied in detail. T4SSs from Gram-positive bacteria, which stand for more than half of all hospital-acquired infections, are much less understood. The significance of our research is in identifying the function and regulation of a cell wall hydrolase, a key component of the pCF10 T4SS from Enterococcus faecalis. This system is one of the best-studied Gram-positive T4SSs, and this added knowledge aids in our understanding of horizontal gene transfer in E. faecalis as well as other medically relevant Gram-positive bacteria.

6.
Polymers (Basel) ; 16(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38932079

ABSTRACT

This study addresses the need for enhanced antimicrobial properties of electrospun membranes, either through surface modifications or the incorporation of antimicrobial agents, which are crucial for improved clinical outcomes. In this context, chitosan-a biopolymer lauded for its biocompatibility and extracellular matrix-mimicking properties-emerges as an excellent candidate for tissue regeneration. However, fabricating chitosan nanofibers via electrospinning often challenges the preservation of their structural integrity. This research innovatively develops a chitosan/polycaprolactone (CH/PCL) composite nanofibrous membrane by employing a layer-by-layer electrospinning technique, enhanced with silver nanoparticles (AgNPs) synthesized through a wet chemical process. The antibacterial efficacy, adhesive properties, and cytotoxicity of electrospun chitosan membranes were evaluated, while also analyzing their hydrophilicity and nanofibrous structure using SEM. The resulting CH/PCL-AgNPs composite membranes retain a porous framework, achieve balanced hydrophilicity, display commendable biocompatibility, and exert broad-spectrum antibacterial activity against both Gram-negative and Gram-positive bacteria, with their efficacy correlating to the AgNP concentration. Furthermore, our data suggest that the antimicrobial efficiency of these membranes is influenced by the timed release of silver ions during the incubation period. Membranes incorporated starting with AgNPs at a concentration of 50 µg/mL effectively suppressed the growth of both microorganisms during the early stages up to 8 h of incubation. These insights underscore the potential of the developed electrospun composite membranes, with their superior antibacterial qualities, to serve as innovative solutions in the field of tissue engineering.

7.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38931385

ABSTRACT

Antimicrobial resistance (AMR) is an increasingly concerning phenomenon that requires urgent attention because it poses a threat to human and animal health. Bacteria undergo continuous evolution, acquiring novel resistance mechanisms in addition to their intrinsic ones. Multidrug-resistant and extensively drug-resistant bacterial strains are rapidly emerging, and it is expected that bacterial AMR will claim the lives of 10 million people annually by 2050. Consequently, the urgent need for the development of new therapeutic agents with new modes of action is evident. The antibacterial prodrug approach, a strategy that includes drug repurposing and derivatization, integration of nanotechnology, and exploration of natural products, is highlighted in this review. Thus, this publication aims at compiling the most pertinent research in the field, spanning from 2021 to 2023, offering the reader a comprehensive insight into the AMR phenomenon and new strategies to overcome it.

8.
Microbiol Res ; 285: 127743, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38733725

ABSTRACT

Clavibacter michiganensis is a Gram-positive bacterium that causes diverse disease symptoms in tomatoes and Nicotiana benthamiana, a surrogate host plant, including canker, blister lesions, and wilting. Previously, we reported that C. michiganensis also causes necrosis in N. benthamiana leaves. Here, to identify novel virulence genes of C. michiganensis required for necrosis development in N. benthamiana leaves, we screened 1,862 transposon-inserted mutants and identified a mutant strain that exhibited weak and delayed necrosis, whereas there was no discernible difference in blister lesions, canker, or wilting symptoms. Notably, this mutant caused canker similar to that of the wild-type strain, but caused mild wilting in tomato. This mutant carried a transposon in a chromosomal gene, called Clavibactervirulence gene A1 (cviA1). CviA1 encodes a 180-amino acid protein with a signal peptide (SP) at the N-terminus and two putative transmembrane domains (TMs) at the C-terminus. Interestingly, deletion of the SP or the C-terminus, including the two putative TMs, in CviA1 failed to restore full necrosis in the mutant, highlighting the importance of protein secretion and the putative TMs for necrosis. A paralog of cviA1, cviA2 is located on the large plasmid pCM2 of C. michiganensis. Despite its high similarity to cviA1, the introduction of cviA2 into the cviA1 mutant strain did not restore virulence. Similarly, the introduction of cviA1 into the Clavibacter capsici type strain PF008, which initially lacks cviA1, did not enhance necrosis symptoms. These results reveals that the chromosomal cviA1 gene in C. michiganensis plays an important role in necrosis development in N. benthamiana leaves.


Subject(s)
DNA Transposable Elements , Nicotiana , Plant Diseases , Plant Leaves , Virulence Factors , Plant Diseases/microbiology , Nicotiana/microbiology , Virulence Factors/genetics , Virulence/genetics , Plant Leaves/microbiology , Bacterial Proteins/genetics , Solanum lycopersicum/microbiology , Clavibacter/genetics , Necrosis , Actinobacteria/genetics , Actinobacteria/pathogenicity , Mutagenesis, Insertional , Genes, Bacterial/genetics
9.
Mikrochim Acta ; 191(6): 305, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38713444

ABSTRACT

A multifunctional surface-enhanced Raman scattering (SERS) platform integrating sensitive detection and drug resistance analysis was developed for Gram-positive bacteria. The substrate was based on self-assembled Ti3C2Tx@Au NPs films and capture molecule phytic acid (IP6) to achieve specific capture of Gram-positive bacteria and different bacteria were analyzed by fingerprint signal. It had advantages of good stability and homogeneity (RSD = 8.88%). The detection limit (LOD) was 102 CFU/mL for Staphylococcus aureus and 103 CFU/mL for MRSA, respectively. A sandwich structure was formed on the capture substrate by signal labels prepared by antibiotics (penicillin G and vancomycin) and non-interference SERS probe molecules (4-mercaptobenzonitrile (2223 cm-1) and 2-amino-4-cyanopyridine (2240 cm-1)) to improve sensitivity. The LOD of Au NPs@4-MBN@PG to S. aureus and Au NPs@AMCP@Van to MRSA and S. aureus were all improved to 10 CFU/mL, with a wide dynamic linear range from 108 to 10 CFU/mL (R2 ≥ 0.992). The SERS platform can analyze the drug resistance of drug-resistant bacteria. Au NPs@4-MBN@PG was added to the substrate and captured MRSA to compare the SERS spectra of 4-MBN. The intensity inhomogeneity of 4-MBN at the same concentrations of MRSA and the nonlinearity at the different concentrations of MRSA revealed that MRSA was resistant to PG. Finally, the SERS platform achieved the determination of MRSA in blood. Therefore, this SERS platform has great significance for the determination and analysis of Gram-positive bacteria.


Subject(s)
Anti-Bacterial Agents , Gold , Limit of Detection , Metal Nanoparticles , Spectrum Analysis, Raman , Staphylococcus aureus , Titanium , Spectrum Analysis, Raman/methods , Gold/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Titanium/chemistry , Metal Nanoparticles/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Vancomycin/pharmacology , Vancomycin/chemistry , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Penicillin G/pharmacology , Penicillin G/chemistry , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification
10.
Arch Microbiol ; 206(6): 250, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722362

ABSTRACT

The widespread evolution of phenotypic resistance in clinical isolates over the years, coupled with the COVID-19 pandemic onset, has exacerbated the global challenge of antimicrobial resistance. This study aimed to explore changes in bacterial infection patterns and antimicrobial resistance during the COVID-19 pandemic. This study involved the periods before and during COVID-19: the pre-pandemic and pandemic eras. The surveillance results of bacterial isolates causing infections in cancer patients at an Egyptian tertiary oncology hospital were retrieved. The Vitek®2 or Phoenix systems were utilized for species identification and susceptibility testing. Statistical analyses were performed comparing microbiological trends before and during the pandemic. Out of 2856 bacterial isolates, Gram-negative bacteria (GNB) predominated (69.7%), and Gram-positive bacteria (GPB) comprised 30.3% of isolates. No significant change was found in GNB prevalence during the pandemic (P = 0.159). Elevated rates of Klebsiella and Pseudomonas species were demonstrated during the pandemic, as was a decrease in E. coli and Acinetobacter species (P < 0.001, 0.018, < 0.001, and 0.046, respectively) in hematological patients. In surgical patients, Enterobacteriaceae significantly increased (P = 0.012), while non-fermenters significantly decreased (P = 0.007). GPB species from either hematological or surgical wards exhibited no notable changes during the pandemic. GNB resistance increased in hematological patients to carbapenems, amikacin, and tigecycline and decreased in surgical patients to amikacin and cefoxitin (P < 0.001, 0.010, < 0.001, < 0.001, and 0.016, respectively). The study highlights notable shifts in the microbial landscape during the COVID-19 pandemic, particularly in the prevalence and resistance patterns of GNB in hematological and surgical wards.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Drug Resistance, Bacterial , SARS-CoV-2 , Tertiary Care Centers , Humans , COVID-19/epidemiology , Tertiary Care Centers/statistics & numerical data , Egypt/epidemiology , Anti-Bacterial Agents/pharmacology , SARS-CoV-2/drug effects , Neoplasms , Microbial Sensitivity Tests , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Bacterial Infections/drug therapy , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/classification , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification , Cancer Care Facilities , Pandemics
11.
Mol Microbiol ; 121(6): 1245-1261, 2024 06.
Article in English | MEDLINE | ID: mdl-38750617

ABSTRACT

Linear, unbranched (1,3;1,4)-ß-glucans (mixed-linkage glucans or MLGs) are commonly found in the cell walls of grasses, but have also been detected in basal land plants, algae, fungi and bacteria. Here we show that two family GT2 glycosyltransferases from the Gram-positive bacterium Sarcina ventriculi are capable of synthesizing MLGs. Immunotransmission electron microscopy demonstrates that MLG is secreted as an exopolysaccharide, where it may play a role in organizing individual cells into packets that are characteristic of Sarcina species. Heterologous expression of these two genes shows that they are capable of producing MLGs in planta, including an MLG that is chemically identical to the MLG secreted from S. ventriculi cells but which has regularly spaced (1,3)-ß-linkages in a structure not reported previously for MLGs. The tandemly arranged, paralogous pair of genes are designated SvBmlgs1 and SvBmlgs2. The data indicate that MLG synthases have evolved different enzymic mechanisms for the incorporation of (1,3)-ß- and (1,4)-ß-glucosyl residues into a single polysaccharide chain. Amino acid variants associated with the evolutionary switch from (1,4)-ß-glucan (cellulose) to MLG synthesis have been identified in the active site regions of the enzymes. The presence of MLG synthesis in bacteria could prove valuable for large-scale production of MLG for medical, food and beverage applications.


Subject(s)
Glycosyltransferases , beta-Glucans , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , beta-Glucans/metabolism , Cell Wall/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/metabolism
13.
Chemistry ; 30(38): e202401103, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38716707

ABSTRACT

This review covers the most recent advances in the development of inhibitors for the bacterial enzyme sortase A (SrtA). Sortase A (SrtA) is a critical virulence factor, present ubiquitously in Gram-positive bacteria of which many are pathogenic. Sortases are key enzymes regulating bacterial adherence to host cells, by anchoring extracellular matrix-binding proteins to the bacterial outer cell wall. By targeting virulence factors, effective treatment can be achieved, without inducing antibiotic resistance to the treatment. This is a potentially more sustainable, long-term approach to treating bacterial infections, including ones that display multiple resistance to current therapeutics. There are many promising approaches available for SrtA inhibition, some of which have the potential to advance into further clinical development, with peptidomimetic and in vivo active small molecules being among the most promising. There are currently no approved drugs on the market targeting SrtA, despite its promise, adding to the relevance of this review article, as it extends to the pharmaceutical industry additionally to academic researchers.


Subject(s)
Aminoacyltransferases , Anti-Bacterial Agents , Bacterial Proteins , Cysteine Endopeptidases , Peptidomimetics , Small Molecule Libraries , Aminoacyltransferases/antagonists & inhibitors , Aminoacyltransferases/metabolism , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Humans , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Gram-Positive Bacteria/drug effects
14.
Adv Healthc Mater ; : e2400362, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38768110

ABSTRACT

The diminishing effectiveness of existing aminoglycoside antibiotics (AGs) compels scientists to seek new approaches to enhance the sensitivity of current AGs. Despite ongoing efforts, currently available approaches remain restricted. Herein, a novel strategy involving the rational construction of an aggregation-induced-emission luminogen (AIEgen) is introduced to significantly enhance Gram-positive bacteria's susceptibility to AGs. The application of this approach involves the simple addition of AIEgens to bacteria followed by a 5 min light irradiation. Under light exposure, AIEgens efficiently generate reactive oxygen species (ROS), elevating intrabacterial ROS levels to a nonlethal threshold. Post treatment, the bacteria swiftly enter a hypersensitive state, resulting in a 21.9-fold, 15.5-fold, or 7.2-fold increase in susceptibility to three AGs: kanamycin, gentamycin, and neomycin, respectively. Remarkably, this approach is specific to AGs, and the induced hypersensitivity displays unparalleled longevity and heritability. Further in vivo studies confirm a 7.0-fold enhanced bactericidal ability of AGs against Gram-positive bacteria through this novel approach. This research not only broadens the potential applications of AIEgens but also introduces a novel avenue to bolster the effectiveness of AGs in combating bacterial infections.

15.
Molecules ; 29(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38792231

ABSTRACT

Prediction of the antibacterial activity of new chemical compounds is an important task, due to the growing problem of bacterial drug resistance. Generalized linear models (GLMs) were created using 85 amidrazone derivatives based on the results of antimicrobial activity tests, determined as the minimum inhibitory concentration (MIC) against Gram-positive bacteria: Staphylococcus aureus, Enterococcus faecalis, Micrococcus luteus, Nocardia corallina, and Mycobacterium smegmatis. For the analysis of compounds characterized by experimentally measured MIC values, we included physicochemical properties (e.g., molecular weight, number of hydrogen donors and acceptors, topological polar surface area, compound percentages of carbon, nitrogen, and oxygen, melting points, and lipophilicity) as potential predictors. The presence of R1 and R2 substituents, as well as interactions between melting temperature and R1 or R2 substituents, were also considered. The set of potential predictors also included possible biological effects (e.g., antibacterial, antituberculotic) of tested compounds calculated with the PASS (Prediction of Activity Spectra for Substances) program. Using GLMs with least absolute shrinkage and selection (LASSO), least-angle regression, and stepwise selection, statistically significant models with the optimal value of the adjusted determination coefficient and of seven fit criteria were chosen, e.g., Akaike's information criterion. The most often selected variables were as follows: molecular weight, PASS_antieczematic, PASS_anti-inflam, squared melting temperature, PASS_antitumor, and experimental lipophilicity. Additionally, relevant to the bacterial strain, the interactions between melting temperature and R1 or R2 substituents were selected, indicating that the relationship between MIC and melting temperature depends on the type of R1 or R2 substituent.


Subject(s)
Anti-Bacterial Agents , Gram-Positive Bacteria , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gram-Positive Bacteria/drug effects , Structure-Activity Relationship , Molecular Structure
16.
ISME Commun ; 4(1): ycae058, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38770058

ABSTRACT

Extracellular electron transfer (EET) of microorganisms is a major driver of the microbial growth and metabolism, including reactions involved in the cycling of C, N, and Fe in anaerobic environments such as soils and sediments. Understanding the mechanisms of EET, as well as knowing which organisms are EET-capable (or can become so) is fundamental to electromicrobiology and geomicrobiology. In general, Gram-positive bacteria very seldomly perform EET due to their thick non-conductive cell wall. Here, we report that a Gram-positive Clostridium intestinale (C.i) attained EET-capability for ethanol metabolism only after forming chimera with electroactive Geobacter sulfurreducens (G.s). Mechanism analyses demonstrated that the EET was possible after the cell fusion of the two species was achieved. Under these conditions, the ethanol metabolism pathway of C.i was integrated by the EET pathway of G.s, by which achieved the oxidation of ethanol for the subsequent reduction of extracellular electron acceptors in the coculture. Our study displays a new approach to perform EET for Gram-positive bacteria via recruiting the EET pathway of an electroactive bacterium, which suggests a previously unanticipated prevalence of EET in the microbial world. These findings also provide new perspectives to understand the energetic coupling between bacterial species and the ecology of interspecies mutualisms.

17.
Environ Int ; 187: 108729, 2024 May.
Article in English | MEDLINE | ID: mdl-38735077

ABSTRACT

Due to the specific action on bacterial cell wall, ß-lactam antibiotics have gained widespread usage as they exhibit a high degree of specificity in targeting bacteria, but causing minimal toxicity to host cells. Under antibiotic pressure, bacteria may opt to shed their cell walls and transform into L-form state as a means to evade the antibiotic effects. In this study, we explored and identified diverse optimal conditions for both Gram-negative bacteria (E. coli DH5α (CTX)) and Gram-positive bacteria (B. subtilis ATCC6633), which were induced to L-form bacteria using lysozyme (0.5 ppm) and meropenem (64 ppm). Notably, when bacteria transformed into L-form state, both bacterial strains showed varying degrees of increased resistance to antibiotics polymyxin E, meropenem, rifampicin, and tetracycline. E. coli DH5α (CTX) exhibited the most significant enhancement in resistance to tetracycline, with a 128-fold increase, while B. subtilis ATCC6633 showed a 32-fold increase in resistance to tetracycline and polymyxin E. Furthermore, L-form bacteria maintained their normal metabolic activity, combined with enhanced oxidative stress, served as an adaptive strategy promoting the sustained survival of L-form bacteria. This study provided a theoretical basis for comprehending antibiotic resistance mechanisms, developing innovative treatment strategies, and confronting global antibiotic resistance challenges.


Subject(s)
Anti-Bacterial Agents , Bacillus subtilis , Escherichia coli , Oxidative Stress , Anti-Bacterial Agents/pharmacology , Oxidative Stress/drug effects , Escherichia coli/drug effects , Bacillus subtilis/drug effects , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Tetracycline/pharmacology , Meropenem/pharmacology
18.
Antibiotics (Basel) ; 13(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786167

ABSTRACT

Skin is the primary and largest protective organ of the human body. It produces a number of highly evolved arsenal of factors to counter the continuous assault of foreign materials and pathogens from the environment. One such potent factor is the repertoire of Antimicrobial Peptides (AMPs) that not only directly destroys invading pathogens, but also optimally modulate the immune functions of the body to counter the establishment and spread of infections. The canonical direct antimicrobial functions of these AMPs have been in focus for a long time to design principles for enhanced therapeutics, especially against the multi-drug resistant pathogens. However, in recent times the immunomodulatory functions performed by these peptides at sub-microbicidal concentrations have been a point of major focus in the field of host-directed therapeutics. Such strategies have the added benefit of not having the pathogens develop resistance against the immunomodulatory pathways, since the pathogens exploit these signaling pathways to obtain and survive within the host. Thus, this review summarizes the potent immunomodulatory effect of these AMPs on, specifically, the different host immune cells with the view of providing a platform of information that might help in designing studies to exploit and formulate effective host-directed adjunct therapeutic strategies that would synergies with drug regimens to counter the current diversity of drug-resistant skin opportunistic pathogens.

19.
Microb Ecol ; 87(1): 77, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38806738

ABSTRACT

Water-filled sinkholes known locally as cenotes, found on the Yucatán Peninsula, have remarkable biodiversity. The primary objective of this study was to explore the biotechnological potential of Gram-positive cultivable bacteria obtained from sediment samples collected at the coastal cenote Pol-Ac in Yucatán, Mexico. Specifically, the investigation aimed to assess production of hydrolytic enzymes and antimicrobial compounds. 16 S rRNA gene sequencing led to the identification of 49 Gram-positive bacterial isolates belonging to the phyla Bacillota (n = 29) and Actinomycetota (n = 20) divided into the common genera Bacillus and Streptomyces, as well as the genera Virgibacillus, Halobacillus, Metabacillus, Solibacillus, Neobacillus, Rossellomorea, Nocardiopsis and Corynebacterium. With growth at 55ºC, 21 of the 49 strains were classified as moderately thermotolerant. All strains were classified as halotolerant and 24 were dependent on marine water for growth. Screening for six extracellular hydrolytic enzymes revealed gelatinase, amylase, lipase, cellulase, protease and chitinase activities in 93.9%, 67.3%, 63.3%, 59.2%, 59.2% and 38.8%, of isolated strains, respectively. The genes for polyketide synthases type I, were detected in 24 of the strains. Of 18 strains that achieved > 25% inhibition of growth in the bacterial pathogen Staphylococcus aureus ATCC 6538, 4 also inhibited growth in Escherichia coli ATCC 35,218. Isolates Streptomyces sp. NCA_378 and Bacillus sp. NCA_374 demonstrated 50-75% growth inhibition against at least one of the two pathogens tested, along with significant enzymatic activity across all six extracellular enzymes. This is the first comprehensive report on the biotechnological potential of Gram-positive bacteria isolated from sediments in the cenotes of the Yucatán Peninsula.


Subject(s)
Biodiversity , Geologic Sediments , Gram-Positive Bacteria , RNA, Ribosomal, 16S , Geologic Sediments/microbiology , Mexico , Gram-Positive Bacteria/isolation & purification , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/classification , RNA, Ribosomal, 16S/genetics , Bioprospecting , Phylogeny , Anti-Bacterial Agents/pharmacology , Seawater/microbiology
20.
Eur J Med Chem ; 272: 116454, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38704937

ABSTRACT

Increasing antibiotic resistance of bacterial pathogens poses a serious threat to human health worldwide. Methicillin-resistant Staphylococcus aureus (MRSA) is among the most deleterious bacterial pathogens owing to its multidrug resistance, necessitating the development of new antibacterial agents against it. We previously identified a novel dioxonaphthoimidazolium agent, c5, with moderate antibacterial activity against MRSA from an anticancer clinical candidate, YM155. In this study, we aimed to design and synthesize several novel cationic amphiphilic N1,N3-dialkyldioxonaphthoimidazolium bromides with enhanced lipophilicity of the two side chains in the imidazolium scaffold and improved antibacterial activities compared to those of c5 against gram-positive bacteria in vitro and in vivo. Our new antibacterial lead, N1,N3-n-octylbenzyldioxonaphthoimidazolium bromide (11), exhibited highly potent antibacterial activities against various gram-positive bacterial strains (MICs: 0.19-0.39 µg/mL), including MRSA, methicillin-sensitive S. aureus, and Bacillus subtilis. Moreover, antibacterial mechanism of 11 against MRSA based on the generation of reactive oxygen species (ROS) was evaluated. Although compound 11 exhibited cytotoxic effects in vitro and lacked a therapeutic index against the HEK293 and HDFa mammalian cell lines, it exhibited low toxicity in the Drosophila animal model. Remarkably, 11 exhibited better in vivo antibacterial efficacy than c5 and the clinically used antibiotic, vancomycin, in SA3-infected Drosophila model. Moreover, the development of bacterial resistance to 11 was not observed after 16 consecutive passages. Therefore, rational design of antibacterial cationic amphiphiles based on ROS-generating pharmacophores with optimized lipophilicity can facilitate the identification of potent antibacterial agents against drug-resistant infections.


Subject(s)
Anti-Bacterial Agents , Drug Design , Imidazoles , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Animals , Imidazoles/pharmacology , Imidazoles/chemistry , Imidazoles/chemical synthesis , Structure-Activity Relationship , Humans , Molecular Structure , Dose-Response Relationship, Drug , Zebrafish , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...