Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 550
Filter
1.
Sci Total Environ ; : 174421, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972405

ABSTRACT

Alpine grasslands on the Qinghai-Tibet Plateau (QTP) play an essential role in water conservation, biodiversity protection and climate feedback, with aboveground biomass (AGB) serving as a crucial indicator of grassland health and functionality. To date, studies have independently explored the phenological differences, cumulative effects, and spatial variability of climatic impacts on biomass/productivity in alpine grasslands. Nevertheless, the cascading effects regarding climate and phenology on AGB still present knowledge gaps. Here, using peak AGB measurements, remote sensing and gridded climate data in the QTP alpine grasslands during 2002-2018, we systematically analyzed the impact paths of climatic variables (i.e., cumulative precipitation, CP; growing degree-days, GDD) and phenology-mediated paths (start and peak date of the growing season, SOS and POS) on AGB and their regional differences. During the preseason (pre60) or the growing season (sos-pos), climate primarily directly impacted variations in AGB across different climatic regions, although a phenology-mediated path by which climate indirectly affected AGB existed (i.e., GDDsos-pos → POS → AGB). Three general patterns were revealed: In the plateau temperate arid regions, an increase in CPpre60 significantly promoted AGB (path coefficient w = 0.61-0.71), whereas an increase in GDDpre60 inhibited AGB (w = -0.42 ~ -0.47); In the plateau sub-cold regions, increases in both CPsos-pos and GDDsos-pos significantly promoted AGB, respectively (w = 0.46-0.81 and w = 0.37-0.70); Similarly, in the plateau temperate arid or semi-arid regions, increases in CPsos-pos also significantly promoted the AGB (w = 0.56-0.73). This study highlights that the water and heat accumulation mainly exert direct impacts on alpine grassland AGB across various climatic regions and phenological stages, providing insights into the mechanism driving AGB by climate and phenology during spring and summer.

2.
Ecol Evol ; 14(6): e11611, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38903144

ABSTRACT

Understanding the establishment of plant species is important to inform management of restored grasslands and to preserve biodiversity in ancient grasslands. In grassland communities, plant species can establish from seeds arriving via spatial dispersal, from seeds in the soil seed bank or through vegetative spread from nearby source individuals. However, this colonization potential and the likelihood of species establishment can vary in grasslands with different land-use history. We investigated the relative importance of local species recruitment sources, such as dispersal in space and time and species presence in adjacent grasslands, in determining establishment of plant species in eight grasslands with different land-use history (paired ancient grasslands continuously managed as pasture vs. restored grasslands on former forest). At each grassland, we established plots (0.25 m2) to monitor seedling emergence from seed dispersal, seed bank, and recorded clonal growth over two growing periods. We found that the likelihood of species establishment was highest from local seed rain, and that species present in the local species pool were more able to germinate and establish in both type of grasslands. Species from the seed bank and clonal growth contributed to a lesser extent to species establishment, but represented a greater proportion of the recolonization and regeneration of species in ancient grasslands. These results demonstrate that surrounding grasslands serve as a source for colonizing species and that dispersal from the adjacent grasslands is the key process in regeneration and colonization of plants. These results imply that the recovery of grasslands depends heavily upon to links to species source in grasslands, especially in restored grasslands. Therefore, management plans should incorporate rotational livestock grazing and larger networks of grassland in restoration efforts, which will enable to desirable species to establish and persist in grasslands.

3.
Sci Rep ; 14(1): 10305, 2024 05 05.
Article in English | MEDLINE | ID: mdl-38705916

ABSTRACT

This study investigates the intricate and enduring interplay of historical events, human activities, and natural processes shaping the landscape of North European Plain in western Poland over 230 years. Topographic maps serve as reliable historical data sources to quantify changes in forest, grassland, and wetland areas, scrutinizing their fragmentation and persistence. The primary objectives are to identify the permanent areas of the landscape and propose a universal cartographic visualization method for effectively mapping these changes. Using topographic maps and historical data, this research quantifies land cover changes, especially in forest, grassland, and wetland areas. With the help of retrogressive method we process raster historical data into vector-based information. Over time, wetlands experienced a substantial reduction, particularly in 1960-1982, attributed to both land reclamation and environmental factors. Grassland areas fluctuated, influenced by wetland and drier habitat dynamics. Fragmentation in grassland areas poses biodiversity and ecosystem health concerns, whereas forested areas showed limited fluctuations, with wetland forests nearly disappearing. These findings highlight wetland ecosystems' sensitivity to human impacts and emphasize the need to balance conservation and sustainable development to preserve ecological integrity. This study advances landscape dynamics understanding, providing insights into historical, demographic, economic, and environmental transformations. It underscores the imperative for sustainable land management and conservation efforts to mitigate human impacts on ecosystems and biodiversity in the North European Plain.


Subject(s)
Conservation of Natural Resources , Forests , Grassland , Wetlands , Poland , Conservation of Natural Resources/methods , Humans , Biodiversity , Ecosystem , History, 18th Century
4.
Trop Anim Health Prod ; 56(4): 151, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703345

ABSTRACT

Twenty Saanen third parturition dairy goats were used in an on-farm 2 × 2 factorial arrangement that ran for 12 weeks, with two grazing regimes and two concentrate types. The grazing regimes evaluated were an extensive silvopastoral native rangeland (SPR) and grazing in an abandoned agricultural land (AAL). Grazing happened between 9:00 and 17:00 h. The two types of concentrate supplement were a high protein concentrate (HP = 180 g CP/kg DM and 13 MJ ME/kg DM) or high energy concentrate (HE = 110  g CP/kg DM and 14.3 MJ ME/kg DM). Goats were milked once a day, providing 250 g of concentrate supplement per goat and day. Animal variables were fat and protein corrected milk yield recorded every day, and milk composition determined for two consecutive days at the end of each experimental week. Flora in the experimental paddocks was characerised and sampled, including grasses, shrubs, trees, legumes and cacti. The data was analysed with the R software using a mixed model with day nested in period as random effect and goat as repeated measure. The SPR had greater (P = 0.002) fat and protein corrected milk yield than AAL, with no differences between concentrate type and no interaction (P > 0.05). There was an interaction (P < 0.01) between grazing regime and concentrate type for fat content in milk, where a reduction in fat content was notorious in the SPR regime. Protein content of milk was greater (P < 0.01) in SPR with no significant effects of concentrate type or the interaction. The number of plant species in SPR was greater. The native silvopastoral system supplemented with the high energy concentrate was the strategy with higher milk yield, and protein and milk fat content, although the interaction between grazing regime and supplement was significant only for milk fat content.


Subject(s)
Animal Feed , Dairying , Diet , Dietary Supplements , Goats , Lactation , Milk , Animals , Goats/physiology , Mexico , Animal Feed/analysis , Milk/chemistry , Female , Dietary Supplements/analysis , Diet/veterinary , Dairying/methods , Animal Nutritional Physiological Phenomena , Animal Husbandry/methods
5.
Sci Total Environ ; 935: 173391, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38796004

ABSTRACT

Long-term overgrazing may lead to the degradation of grasslands which are often characterized by an increase in nonpreferred species, especially toxic plants. However, the impact of these toxic nonpreferred species on the restoration processes of degraded grasslands is not well understood, particularly their interactions with soil properties and other plant functional groups. To address this knowledge gap, we conducted an in situ grazing exclusion experiment in a temperate degraded grassland of Inner Mongolia, China. The objective of this study was to investigate how toxic nonpreferred plants influence the recovery of plant diversity and productivity in degraded grasslands and whether these effects can be explained by changes in soil properties. Our findings revealed that Stellera chamaejasme, a toxic nonpreferred species widely distributed in North China, directly altered plant community composition and improved species diversity in degraded grasslands dominated by Asteraceae plants. The presence of S. chamaejasme could inhibit Asteraceae abundance and increase soil copper content in this study area, because Asteraceae plants have a high copper accumulation capacity. Within the communities with S. chamaejasme, the alleviation of soil copper limitation to plants may subsequently enhance the abundance and aboveground productivity of Poaceae and Forbs. Our study demonstrated that the strong direct and indirect interactions of toxic nonpreferred species with other ecosystem components promoted competitive release in terms of biomass accumulation and species diversity. The change of soil limiting microelements content caused by toxic species exerts an important mediation function during the recovery process of degraded grasslands. Thus, these toxic nonpreferred species can act primarily as accelerators for the restoration of community structure and ecosystem function in degraded grasslands.


Subject(s)
Biodiversity , Grassland , China , Soil/chemistry , Poaceae , Asteraceae/physiology
6.
Proc Biol Sci ; 291(2023): 20232604, 2024 May.
Article in English | MEDLINE | ID: mdl-38807521

ABSTRACT

Understanding the organization of mutualistic networks at multiple spatial scales is key to ensure biological conservation and functionality in human-modified ecosystems. Yet, how changing habitat and landscape features affect pollen-bee interaction networks is still poorly understood. Here, we analysed how bee-flower visitation and bee-pollen-transport interactions respond to habitat fragmentation at the local network and regional metanetwork scales, combining data from 29 fragments of calcareous grasslands, an endangered biodiversity hotspot in central Europe. We found that only 37% of the total unique pairwise species interactions occurred in both pollen-transport and flower visitation networks, whereas 28% and 35% were exclusive to pollen-transport and flower visitation networks, respectively. At local level, network specialization was higher in pollen-transport networks, and was negatively related to the diversity of land cover types in both network types. At metanetwork level, pollen transport data revealed that the proportion of single-fragment interactions increased with landscape diversity. Our results show that the specialization of calcareous grasslands' plant-pollinator networks decreases with landscape diversity, but network specialization is underestimated when only based on flower visitation information. Pollen transport data, more than flower visitation, and multi-scale analyses of metanetworks are fundamental for understanding plant-pollinator interactions in human-dominated landscapes.


Subject(s)
Flowers , Pollen , Pollination , Bees/physiology , Animals , Ecosystem , Grassland , Biodiversity
7.
Environ Sci Ecotechnol ; 21: 100419, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38706811

ABSTRACT

Deep learning (DL) has huge potential to provide valuable insights into biodiversity changes in species-rich agricultural ecosystems such as semi-natural grasslands, helping to prioritize and plan conservation efforts. However, DL has been underexplored in grassland conservation efforts, hindered by data scarcity, intricate ecosystem interactions, and limited economic incentives. Here, we developed a DL-based object-detection model to identify indicator species, a group of vascular plant species that serve as surrogates for biodiversity assessment in high nature value (HNV) grasslands. We selected indicator species Armeria maritima, Campanula patula, Cirsium oleraceum, and Daucus carota. To overcome the hurdle of limited data, we grew indicator plants under controlled greenhouse conditions, generating a sufficient dataset for DL model training. The model was initially trained on this greenhouse dataset. Then, smaller datasets derived from an experimental grassland plot and natural grasslands were added to the training to facilitate the transition from greenhouse to field conditions. Our optimized model achieved remarkable average precision (AP) on test datasets, with 98.6 AP50 on greenhouse data, 98.2 AP50 on experimental grassland data, and 96.5 AP50 on semi-natural grassland data. Our findings highlight the innovative application of greenhouse-grown specimens for the in-situ identification of plants, bolstering biodiversity monitoring in grassland ecosystems. Furthermore, the study illuminates the promising role of DL techniques in conservation programs, particularly as a monitoring tool to support result-based agri-environment schemes.

8.
Front Plant Sci ; 15: 1370593, 2024.
Article in English | MEDLINE | ID: mdl-38742217

ABSTRACT

Establishing cultivated grassland in the Qinghai-Tibet Plateau region is an effective method to address the conflict between vegetation and livestock. However, the high altitude, low temperature, and arid climate in the region result in slow regeneration and susceptibility to degradation of mixed cultivation grassland containing perennial legumes and gramineous plants. Therefore, we aim to through field experiments, explore the feasibility of establishing mixed cultivation grassland of Poaceae species in the region by utilizing two grass species, Poa pratensis L. and Puccinellia tenuiflora. By employing a mixture of P. pratensis and P. tenuiflora to establish cultivated grassland, we observed significant changes in forage yield over time. Specifically, during the 3rd to 6th years of cultivation, the yield in the mixed grassland was higher than in monocultures. It exceeded the yield of monoculture P. tenuiflora by 19.38% to 29.14% and surpassed the monoculture of P. pratensis by 17.18% to 62.98%. Through the analysis of soil physicochemical properties and soil microbial communities in the cultivated grassland, the study suggests that the mixed grassland with Poaceae species can enhance soil enzyme activity and improve soil microbial communities. Consequently, this leads to increased soil nutrient levels, enhanced nitrogen fixation efficiency, and improved organic phosphorus conversion efficiency. Therefore, establishing mixed grasslands with Poaceae species in the Qinghai-Tibet Plateau region is deemed feasible.

9.
Ecol Evol ; 14(4): e11076, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38628914

ABSTRACT

Mountainous grasslands in South America, characterized by their high diversity, provide a wide range of contributions to people, including water regulation, soil erosion prevention, livestock feed provision, and preservation of cultural heritage. Prior research has highlighted the significant role of grazing in shaping the diversity and productivity of grassland ecosystems, especially in highly productive, eutrophic systems. In such environments, grazing has been demonstrated to restore grassland plant diversity by reducing primary productivity. However, it remains unclear whether these findings are applicable to South American mountainous grasslands, where plants are adapted to different environmental conditions. To address this uncertainty, we conducted a meta-analysis of experiments excluding livestock grazing to assess its impact on plant diversity and productivity across mountainous grasslands in South America. In alignment with studies in temperate grasslands, our findings indicated that herbivore exclusion resulted in increased aboveground biomass but reduced species richness and Shannon diversity. The effects of grazing exclusion became more pronounced with longer durations of exclusion; nevertheless, they remained resilient to various climatic conditions, including mean annual precipitation and mean annual temperature, as well as the evolutionary history of grazing. In contrast to results observed in temperate grasslands, the reduction in species richness due to herbivore exclusion was not associated with increased aboveground biomass. This suggests that the processes governing (sub)tropical grassland plant diversity may differ from those in temperate grasslands. Consequently, further research is necessary to better understand the specific factors influencing plant diversity and productivity in South American montane grasslands and to elucidate the ecological implications of herbivore exclusion in these unique ecosystems.

10.
Sensors (Basel) ; 24(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38610536

ABSTRACT

Rising platemeters are commonly used in Ireland and New Zealand for managing intensive pastures. To assess the applicability of a commercial rising platemeter operating with a microsonic sensor to estimate herbage mass with its own equation, the objectives were (i) to validate the original equation; (ii) to identify possible factors hampering its accuracy and precision; and (iii) to develop a new equation for heterogeneous swards. A comprehensive dataset (n = 1511) was compiled on the pastures of dairy farms. Compressed sward heights were measured by the rising platemeter. Herbage mass was harvested to determine reference herbage availability. The adequacy of estimating herbage mass was assessed using root mean squared error (RMSE) and mean bias. As the adequacy of the original equation was low, a new equation was developed using multiple regression models. The mean bias and the RMSE for the new equation were overall low with 201 kg dry matter/ha and 34.6%, but it tended to overestimate herbage availability at herbage mass < 500 kg dry matter/ha and underestimate it at >2500 kg dry matter/ha. Still, the newly developed equation for the microsonic sensor-based rising platemeter allows for accurate and precise estimation of available herbage mass on pastures.


Subject(s)
Calibration , Farms , Ireland
11.
J Environ Manage ; 359: 120897, 2024 May.
Article in English | MEDLINE | ID: mdl-38669881

ABSTRACT

The spread of invasive alien species over natural environments has become one of the most serious threats to biodiversity and the functioning of ecosystems worldwide. Understanding the population attributes that allow a given species to become invasive is crucial for improving prevention and control interventions. Pampas grasslands are particularly sensitive to the invasion of exotic woody plants. In particular, the Ventania Mountains undergo the advance of alien woody plants; among which the Aleppo pine (Pinus halepensis) stands out due to the extension of the area it covers and the magnitude of the ecological changes associated to its presence. Using a model that describes the population dynamics of the species in the area, we evaluated the expected behavior of the population under different environmental conditions and different management scenarios. When the effect of stochastic fires was simulated, the growth rate was greater than 1 for all the frequencies considered, peaking under fires every nine years, on average. When evaluating the effect of periodic mechanical control of the adult population, the reduction in growth rate was insufficient, except for cutting intensities that significantly exceeded the current operational capacity of the area. Under prescribed fire scenarios, on the other hand, burning frequencies greater than seven years resulted in population reductions. The results highlight the importance of fire in regulating the population of P. halepensis in the Ventania Mountains, with contrasting effects depending on the frequency with which it occurs, which allows considering it as an effective environmental management option for the control of the species.


Subject(s)
Grassland , Introduced Species , Pinus , Population Dynamics , Pinus/growth & development , Argentina , Biodiversity , Ecosystem , Fires
12.
Oecologia ; 204(4): 931-941, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38607552

ABSTRACT

Whole-plant hydraulics provide important information about responses to water limitation and can be used to understand how plant communities may change in a drier climate when measured on multiple species. Here, we measured above- and belowground hydraulic traits in Cornus drummondii, an encroaching shrub within North American tallgrass prairies, and Andropogon gerardii, a dominant C4 grass, to assess the potential hydraulic responses to future drought as this region undergoes woody expansion. Shelters that reduced precipitation by 50% and 0% were built over shrubs and grasses growing in sites that are burned at 1-year and 4-year frequencies. We then measured aboveground (Kshoot), belowground (Kroot), and whole-plant maximum hydraulic conductance (Kplant) in C. drummondii and Kroot in A. gerardii. We also measured vulnerability to embolism (P50) in C. drummondii stems. Overall, we show that: (1) A. gerardii had substantially greater Kroot than C. drummondii; (2) belowground hydraulic functioning was linked with aboveground processes; (3) above- and belowground C. drummondii hydraulics were not negatively impacted by the rainfall reductions imposed here. These results suggest that a multi-year drought will not ameliorate rates of woody expansion and highlight key differences in aboveground and belowground hydraulics for dominant species within the same ecosystem.


Subject(s)
Droughts , Poaceae , Water
13.
Sci Total Environ ; 928: 172302, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38593879

ABSTRACT

Climate change and human activities have increased ecological risks and degraded ecosystem functions in alpine wetland grassland regions, where ecological security remains largely unexplored. The construction of ecological security patterns (ESP) can help to synchronize regional ecological security and sustainable development and provide ideas to address these challenges. This article determines the current ESP of Zoigê County, China, by analyzing the spatial and temporal characteristics of landscape ecological risk (LER) and generating an ecological network by combining the InVEST model, the landscape connectivity index, and the circuit theory model. Management zoning and targeted conservation recommendations are proposed. The results indicate that the region has significant spatial heterogeneity in IER. Ecological risk exposure is increasing, with high values mainly concentrated in the central part of the region. Meanwhile, ecological protection areas were identified, which included 2578.44 km2 of ecological sources, 71 key ecological corridors, 25 potential ecological corridors, 4 river ecological corridors, 66 pinch points, and 58 barriers. This study provides a valuable reference for the ecological development of Zoigê County, as well as insights into the formation of ESP in other alpine wetland grassland regions.


Subject(s)
Conservation of Natural Resources , Environmental Monitoring , Grassland , Wetlands , China , Climate Change
14.
Oecologia ; 205(1): 49-58, 2024 May.
Article in English | MEDLINE | ID: mdl-38664252

ABSTRACT

Plants inhabiting open landscapes are often dispersed by ungulates and are expected to be adapted to this type of dispersal through their seed traits. To find which traits help seeds survive the passage through digestion of wild ungulates, we conducted a comprehensive feeding experiment with almost forty species of plants and three species of ungulates. We fed specified numbers of seeds to the animals, collected the dung, and germinated the dung content. We explored whether seed morphological traits and seed nutrient contents are good predictors of seed survival after passage through the ungulate digestive system. We also tested how the seed survival differed after the passage through different ungulate species. To find answers, we used GLMM with beta-binomial distribution and animal and plant species as random factor, respectively. We found that species survival and germination success were negatively correlated to seed elongation and the thickness of the seed coat. Even though phylogenetically correct GLMM did not yield significant results, when we tested species from commonly represented families, separately (legumes and grasses compared to all other species) different traits had statistically significant effects. In the case of seed elongation, the effect changed direction from negative to positive when legumes and grasses were left out. Our results suggest that seed traits enabling species survival after passage through the digestive tract are strongly phylogenetically conserved and different groups of plants evolved different ways of adapting to grazing pressure and utilize it for dispersal.


Subject(s)
Seeds , Animals , Germination
15.
Sci Total Environ ; 927: 172006, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38554978

ABSTRACT

Grasslands account for approximately one-third of the global terrestrial carbon stocks. However, a limited understanding of the impact of grazing exclusion on carbon storage in grassland ecosystems hinders progress towards restoring overgrazed grasslands and promoting carbon sequestration. In this study, we conducted a comprehensive meta-analysis to investigate the effects of grazing exclusion on aboveground biomass (AGB) and soil organic carbon (SOC) in four grasslands: alpine grasslands (AP), tropical savannas (TS), temperate subhumid grasslands (TG), and a semi-desert steppe (SD). Our meta-analysis indicated that grazing exclusion significantly enhanced carbon sequestration in grassland ecosystems, and the benefits of carbon sequestration were most pronounced in the AP, followed by the TG, SD, and TS. Grazing exclusion duration (DUR) was a significant factor associated with the response of aboveground biomass (AGB) and soil organic carbon (SOC) to grazing exclusion. Moreover, the relationships between AGB and DUR were nonlinear, with existence thresholds of 18, 21, 12, 19, and 23 years in global grasslands (ALL), AP, TS, TG, and SD, respectively. However, the relationship between SOC and DUR was linear, with SOC continuing to increase as DUR increased (up to 40 years). The multi-objective optimization indicated that the optimal duration of grazing exclusion for grassland carbon sequestration was 18-20, 21-23, 12-14, 19-21, and 23-25 years for ALL, AP, TS, TG, and SD, respectively. Our study contributes to the enhancement of grazing management and offers better options for increasing carbon sequestration in grasslands.


Subject(s)
Biomass , Carbon Sequestration , Carbon , Grassland , Soil , Soil/chemistry , Carbon/analysis , Herbivory , Animals
16.
Sci Total Environ ; 925: 171765, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38499099

ABSTRACT

Plant communities and soil microbiomes play a crucial role in regulating ecosystem multifunctionality (EMF). However, whether and how aboveground plant diversity, belowground soil microbial diversity and interactions with environmental factors affect EMF in sandy grasslands under climate change conditions is unclear. Here, we selected 15 typical grassland communities from the Horqin sandy grassland along temperature and precipitation gradients, using the mean annual temperature (AMT), mean annual precipitation (AP), soil temperature (ST), soil water content (SW) and pH as abiotic factors, and plant diversity (PD) and soil microbial diversity (SD) as biodiversity indicators. The effects of biodiversity and abiotic factors on individual ecosystem functions and EMF were studied. We found that PD and its components, plant species richness (SR), species diversity (PR) and genetic diversity (GD), had significant effects on aboveground biomass (AGB) and major factors involved in ecosystem nitrogen cycling (plant leaf nitrogen content (PLN) and soil total nitrogen content (STN)) (P < 0.05). Soil fungal diversity (FR) has a greater impact on ecosystem function than soil bacteria (BR) and archaea (ABR) in sandy grasslands and mainly promotes the accumulation of soil microbial carbon and nitrogen (MBC, MBN) (P < 0.05), STC and STN (P < 0.01). PD and two types of SD (FR and ABR) significantly regulated EMF (P < 0.01). Among the abiotic factors, soil pH and SW regulated EMF (P < 0.05), and SW and ST directly drove EMF (P < 0.05). PD drove EMF significantly and indirectly (positively) through soil pH and ST (P < 0.001), while SD drove EMF weakly and indirectly (negatively) through AP and PD (P > 0.05). PD was a stronger driving force on EMF than SD. These results improve our understanding of the drivers of multifunctionality in sandy grassland ecosystems.


Subject(s)
Ecosystem , Microbiota , Grassland , Sand , Biodiversity , Plants , Soil/chemistry , Nitrogen/analysis
17.
Ecol Evol ; 14(3): e11022, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38481757

ABSTRACT

Rehabilitation strategies for degraded mine dumps have generally seen limited success due to different complications associated with mining biophysical disturbance. In this study, we tested a combination of two methods to expedite revegetation of kimberlite tailings at Letseng Diamond Mine (i.e., in the Afro-alpine areas of Lesotho). We ran trials on different growth media located on fine and coarse kimberlite tailings (i.e. sites) mixed with different substrate combinations and topsoil and sowing a seed mix comprised of native plant species. Overall, as predicted, fine kimberlite tailings displayed significantly higher plant abundance than coarse kimberlite tailings, and sown seeds performed significantly better than spontaneous colonisation by emerging species. Kimberlite tailings mixed with topsoil (100 mm) showed significantly greater plant abundance, and similarly, when coarse kimberlite tailings were introduced to fine tailings. Physicochemical analyses of growth media components suggested that topsoil provided additional nutrients and that plants could readily access available nutrients in the fine kimberlite tailings. We noted a gradual significant increase in plant abundance over 5 years, enhanced by new plant species emerging from the topsoil seed bank or by natural seed dispersal. Although plant abundance differed significantly, both fine and coarse kimberlite tailings displayed high plant species diversity (H = 3.4 and D = 0.95 and H = 3.5 and D = 0.95, respectively). Out of 36 emerging plant species, 15 species spontaneously colonised both growth media. The significant variation in abundance among plant species between treatments was mostly attributed to dominant forb species, namely Chrysocoma ciliata, Glumicalyx montanus, Oxalis obliquifolia, Senecio inaequidens and Trifolium burchellianum. We have identified suitable growth media for plant community restoration on kimberlite tailings in the Drakensberg alpine area using a seed mix of native plant species in combination with natural seed dispersal from the surrounding pristine environment. We provide evidence for using two complementary approaches to optimise native plant community development during restoration in the Drakensberg alpine area.

18.
Ecol Evol ; 14(3): e10948, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38510540

ABSTRACT

Non-native-dominated landscapes may arise from invasion by competitive plant species, disturbance and invasion of early-colonizing species, or some combination of these. Without knowing site history, however, it is difficult to predict how native or non-native communities will reassemble after disturbance events. Given increasing disturbance levels across anthropogenically impacted landscapes, predictive understanding of these patterns is important. We asked how disturbance affected community assembly in six invaded habitat types common in dryland, grazed landscapes on Island of Hawai'i. We mechanically disturbed 100 m2 plots in six vegetation types dominated by one of four invasive perennial grasses (Cenchrus ciliaris, Cenchrus clandestinus, Cenchrus setaceus, or Melinis repens), a native shrub (Dodonaea viscosa), or a native perennial bunchgrass (Eragrostis atropioides). We censused vegetation before disturbance and monitored woody plant colonization and herbaceous cover for 21 months following the disturbance, categorizing species as competitors, colonizers, or a combination, based on recovery patterns. In addition, we planted individuals of the native shrub and bunchgrass and monitored survival to overcome dispersal limitation of native species when exploring these patterns. We found that the dominant vegetation types showed variation in post-disturbance syndrome, and that the variation in colonizer versus competitor syndrome occurred both between species, but also within species among different vegetation types. Although there were flushes of native shrub seedlings, these did not survive to 21 months within invaded habitats, probably due to regrowth by competitive invasive grasses. Similarly, survival of planted native individuals was related to the rate of regrowth by dominant species. Regardless of colonization/competitor syndrome, however, all dominant vegetation types were relatively resilient to change. Our results highlight that the altered post-agricultural, invaded grassland landscapes in Hawai'i are stable states. More generally, they point to the importance of resident communities and their effects on species interactions and seed availability in shaping plant community response to disturbance.

19.
J Environ Manage ; 356: 120564, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479283

ABSTRACT

Robust quantification of vegetative biomass using satellite imagery using one or more forms of machine learning (ML) has hitherto been hindered by the extent and quality of training data. Here, we showcase how ML predictive demonstrably improves when additional training data is used. We collated field datasets of pasture biomass obtained via destructive sampling, 'C-Dax' reflective measurements and rising plate meters (RPM) from ten livestock farms across four States in Australia. Remotely sensed data from the Sentinel-2 constellation was used to retrieve aboveground biomass using a novel machine learning paradigm hereafter termed "SPECTRA-FOR" (Spectral Pasture Estimation using Combined Techniques of Random-forest Algorithm for Features Optimisation and Retrieval). Using this framework, we show that the low temporal resolution of Sentinel-2 in high latitude regions with persistent cloud cover leads to extensive gaps between cloud-free images, hindering model performance and, thus, contemporaneous ability to forecast real-time pasture biomass. By leveraging the spectral consistency between Sentinel-2 and Planet Lab SuperDove to overcome this limitation, we used ten spectral bands of Sentinel-2, four bands of Sentinel-2 as a proxy for pre-2022 SuperDove (referred to as synthetic SuperDove or SSD), and the actual SuperDove (ASD), given that SuperDove imagery has a higher resolution and more frequent passage compared with Sentinel-2. Using their respective bands as input features to SPECRA-FOR, model performance for the ten bands of Sentinel-2 were R2 = 0.87, root mean squared error (RMSE) of 439 kg DM/ha and mean absolute error (MAE) of 255 kg DM/ha, while that for SSD increased to an R2 of 0.92, RMSE of 346 kg DM/ha and MAE = 208 kg DM/ha. The study revealed the importance of robust data mining, imagery harmonisation and model validation for accurate real-time modelling of pasture biomass with ML.


Subject(s)
Machine Learning , Satellite Imagery , Satellite Imagery/methods , Biomass , Farms , Australia
SELECTION OF CITATIONS
SEARCH DETAIL
...