Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.962
Filter
1.
Ann Bot ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982647

ABSTRACT

BACKGROUND AND AIMS: The complexity of fossil forest ecosystems is difficult to reconstruct due to the fragmentary nature of the fossil record. However, detailed morpho-anatomical studies of well-preserved individual fossils can provide key information on tree growth and ecology, including in biomes with no modern analog such as the lush forests that developed in the polar regions during past greenhouse climatic episodes. METHODS: We describe an unusual-looking stem from Middle Triassic (ca 240 Ma) deposits of Antarctica with over 100 very narrow growth-rings and conspicuous persistent vascular traces through the wood. Sections of the specimen were prepared using the cellulose acetate peel technique to determine its systematic affinities and analyse its growth. KEY RESULTS: The new fossil shows similarities with the form genus Woodworthia and with conifer stems from the Triassic of Antarctica, and is assigned to the conifers. Vascular traces are interpreted as those of small branches retained on the trunk. Growth-ring analyses reveal one of the slowest growth rates reported in the fossil record, with an average of 0.2 mm/season. While the tree was growing within the Triassic polar circle, sedimentological data and growth-ring information from other fossil trees, including from the same locality, support the presence of favorable conditions in the region. CONCLUSIONS: The specimen is interpreted as a dwarf conifer tree that grew under a generally favorable regional climate but whose growth was suppressed due to stressful local site conditions. This is the first time that a tree with suppressed growth is identified as such in the fossil record, providing new insights on the structure of polar forests under greenhouse climates and, more generally, on the complexity of tree communities in deep time.

3.
Sci Total Environ ; 946: 174415, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969116

ABSTRACT

Mercury (Hg) alkylation and methane (CH4) emissions pose significant global concerns. Paddy soil, due to its long-term anaerobic conditions and abundant organic matter, is hotspots for soil Hg alkylation and CH4 emissions. However, the relevance between Hg alkylation and CH4 emissions, especially their simultaneous reduction strategies, remains poorly understood. Here, we investigated the effects of biochar (BC), selenium (Se) and rice straw (RS) amendments on Hg alkylation and CH4 emissions in paddy soil, and the accumulation of Hg speciation. Results found that both BC and RS amendments significantly increased the levels of soil organic carbon (SOC) and humification index (HIX). Furthermore, BC decreased the concentrations of Hg(II), methylmercury (MeHg) and ethylmercury (EtHg) by 63.1%, 53.6% and 100% in rice grains. However, RS increased Hg(II) concentration but decreased the total Hg (THg), MeHg and EtHg concentrations in rice grains. Compared to the CK, RS significantly increased CH4 emissions, while BC decreased CH4 emissions, and Se showed no significant difference. Se amendment increased the Hg(II) and EtHg concentrations by 20.3% and 17.0% respectively, and decreased the MeHg concentration in grains by 58.3%. Both BC and RS impacted the abundance of methanogens by enhancing SOC and HIX, subsequently modulating the relevance between Hg alkylation and CH4 emissions. These findings provide insights into the relevance between Hg alkylation and CH4 emissions and propose potential mitigation mechanisms in Hg-contaminated paddy soil.

4.
Sci Rep ; 14(1): 15489, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969687

ABSTRACT

In the face of the escalating global energy demand, the challenge lies in enhancing the extraction of oil from low-pressure underground reservoirs. The conventional artificial gas lift method is constrained by the limited availability of high-pressure gas for injection, which is essential for reducing hydrostatic bottom hole pressure and facilitating fluid transfer to the surface. This study proposes a novel 'smart gas' concept, which involves injecting a gas mixture with an optimized fraction of CO2 and N2 into each well. The research introduces a dual optimization strategy that not only determines the optimal gas composition but also allocates the limited available gas among wells to achieve multiple objectives. An extensive optimization process was conducted to identify the optimal gas injection rate for each well, considering the limited gas supply. The study examined the impact of reducing available gas from 20 to 10 MMSCFD and the implications of water production restrictions on oil recovery. The introduction of smart gas resulted in a 3.1% increase in overall oil production compared to using natural gas. The optimization of smart gas allocation proved effective in mitigating the decline in oil production, with a 25% reduction in gas supply leading to only a 10% decrease in oil output, and a 33% reduction resulting in a 26.8% decrease. The study demonstrates that the smart gas approach can significantly enhance oil production efficiency in low-pressure reservoirs, even with a substantial reduction in gas supply. It also shows that imposing water production limits has a minimal impact on oil production, highlighting the potential of smart gas in achieving environmentally sustainable oil extraction. Furthermore, the implementation of the smart gas approach aligns with global environmental goals by potentially reducing greenhouse gas emissions, thereby contributing to the broader objective of environmental sustainability in the energy sector.

5.
J Hum Nutr Diet ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953466

ABSTRACT

BACKGROUND: Schools and early years settings provide an opportunity to promote healthy and sustainable food, but standards and guidance in England focus predominantly on nutritional quality. The present study estimated greenhouse gas emissions (GHGE) of school lunches provided for children attending school nurseries, including comparison between meal options. METHODS: Menus, recipes and portion weights for lunches provided for 3-4-year-old children attending nine school nurseries were collected daily for one week. GHGE for each food and recipe were calculated using Foodprint functionality of Nutritics software. GHGE were calculated for each menu option (main, vegetarian, jacket potato and sandwich) provided in each school, and for meals with and without meat/fish. RESULTS: In total, 161 lunches including 273 foods were analysed. Median GHGE across all meals was 0.53 kgCO2e (i.e. kilograms of carbon dioxide equivalent) per portion, with significantly higher GHGE associated with main meals (0.71 kgCO2e per portion) compared to all other meal types (0.43-0.50 kgCO2e per portion; p < 0.001) which remained after adjustment for meal size and energy density. Red meat-based meals were highest in GHGE (median 0.98 kgCO2e per portion and 0.34 kgCO2e per 100 g) and meals containing any meat/fish were significantly higher in GHGE (median 0.58 kgCO2e per portion) than vegetarian meals (median 0.49 kgCO2e per portion) (p = 0.014). Meals with higher adherence to the nutrient framework underpinning the early years guidelines had significantly higher GHGE than meals with lower adherence (p < 0.001). CONCLUSIONS: The results were comparable to previous estimates of school lunch GHGE and highlight variation by meal option. Consideration of GHGE alongside the nutritional quality of lunches by caterers could support provision of healthy and sustainable lunches.

6.
Article in English | MEDLINE | ID: mdl-38954343

ABSTRACT

Owing to the impact of the effluent C/N from the secondary structures of urban domestic wastewater treatment plants, the denitrification efficiency in constructed wetlands (CWs) is not satisfactory, limiting their widespread application in the deep treatment of urban domestic wastewater. To address this issue, we constructed enhanced CWs and conducted orthogonal experiments to investigate the effects of different factors (C/N, fillers, and plants) on the removal of conventional pollutants and the reduction of greenhouse gas (GHG) emission. The experimental results indicated that a C/N of 8, manganese sand, and calamus achieved the best denitrification efficiencies with removal efficiencies of 85.7%, 95.9%, and 88.6% for TN, NH4+-N, and COD, respectively. In terms of GHG emission reduction, this combination resulted in the lowest global warming potential (176.8 mg/m2·day), with N2O and CH4 emissions of 0.53 and 1.25 mg/m2·day, respectively. Characterization of the fillers revealed the formation of small spherical clusters of phosphates on the surfaces of manganese sand and pyrite and iron oxide crystals on the surface of pyrite. Additionally, the surface Mn (II) content of the manganese sand increased by 8.8%, and the Fe (III)/Fe (II) and SO42-/S2- on pyrite increased by 2.05 and 0.26, respectively, compared to pre-experiment levels. High-throughput sequencing indicated the presence of abundant autotrophic denitrifying bacteria (Sulfuriferula, Sulfuritalea, and Thiobacillus) in the CWs, which explains denitrification performance of the enhanced CWs. This study aimed to explore the mechanism of efficient denitrification and GHG emission reduction in the enhanced CWs, providing theoretical guidance for the deep treatment of urban domestic wastewater.

7.
Article in English | MEDLINE | ID: mdl-38955974

ABSTRACT

Globally, the carbon footprint (CF) is constantly increasing, contrasting with the decreasing trend observed for decades in the European Union (EU) countries, where EU guidelines are responsibly followed and outlined in its strategic documents. Information and communication technology (ICT) carbon emissions have historically increased in parallel with global emissions, contributing to continuous increases in ICT's CF over time, even when excluding full life cycle emissions. This study examines the impact of ICT on household electricity consumption, aiming to quantify the potential reduction of greenhouse gas (GHG) emissions through improved household energy efficiency. The methodology includes the data collection on ICT device usage in households within the city of Novi Sad (Republic of Serbia), employing the survey method that queries respondents on device quantities and their usage patterns. This study provides results for decision-makers to recognize concrete benefits from the transition to a circular economy (CE) and low-carbon emissions, which are reflected as benefits for the local community and socio-economic environment.

8.
Surg Endosc ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951239

ABSTRACT

BACKGROUND: The healthcare system plays a pivotal role in environmental sustainability, and the operating room (OR) significantly contributes to its overall carbon footprint. In response to this critical challenge, leading medical societies, government bodies, regulatory agencies, and industry stakeholders are taking measures to address healthcare sustainability and its impact on climate change. Healthcare now represents almost 20% of the US national economy and 8.5% of US carbon emissions. Internationally, healthcare represents 5% of global carbon emissions. US Healthcare is an outlier in both per capita cost, and per capita greenhouse gas emission, with almost twice per capita emissions compared to every other country in the world. METHODS: The Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) and the European Association for Endoscopic Surgery (EAES) established the Sustainability in Surgical Practice joint task force in 2023. This collaborative effort aims to actively promote education, mitigation, and innovation, steering surgical practices toward a more sustainable future. RESULTS: Several key initiatives have included a survey of members' knowledge and awareness, a scoping review of terminology, metrics, and initiatives, and deep engagement of key stakeholders. DISCUSSION: This position paper serves as a Call to Action, proposing a series of actions to catalyze and accelerate the surgical sustainability leadership needed to respond effectively to climate change, and to lead the societal transformation towards health that our times demand.

9.
Article in English | MEDLINE | ID: mdl-38951399

ABSTRACT

The growing demand for agricultural products, driven by the Green Revolution, has led to a significant increase in food production. However, the demand is surpassing production, making food security a major concern, especially under climatic variation. The Indian agriculture sector is highly vulnerable to extreme rainfall, drought, pests, and diseases in the present climate change scenario. Nonetheless, the key agriculture sub-sectors such as livestock, rice cultivation, and biomass burning also significantly contribute to greenhouse gas (GHG) emissions, a driver of global climate change. Agriculture activities alone account for 10-12% of global GHG emissions. India is an agrarian economy and a hub for global food production, which is met by intensive agricultural inputs leading to the deterioration of natural resources. It further contributes to 14% of the country's total GHG emissions. Identifying the drivers and best mitigation strategies in the sector is thus crucial for rigorous GHG mitigation. Therefore, this review aims to identify and expound the key drivers of GHG emissions in Indian agriculture and present the best strategies available in the existing literature. This will help the scientific community, policymakers, and stakeholders to evaluate the current agricultural practices and uphold the best approach available. We also discussed the socio-economic, and environmental implications to understand the impacts that may arise from intensive agriculture. Finally, we examined the current national climate policies, areas for further research, and policy amendments to help bridge the knowledge gap among researchers, policymakers, and the public in the national interest toward GHG reduction goals.

10.
ACS Nano ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951518

ABSTRACT

Global warming is a crisis that humanity must face together. With greenhouse gases (GHGs) as the main factor causing global warming, the adoption of relevant processes to eliminate them is essential. With the advantages of high specific surface area, large pore volume, and tunable synthesis, metal-organic frameworks (MOFs) have attracted much attention in GHG storage, adsorption, separation, and catalysis. However, as the pool of MOFs expands rapidly with new syntheses and discoveries, finding a suitable MOF for a particular application is highly challenging. In this regard, high-throughput computational screening is considered the most effective research method for screening a large number of materials to discover high-performance target MOFs. Typically, high-throughput computational screening generates voluminous and multidimensional data, which is well suited for machine learning (ML) training to improve the screening efficiency and explore the relationships between the multidimensional data in depth. This Review summarizes the general process and common methods for using ML to screen MOFs in the field of GHG removal. It also addresses the challenges faced by ML in exploring the MOF space and potential directions for the future development of ML for MOF screening. This aims to enhance the understanding of the integration of ML and MOFs in various fields and broaden the application and development ideas of MOFs.

11.
J Dairy Sci ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38968997

ABSTRACT

Improving nutrient use efficiency and reducing greenhouse gas (GHG) emissions are important environmental priorities for organic-certified dairy operations. The objectives of this research were to quantify annual nutrient use and GHG emissions in 6 organic New York dairy farms. Farm-gate nutrient mass balances (NMB) were estimated with the Cornell NMB calculator. Whole-farm GHG emissions were estimated using Cool Farm Tool (CFT) and COMET. Farm-gate NMBs were low, ranging from -6.5 to 19 kg N ha-1 for N1 (without legume N fixation), 26 to 71 kg N ha-1 for N2 (including N fixation), -2.4 to 8.2 kg P ha-1 for P, and 1.1 to 19.8 kg K ha-1 for K. Additional nutrient imports, coupled with nutrient management planning, adequate legume stands and diet balancing may help improve P balances, and ensure no N deficiencies in the system. Estimates of annual GHG emission intensity ranged from 0.98 to 2.10 kg CO2-eq per kg of fat and protein corrected milk (FPCM) estimated by CFT, and from 0.69 to 2.48 kg CO2-eq kg FPCM-1 estimated by COMET. Enteric fermentation, feed production and fuel and energy use represented the largest sources of GHGs. For farms with liquid manure storages, manure management was also a significant source. Estimates of soil carbon (C) stock changes from CFT were in agreement or smaller than previous studies, and estimates from COMET were in agreement or greater. Variability and uncertainty in the results for soil C stock change indicate more research and new protocols are needed. Impact of individual management changes on GHG emissions intensity were small, ranging from -8 to +7% in CFT, and -8% to +8% in COMET. The management changes that resulted in the largest reductions in GHG emissions intensity included increasing individual cow productivity and milk to total feed ratio, and implementation of manure treatment systems.

12.
Heliyon ; 10(11): e32388, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961922

ABSTRACT

Dust cleaning systems are mandatory for use almost in any manufacturing process. Their market size is expected at US$10.77 billion by 2030 growing from US$7.28 billion in 2022. Removing dust particles is the main purpose of these systems and they make an invaluable contribution to environmental safety. However, while cleaning the air from solid particles, industrial pulse-jet baghouse collectors have an additional impact on the environment that usually is not considered. An analysis of energy consumption at the manufacturing and operation stages of the baghouse dust collectors allows for the evaluation of CO2 emissions. The analysis shows that, given the current state of affairs in the industry, by 2030 manufacturing and operation of baghouse dust collectors over the world will emit 70+ million tons of carbon dioxide additionally to the levels of 2021. To reduce the CO2-related environmental impact of industrial pulse-jet baghouse collectors, among all scientific and technical measures, it is recommended to simply scale up the dust collection system, which involves replacing several low-capacity collectors with one general-capacity collector within one industrial enterprise. This allows for a reduction in energy consumption at the collector manufacturing stage from 3 to 10 times and also ensures a significant reduction in operation energy consumption of the dust collector during its service life.

13.
Glob Chang Biol ; 30(7): e17388, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967139

ABSTRACT

Permafrost thaw in northern peatlands causes collapse of permafrost peat plateaus and thermokarst bog development, with potential impacts on atmospheric greenhouse gas exchange. Here, we measured methane and carbon dioxide fluxes over 3 years (including winters) using static chambers along two permafrost thaw transects in northwestern Canada, spanning young (~30 years since thaw), intermediate and mature thermokarst bogs (~200 years since thaw). Young bogs were wetter, warmer and had more hydrophilic vegetation than mature bogs. Methane emissions increased with wetness and soil temperature (40 cm depth) and modelled annual estimates were greatest in the young bog during the warmest year and lowest in the mature bog during the coolest year (21 and 7 g C-CH4 m-2 year-1, respectively). The dominant control on net ecosystem exchange (NEE) in the mature bog (between +20 and -54 g C-CO2 m-2 year-1) was soil temperature (5 cm), causing net CO2 loss due to higher ecosystem respiration (ER) in warmer years. In contrast, wetness controlled NEE in the young and intermediate bogs (between +55 and -95 g C-CO2 m-2 year-1), where years with periodic inundation at the beginning of the growing season caused greater reduction in gross primary productivity than in ER leading to CO2 loss. Winter fluxes (November-April) represented 16% of annual ER and 38% of annual CH4 emissions. Our study found NEE of thermokarst bogs to be close to neutral and rules out large CO2 losses under current conditions. However, high CH4 emissions after thaw caused a positive net radiative forcing effect. While wet conditions favouring high CH4 emissions only persist for the initial young bog period, we showed that continued climate warming with increased ER, and thus, CO2 losses from the mature bog can cause net positive radiative forcing which would last for centuries after permafrost thaw.


Subject(s)
Carbon Dioxide , Climate Change , Greenhouse Gases , Methane , Permafrost , Wetlands , Methane/analysis , Methane/metabolism , Carbon Dioxide/analysis , Greenhouse Gases/analysis , Temperature , Soil/chemistry , Canada , Seasons
14.
J Sci Food Agric ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980001

ABSTRACT

BACKGROUND: Relay intercropping of maize and soybean can improve land productivity. However, the mechanism behind N2O emissions in this practice remains unclear. A two-factor randomized block field trial was conducted to reveal the mechanism of N2O emissions in a full additive maize-soybean relay intercropping. Factor A was three cropping systems - that is, monoculture maize (Zea mays L.), monoculture soybean (Glycine max L. Merr.) and maize-soybean relay intercropping. Factor B was different N supply, containing no N, reduced N and conventional N. Differences in N2O emissions, soil properties, rhizosphere bacterial communities and yield advantage were evaluated. RESULTS: The land equivalent ratio was 1.55-2.44, and the cumulative N2O emission ( C E N 2 O $$ \mathrm{C}{\mathrm{E}}_{{\mathrm{N}}_2\mathrm{O}} $$ ) was notably lower by 60.2% in intercropping than in monoculture, respectively. Reduced N declined C E N 2 O $$ \mathrm{C}{\mathrm{E}}_{{\mathrm{N}}_2\mathrm{O}} $$ without penalty on the yield advantages. The relay intercropping shifted soil properties - for example, soil organic matter, total N, NH 4 + $$ {\mathrm{NH}}_4^{+} $$ and protease activity - and improved the soil microorganism community - for example, Proteobacteria and Acidobacteria. Intercropping reduced C E N 2 O $$ \mathrm{C}{\mathrm{E}}_{{\mathrm{N}}_2\mathrm{O}} $$ by directly suppressing nirS- and amoA-regulated N2O generation during soil N cycling, or nirS- and amoA-mediated soil properties shifted to reduce C E N 2 O $$ \mathrm{C}{\mathrm{E}}_{{\mathrm{N}}_2\mathrm{O}} $$ indirectly. Reduced N directly reduced C E N 2 O $$ \mathrm{C}{\mathrm{E}}_{{\mathrm{N}}_2\mathrm{O}} $$ by decreasing soil N content and reducing soil microorganism activities to alleviate N2O produced in soil N cycling. CONCLUSION: Conducting a full additive maize-soybean relay intercropping with reduced nitrogen supply provides a way to alleviate N2O emissions without the penalty on the yield advantage by changing rhizosphere bacterial communities and soil N cycling. © 2024 Society of Chemical Industry.

15.
Bioresour Technol ; : 131088, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38981553

ABSTRACT

Sugarcane bagasse was recycled to produce fermentation liquid (FL) as a supplementary carbon source that was added to constructed wetlands (CWs) for regulating influent carbon to nitrogen ratio (C/N), and then being applied to investigate nitrogen transformations and greenhouse gas emissions. Results showed that this FL achieved faster NO3--N removal and lower N2O fluxes than sucrose did, and the lowest N2O flux (67.6 µg m-2h-1) was achieved when FL was added to CWs in a C/N of 3. In contrast, CH4 emissions were higher by the FL addition than by the sucrose addition, although the fluxes under both additions were in a lower range of 0.06-0.17 mg m-2h-1. The utilization of FL also induced significant variations in microbial communities and increased the abundance of denitrification genes. Results showed the application of FL from sugarcane bagasse can be an effective strategy for improving nitrogen removal and mitigating N2O emissions in CWs.

16.
Sci Total Environ ; : 174341, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960166

ABSTRACT

Although benthic microbial community offers crucial insights into ecosystem services, they are underestimated for coastal sediment monitoring. Sepetiba Bay (SB) in Rio de Janeiro, Brazil, holds long-term metal pollution. Currently, SB pollution is majorly driven by domestic effluents discharge. Here, functional prediction analysis inferred from 16S rRNA gene metabarcoding data reveals the energy metabolism profiles of benthic microbial assemblages along the metal pollution gradient. Methanogenesis, denitrification, and N2 fixation emerge as dominant pathways in the eutrophic/polluted internal sector (Spearman; p < 0.05). These metabolisms act in the natural attenuation of sedimentary pollutants. The methane (CH4) emission (mcr genes) potential was found more abundant in the internal sector, while the external sector exhibited higher CH4 consumption (pmo + mmo genes) potential. Methanofastidiosales and Exiguobacterium, possibly involved in CH4 emission and associated with CH4 consumers respectively, are the main taxa detected in SB. Furthermore, SB exhibits higher nitrous oxide (N2O) emission potential since the norB/C gene proportions surpass nosZ up to 4 times. Blastopirellula was identified as the main responsible for N2O emissions. This study reveals fundamental contributions of the prokaryotic community to functions involved in greenhouse gas emissions, unveiling their possible use as sentinels for ecosystem monitoring.

17.
Ecol Evol ; 14(7): e11657, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952655

ABSTRACT

Ongoing climate change poses an increasing threat to biodiversity. To avoid decline or extinction, species need to either adjust or adapt to new environmental conditions or track their climatic niches across space. In sessile organisms such as plants, phenotypic plasticity can help maintain fitness in variable and even novel environmental conditions and is therefore likely to play an important role in allowing them to survive climate change, particularly in the short term. Understanding a species' response to rising temperature is crucial for planning well-targeted and cost-effective conservation measures. We sampled seeds of three Hypericum species (H. maculatum, H. montanum, and H. perforatum), from a total of 23 populations originating from different parts of their native distribution areas in Europe. We grew them under four different temperature regimes in a greenhouse to simulate current and predicted future climatic conditions in the distribution areas. We measured flowering start, flower count, and subsequent seed weight, allowing us to study variations in the thermal plasticity of flowering phenology and its relation to fitness. Our results show that individuals flowered earlier with increasing temperature, while the degree of phenological plasticity varied among species. More specifically, the plasticity of H. maculatum varied depending on population origin, with individuals from the leading range edge being less plastic. Importantly, we show a positive relationship between higher plasticity and increased flower production, indicating adaptive phenological plasticity. The observed connection between plasticity and fitness supports the idea that plasticity may be adaptive. This study underlines the need for information on plasticity for predicting species' potential to thrive under global change and the need for studies on whether higher phenotypic plasticity is currently being selected as natural populations experience a rapidly changing climate.

18.
Environ Res ; 257: 119399, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866312

ABSTRACT

River and reservoir ecosystems have been considered as hot spots for GHG (greenhouse gas) emissions while their specific hydrological and biogeochemical processes affect GHG concentrations; however, few studies integrated river-reservoir systems to identify the dominant drivers of GHG concentrations and flux changes associated with these systems. In the present study, we examined the seasonal variations in GHG concentrations in the surface water of three river-reservoir systems in the Seine Basin. The levels and seasonal variations of GHG concentrations exhibited distinct patterns among reservoirs, upstream, and downstream rivers. The concentrations of CH4 (methane) in the reservoirs were notably higher than those observed in both upstream and downstream rivers and showed higher values in summer and autumn, which contrasted with CO2 (carbon dioxide) concentrations, while N2O (nitrous oxide) concentrations did not show an obvious seasonal pattern. A high mole ratio of CH4/CO2 was found in these reservoirs, with a value of 0.03 and was more than 30 and 10 times higher than that in the upstream and downstream rivers, respectively. The three river-reservoir systems were oversaturated with GHG during the study period, with the average diffusive fluxes (expressed as CO2eq: CO2 equivalent) of 810 ± 1098 mg CO2eq m-2 d-1, 9920 ± 2413 mg CO2eq m-2 d-1, and 7065 ± 2704 mg CO2eq m-2 d-1 in the reservoirs, upstream and downstream rivers, respectively. CO2 and CH4-CO2 were respectively the dominant contributors to GHG diffusive fluxes in river and reservoir sections, while N2O contributed negligibly to GHG diffusive fluxes in the three river-reservoir systems. Our results showed that GHG concentrations and gas transfer coefficient have varying importance in driving GHG diffusive fluxes among different sections of the river-reservoir systems. In addition, our results also show the combined effect of reservoirs and upstream rivers on the water quality variables and hydrological characteristics of downstream rivers, highlighting the future need for additional investigations of GHG processes in the river-reservoir systems.

19.
Heliyon ; 10(11): e31794, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38868021

ABSTRACT

In view of the SDGs argued by UNO, it is vital to address the pressing issues regarding sustainable development. The aim of current study is to investigate the impact of economic complexity (ECC) on environmental sustainability. To achieve this aim, we sampled the 25 years of data of Next-11 countries over the period 1995 to 2019. The economic complexity was measured by the economic complexity index (ECI) while environmental sustainability was measured by two proxy variables including CO2 and greenhouse gas (GHG) emissions. The empirical analysis was established by utilizing the unit root test, cointegration test, FMOLS (fully modified OLS) and DOLS (dynamic OLS) models. The estimated coefficient values disclosed that ECC has a negative and statistically significant relationship with both CO2 and GHG emissions in the long run, implying that ECC ensured environmental sustainability. In addition, the analysis reveals that financial development has a negative while economic growth and energy imports have a positive and statistically significant association with both CO2 and GHG emissions. The findings of the current study suggested an important policy regarding the focus on ECC for achieving environmental sustainability in underlying economies. This study provides robustness to the existing literature in alternative data settings (N-11 countries) and by the unique objective of focusing on environmental sustainability.

20.
Heliyon ; 10(11): e32153, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38868018

ABSTRACT

This work aimed to synthesize and characterize the calcium acetate monohydrate (Ca(CH3COO)2·H2O) from the exothermic reaction between CaCO3 powder derived from cockle shells with three different acetic acids (8, 10, and 12 mol L-1) concentrations by the rapid and easy process without pH and temperature control to lead to cheap chemical production. The physicochemical characteristics of all synthesized Ca(CH3COO)2·H2O samples are investigated based on the chemical compositions, crystal structures, vibrational characteristics, morphologies, and thermal behavior to confirm the target compound. A suitable concentration of 10 mol L-1 CH3COOH was chosen to produce Ca(CH3COO)2·H2O with the highest yield (96.30 %), maximum calcium content (96.2 % CaO) with lower impurities, and time consumption of 17 h. The calcium acetate product obtained from cockle shells in this work shows differences in thermal stability, morphological structure purity, %yield, and metal contamination with those reported obtained from other sources and another shell type in the previous work. This research investigates the transformation of cockle shell waste into CaCO3 for the production of calcium acetate, aiming to address environmental sustainability concerns by reducing the use of calcium ore resources and greenhouse gas emissions.

SELECTION OF CITATIONS
SEARCH DETAIL
...