Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Exp Appl Acarol ; 92(3): 323-349, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38451432

ABSTRACT

The abundance and diversity of eriophyid and phytoseiid mites in south and central Florida were assessed in six citrus orchards under three different pest management systems, conventional, organic, and untreated. Tree canopy, ground cover, and leaf litter were sampled every two months in two groves for each of the three pest management systems from April 2019 to February 2021. The citrus rust mite, Phyllocoptruta oleivora (Ashmead) represented 95 to 99% of the rust mites sampled in each grove except in one untreated orchard where it accounted for 45% of the samples (n = 938 total P. oleivora mounted specimens). The pink citrus rust mite, Aculops pelekassi (Keifer) was present in organic and untreated orchards at 5% and 28%, respectively, but absent from conventional orchards (n = 134 total A. pelekassi mounted specimens). Twenty-nine species of phytoseiid mites were identified from 1778 specimens. Thirteen species were present in the canopy, fifteen in the ground cover, and eighteen in the leaf litter with some common species among these habitats. In the tree canopy, Typhlodromalus peregrinus (39%), Euseius spp. (25%), and Iphiseiodes quadripilis (19%) were the dominant species. Typhlodromalus peregrinus (43%), Typhlodromips dentilis (25%), and Proprioseiopsis mexicanus (13%) were the major species in the ground cover. Species richness was lower in organic orchards (3.0) compared to conventional and untreated orchards (5.0 and 4.7, respectively). In the leaf litter, Amblyseius curiosus (26%), Proprioseiopsis carolinianus (15%), Chelaseius floridanus (14%), and Amblyseius tamatavensis (12%) were the most common species. Shannon index was significantly higher in conventional orchards (1.45) compared to organic and untreated orchards (1.02 and 1.05, respectively). Evenness was also higher in conventional orchards (0.86) compared to organic and untreated (0.72 and 0.68, respectively). Finding of several phytoseiids in abundance across pest management programs suggest the need for identifying their role in pest suppression particularly mites.


Subject(s)
Citrus , Mites , Animals , Mites/physiology , Florida , Predatory Behavior , Biodiversity , Food Chain , Organic Agriculture
2.
Environ Sci Pollut Res Int ; 31(4): 5655-5667, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38123779

ABSTRACT

The combined role of ground cover management in controlling soil erosion and nutrient loss from new orchards is still less understood. In this study, four ground cover management practices, orchard with grass cover (OG), orchard with interplant cover (OI), orchard with straw cover (OS), and orchard with bare ground (OB), were designed to identify their impacts on soil erosion and associated carbon-nitrogen-phosphorus loss in new orchards by rainfall simulation tests with rainfall intensities of 60, 90, and 120 mm h-1 and 90 min rainfall duration. The results showed that OS had the lowest surface flow coefficient (6.6%) and highest subsurface flow coefficient (32.5%). The highest soil loss rate occurred in the OB plot (65.4 g m-2 min-1), and the lowest soil loss rate occurred in the OS plot (0.5 g m-2 min-1). OS plot showed better effectiveness in improving soil erosion. However, the increased infiltration capacity was facilitated in terms of causing non-point source pollution. The C-N-P ratios of surface flow in different cover measures (OB, OI, OG, and OS) were 1.4:1.2:0.9:1, 1.8:1.7:1.2:1, and 2.3:1.9:1.2:1, respectively. The ratios of sediment in different cover measures were 7.3:9:2.3:1, 2:1.5:1.2:1, and 1.2:1:0.8:0.7, respectively. Cover management plots play an active role in reducing nutrient loss in surface flow and sediment, but the increased infiltration in covered management plots is associated with the risk of groundwater contamination in subsurface flow. The C-N-P ratios of subsurface flow in OB and covered managed plots (OI, OG, and OS) were 1:3.3:1.6:2.7, 1:1.5:2.2:2.4 and 1:1.2:1.5:1.3, respectively. Therefore, when managing the phenomenon of soil erosion through ground cover measures, attention should also be focused on the function of cover measures in regulating non-point source pollution underground, such as subsurface flow. This research recommends a combination of cover management measures to further mitigate erosion and the risk of groundwater contamination.


Subject(s)
Nitrogen , Phosphorus , Nitrogen/analysis , Carbon , Soil , Poaceae , Rain
3.
Plants (Basel) ; 12(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38005763

ABSTRACT

The ground cover rice production system (GCRPS) has been proposed as a potential solution to alleviate seasonal drought and early low-temperature stress in hilly mountainous areas; clarifying its impact on crop growth is crucial to enhance rice productivity in these areas. A two-year (2021-2022) field experiment was conducted in the hilly mountains of southwest China to compare the effects of the traditional flooding paddy (Paddy) and GCRPS under three different nitrogen (N) management practices (N1, zero-N fertilizer; N2, 135 kg N ha-1 as a urea-based fertilizer; and N3, 135 kg N ha-1 with a 3:2 base-topdressing ratio as urea fertilizer for the Paddy or a 1:1 basal application ratio as urea and manure for GCRPS) on soil water storage, soil mineral N content and crop growth parameters, including plant height, tiller numbers, the leaf area index (LAI), aboveground dry matter (DM) dynamics and crop yield. The results showed that there was a significant difference in rainfall between the two growth periods, with 906 mm and 291 mm in 2021 and 2022, respectively. While GCRPS did not significantly affect soil water storage, soil mineral N content, and plant height, it led to a reduction in partial tiller numbers (1.1% to 31.6%), LAI (0.6% to 20.4%), DM (4.4% to 18.8%), and crop yield (7.4% to 22.0%) in 2021 (wet year) compared to the Paddy. However, in 2022 (dry year), GCRPS led to an increase in tiller numbers (13.7% to 115.4%), LAI (17.3% to 81.0%), DM (9.0% to 62.6%), and crop yield (2.9% to 9.2%) compared to the Paddy. Structural equation modeling indicated that GCRPS significantly affected tiller numbers, plant height, LAI, DM, and productive tiller numbers, which indirectly influenced crop yield by significantly affecting tiller numbers and productive tiller numbers in 2022. Overall, the effects of GCRPS on soil water and N dynamics were not significant. In 2021, with high rainfall, no drought, and no early, low-temperature stress, the GCRPS suppressed crop growth and reduced yield, while in 2022, with drought and early low-temperature stress and low rainfall, the GCRPS promoted crop growth and increased yield, with tiller numbers and productive tiller numbers being the key factors affecting crop yield.

4.
BMC Res Notes ; 16(1): 252, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37794479

ABSTRACT

OBJECTIVE: Little research has been done on managing soil health for large-scale, outdoor hemp production, contributing to the possible overuse of black plastic for weed suppression. Our experiment aimed to understand the performance of alternative ground covers including forage crops and hay as well as a less disruptive tilling method called strip-tilling compared to black plastic. RESULTS: Yield and soil health data were taken from three experimental plantings from two different outdoor CBD hemp farms in Vermont, USA. We find that hay may be a competitive alternative to black plastic in terms of producing heavier plants. Our research also found that clover seed and hay are both more cost-effective options than black plastic which may sway some farmers to adopt these alternative ground cover options.


Subject(s)
Cannabis , Farms , Crops, Agricultural , Soil , Seeds
5.
Plants (Basel) ; 12(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37765457

ABSTRACT

Ornamental perennial plants play a strategic role in reducing green areas' management costs, keeping the ground, sparing water, and avoiding weeds. The aim of this research is to evaluate the growing performances of seven combinations of six different ornamental perennial herbaceous species and their role in weed containment under low-maintenance conditions. The experiment was performed for three years (2019-2021) in an open field. The selected species were Hemerocallis "Stella de Oro" (A), Phedimus spurius (M.Bieb.) "t Hart 'John Creech" (B), Tulbaghia violacea Harv. (C), Phlox subulata L. "Trot Pink" (D), Potentilla neumanniana Rchb. (E), and Gaillardia "Kobold" (F). Four replicates for each combination were tested (28 plots, 4 m2 each): AB, CD, EF, AB + CD, AB + EF, CD + EF; AB + CD + EF. No watering or fertilization was performed during the cultivation period. Each year, from April to November, three manual weeding activities were performed and the dry weights of the weeds' aerial parts were measured. The ground cover performance was evaluated through digital image analysis using the mobile device application Canopeo. Dry aerial perennial biomass variations between the end and beginning of the experiment were calculated. As a result, CD showed the best performance for weed containment (0.5 g m-2 weed dry weight in the third year), ground cover (63.1% and 64.3% of plot coverages during the second and third years, respectively), and producing ornamental biomass (4316.8 g m-2). The highest total dry amount of harvested weeds was shown by AB + CD + EF (1114.6 g m-2), demonstrating that combinations with a higher number of species were less efficient in avoiding weeds. The research allowed us to identify the best combinations to always keep the soil covered and to improve the ornamental and environmental values of urban green spaces under low-maintenance regimes.

6.
J Environ Manage ; 345: 118839, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37598496

ABSTRACT

Mosses (Class- Bryopsida) are vital to ecosystem dynamics in numerous biomes, although their effects on soil processes are poorly understood. The interplay of moss cover and seasonal variations in soil processes is still unclear in the Indian Central Himalayas. Therefore, we examined the seasonal variations in net nitrogen (N) mineralization rates and several soil properties under two ground covers (with and without moss cover). We used the ex-situ incubation technique to determine N mineralization rates (Rmin) and standard methodology for soil physical and chemical analysis. During the rainy season, the physical properties of the soil and its nutrients, apart from phosphorus, were higher under moss cover. The winter season, however, showed a different pattern, with soil properties exhibiting higher values in soils without moss cover. Ammonium concentrations were higher under moss cover, while nitrate concentrations were higher in soil without moss cover during rainy and winter seasons. The Rmin rates were higher in soil under moss cover, indicating that moss cover promotes N transformation. In contrast, Rmin rates were negative in soil without moss cover, indicating that N immobilization was dominant in N transformation under this ground cover during the rainy season. Our research shows that mosses positively impact the nutrient status and N mineralization rates in various temperate forest types. The seasonal patterns of soil properties are strongly influenced by soil temperature, moisture, and organic carbon. Therefore, we advocate the conservation of mosses and their integration into forest management plans for better ecosystem processes and services in the ecologically fragile Himalayas.


Subject(s)
Bryophyta , Soil , Seasons , Soil/chemistry , Ecosystem , Nitrogen/analysis , Forests
7.
Ecol Evol ; 13(5): e10084, 2023 May.
Article in English | MEDLINE | ID: mdl-37214613

ABSTRACT

Organisms living in high-elevation habitats are usually habitat specialists who occupy a narrow ecological niche. To envision the response of alpine species to a changing environment, it is fundamental to understand their habitat preferences on multiple spatial and temporal scales. However, information on small-scale habitat use is still widely lacking. We investigated the foraging habitat preferences of the migratory northern wheatear Oenanthe oenanthe during the entire presence at a breeding site in the central Alps. We repeatedly observed 121 adult and juvenile individuals. We applied Bayesian logistic regression models to investigate which habitat characteristics influenced foraging habitat selection on a fine spatial scale, and how habitat use varied temporally. Throughout their presence on the breeding grounds, northern wheatears showed a consistent preference for a mosaic of stones and bare ground patches with slow-growing, short vegetation. The proximity of marmot burrows was preferred, whereas dense and low woody vegetation was avoided. After arrival at the breeding site, short vegetation, preferably close to the snow, was favored. The preference for open habitat patches that provide access to prey underlines the critical role of small-scale habitat heterogeneity for northern wheatears. The strong and consistent preference for a habitat that is under pressure from land-use and climate change suggests that this alpine bird species may be sensitive to habitat loss, leading to a potential range contraction. We highlight the need to conserve habitat diversity on a small spatial scale to ensure the long-term availability of suitable habitat for northern wheatears in the Alps.

8.
Pest Manag Sci ; 78(10): 4183-4194, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35690910

ABSTRACT

BACKGROUND: The unexpected Xylella fastidiosa (Xf) outbreak in Europe has led to aggressive management of the disease in recent years. As there is no cure for infected plants, management of vector populations is mandatory to contain the spread of Xf in infected areas. We aimed to assess the suitability of plant species commonly used as cover crops for the population growth of Philaenus spumarius L. (Aphrophoridae). Thus, we conducted a series of no-choice and multiple-choice assays to assess the oviposition preference of P. spumarius adults as well as the development and mortality rate of nymphs on 10 candidate plant species under laboratory and semi-field conditions. Our results will help to design ecological infrastructures, including a pull-push strategy for effective management of Xf vectors in olive groves. RESULTS: Results showed that Anthriscus cerefolium is a suitable plant to enhance oviposition but has a lethal effect on the first nymphal instars of P. spumarius. Moreover, Diplotaxis tenuifolia is not suitable for oviposition or nymphal development. Sinapis alba does not enhance oviposition but is suitable for nymphal development with a medium-high cumulative mortality of the nymphs. Conversely, adults and nymphs had a high preference and low mortality on Taraxacum officinale, and nymphs showed a medium-high preference on Lavandula angustifolia, suggesting that these two species should be avoided as ground cover plants on Xf-susceptible crops. CONCLUSION: The results obtained in our study open new ways to manage the vectors of Xf by using specific plant species as ground cover, which in turn will reduce the spread and prevalence of Xf. © 2022 Society of Chemical Industry.


Subject(s)
Hemiptera , Insect Vectors , Animals , Ecosystem , Europe , Female , Nymph , Plant Diseases/prevention & control , Xylella
9.
Bull Entomol Res ; 112(5): 697-706, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35514146

ABSTRACT

The more restrictive regulations of pesticides in Europe have led to an increase in conservation biological control (CBC) research. However, little attention has been paid to the main determinants of Lobesia botrana parasitism. The Douro Demarcated Region landscape offers scope for the use of CBC. The study was conducted between 2002 and 2015 aiming at: (i) identifying parasitoids associated with L. botrana and evaluating their impact as biological control agents in each generation of the pest, and (ii) evaluating the effect of both the proportion of ecological infrastructures (EI) near the vineyards, and the impact of management practices (chemical treatments and ground cover) on the parasitism of L. botrana. A total of 3226 larvae/pupae of L. botrana were collected (15% were parasitized and 485 parasitoids emerged). A complex of 16 taxa of parasitoids was identified, the majority belonging to Hymenoptera. The most abundant were Elachertus sp. (Eulophidae), Campoplex capitator Aubert (Ichneumonidae), and Brachymeria tibialis (Walker) (Chalcididae), which represented 62.5, 12.6, and 12.0% of the total assemblage of parasitoids which emerged, respectively. The percentage of parasitism ranged from 0.0 to 61.5% (first generation), from 0.0 to 36.8% (second generation), and from 0.0 to 12.1% (third generation). Importantly, it was found that the parasitism rate was higher in vineyards with ground cover. In addition, EI in the area surrounding the vineyards produced a significant increase in parasitism. These results suggest potential for CBC of L. botrana if EI around vineyards, and ground cover with native perennial plants within vineyards, are encouraged.


Subject(s)
Farms , Moths , Pest Control, Biological , Animals , Hymenoptera , Larva , Moths/parasitology , Pupa
10.
Microorganisms ; 9(12)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34946109

ABSTRACT

A clear understanding of which factors play an important role in the development of the soil microbial community in orchards will benefit our understanding of ground cover impacts on soil nutrient cycling. Thus, in the present study, grass properties, soil properties, and soil microbial community structure were determined in a citrus orchard after 5 years of management with different types of ground cover (NG: natural grass, LP: monoculture of legumes, and NL: mixed culture of natural grasses and legumes) to evaluate how ground cover biomass and nitrogen-fixing ability drive soil physicochemical and microbial traits. Plant biomass carbon (BC) and nitrogen (BN) were significantly higher in LP and NL than NG and showed a significant (p < 0.01) positive relationship with soil total carbon (TC), NO3--N (NN), and dissolved organic carbon (DOC) content. In addition, the amount of biologically fixed nitrogen (FixN) showed a significant positive relationship with soil total nitrogen (TN) (p < 0.05) and NH4+-N (AN) content (p < 0.01). We also observed a difference in the soil microbial community structure between plots with and without legumes. The TC and BN were the most influential factors driving bacterial and fungal communities, respectively. Nevertheless, FixN explained less than 9% of the differences in soil bacterial and fungal communities. Our results suggest that grass biomass and FixN are the strong drivers of soil chemical properties, whereas ground cover and soil properties both contribute significantly to the soil microbial community structure.

11.
Mar Pollut Bull ; 171: 112704, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34298328

ABSTRACT

Loss of sediment and particulate nutrients in runoff from the extensive grazing lands of the Fitzroy Basin, central Queensland, continue to contribute to the declining health of the Great Barrier Reef. This study measured differences in hydrology and water quality from conservative and heavy grazing pressures on rundown improved grass pastures in the Fitzroy Basin. Conservative grazing pressure was defined as the safe long-term carrying capacity for rundown buffel grass pasture, whereas heavy grazing pressure was defined as the recommended stocking rate for newly established buffel grass pasture. Heavy grazing of rundown pasture resulted in 2.5 times more bare ground and only 8% of the pasture biomass compared to conservative grazing. Heavy grazing also resulted in 3.6 times more total runoff and 3.3 times the peak runoff rate compared to conservative grazing. Loads of total suspended solids, nitrogen and phosphorus in runoff were also greater from heavy than conservative grazing.


Subject(s)
Nitrogen , Phosphorus , Australia , Nitrogen/analysis , Phosphorus/analysis , Poaceae , Queensland
12.
J Environ Manage ; 287: 112206, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33721762

ABSTRACT

Agricultural expansion and overgrazing are globally recognized as key contributors to accelerated soil degradation and surface erosion, with direct consequences for land productivity, and environmental health. Measured impacts of livestock grazing on soil physical properties and ground cover are absent in soil loss models (e.g., Revised Universal Soil Loss Equation, RUSLE) despite significant impacts to surface erosion. We developed a novel model that captures changes to ground cover and soil properties (permeability and structure) as a function of grazing intensity (density, duration, history, and stock type), as well as soil clay and water contents. The model outputs were integrated within RUSLE to calculate a treaded soil erodibility (Ktr) and grazed cover factors (Cgr) at seasonal timescales (3-month windows) to account for variability in soil moisture content, grazing practices, vegetation growth and senescence, and rainfall. Grazed pastures and winter-forage paddocks exhibit distinct changes in soil erodibility and soil losses, which are most pronounced for wet soils when plant cover is reduced/minimal. On average, typical pasture grazing pressures increase soil erodibility by 6% (range = 1-90%), compared to 60% (18-310%) for intensive winter forage paddocks. Further, negligible ground cover following forage crop grazing increases surface erosion by a factor of 10 (±13) relative to grazed pastures, which exhibit soil losses (µ = 83 t km-2 yr-1; range = 11.6 to 246) comparable to natural uncropped catchments (100-200 t km-2 yr-1). Exacerbated soil losses from winter forage-crop paddocks (µ = 1,100 t km-2 yr-1) arose from significant degradation of soil physical properties and exposing soils directly to rainfall and runoff. We conclude that proactive decisions to reduce treading damage and avoid high-density grazing will far exceed reactive practices seeking to trap sediments lost from grazed lands.


Subject(s)
Agriculture , Soil , Animals , Livestock , Seasons , Water
13.
Front Plant Sci ; 11: 587093, 2020.
Article in English | MEDLINE | ID: mdl-33193537

ABSTRACT

The development of high-throughput genotyping and phenotyping has provided access to many tools to accelerate plant breeding programs. Unmanned Aerial Systems (UAS)-based remote sensing is being broadly implemented for field-based high-throughput phenotyping due to its low cost and the capacity to rapidly cover large breeding populations. The Structure-from-Motion photogrammetry processes aerial images taken from multiple perspectives over a field to an orthomosaic photo of a complete field experiment, allowing spectral or morphological trait extraction from the canopy surface for each individual field plot. However, some phenotypic information observable in each raw aerial image seems to be lost to the orthomosaic photo, probably due to photogrammetry processes such as pixel merging and blending. To formally assess this, we introduced a set of image processing methods to extract phenotypes from orthorectified raw aerial images and compared them to the negative control of extracting the same traits from processed orthomosaic images. We predict that standard measures of accuracy in terms of the broad-sense heritability of the remote sensing spectral traits will be higher using the orthorectified photos than with the orthomosaic image. Using three case studies, we therefore compared the broad-sense heritability of phenotypes in wheat breeding nurseries including, (1) canopy temperature from thermal imaging, (2) canopy normalized difference vegetation index (NDVI), and (3) early-stage ground cover from multispectral imaging. We evaluated heritability estimates of these phenotypes extracted from multiple orthorectified aerial images via four statistical models and compared the results with heritability estimates of these phenotypes extracted from a single orthomosaic image. Our results indicate that extracting traits directly from multiple orthorectified aerial images yielded increased estimates of heritability for all three phenotypes through proper modeling, compared to estimation using traits extracted from the orthomosaic image. In summary, the image processing methods demonstrated in this study have the potential to improve the quality of the plant trait extracted from high-throughput imaging. This, in turn, can enable breeders to utilize phenomics technologies more effectively for improved selection.

14.
Animals (Basel) ; 10(10)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076488

ABSTRACT

Two alternative stocking methods (rotational and strip-grazing) were compared to continuous stocking at a stocking rate of 47 pigs ha-1 in tall fescue pastures. The research was conducted during two twelve-weeks grazing periods in North Carolina (USA). In total 144 (females and castrated males, 17.5 and 29.1 kg initial body weight) crossbred Yorkshire X Berkshire, Yorkshire/Landrace X Hampshire and Yorkshire/Landrace X Duroc pigs without nose rings were used. Greater soil bulk density and soil concentrations of NO3-, P, K, Mn, Zn and Cu were observed in paddocks managed continuously, while greater final ground cover (+22%) was recorded in paddocks managed with rotational and strip-grazing stocking methods. No differences were detected in botanical composition of the paddocks. Greater weight gains (+8.5%) were registered for rotationally managed pigs. Feed efficiency was better (+8%) for rotationally than for continuously stocked pigs, while strip-grazed pigs presented intermediate values. The results indicated the potential of both alternative stocking methods to be implemented in sustainable pasture-based pig production systems.

15.
Insects ; 11(10)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096613

ABSTRACT

The Aphrophoridae family contains important vectors of Xylella fastidiosa, a serious bacterial plant disease. In olive orchards, nymphs usually feed on the ground-cover vegetation. However, detailed information about their populations and host/non-host plants in some regions threatened by Xylella, such as the northeast of Portugal, is very limited. The goal of our work was to identify the vector species, nymphal development period, and their host and non-host herbaceous plants in olive orchards from northeastern Portugal. Ground-cover plant species hosting or not hosting nymphs were identified during the spring of 2017 to 2019 in olive orchards. Nymphal development period, nymph aggregation, and nymph's preferred feeding height of the ground-cover plants were recorded. The most abundant Aphrophoridae species was Philaenus spumarius followed by Neophilaenus sp. Nymphs developed from April to early May and showed a low number of individuals per foam (generally between one and three). They preferred the middle part of the plants. Philaenus spumarius feeds preferentially on Asteraceae and Fabaceae, and Neophilaenus sp. on Poaceae. Some abundant plants, such as Bromus diandrus, Astragalus pelecinus, Chrysanthemum segetum, Trifolium spp., Caryophyllaceae, and Brassicaceae, were barely colonized by Aphrophoridae nymphs. This knowledge is essential for the selection of the species composition of ground-cover vegetation to minimize the presence of vectors of X. fastidiosa in olive groves.

16.
Animals (Basel) ; 10(9)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947850

ABSTRACT

This study compares four stocking rates (37, 74, 111 and 148 pigs ha-1) for growing to finishing pigs (18.4 ± 0.5 kg and 118.5 ± 2.0 kg and 35.7 ± 2.1 kg and 125.7 ± 2.3 kg initial and final BW for grazing periods 1 and 2, respectively) and their effect on ground cover and soil traits in bermudagrass (Cynodon dactylon [L.] Pers) pastures, over two 14-week grazing periods (July-September and May-August). The study was conducted at the Center for Environmental Farming systems at the Cherry Research Station, Goldsboro North Carolina. A continuous stocking method was implemented to manage the pasture. The percent ground cover was estimated with a modified step point technique. Soil samples were collected in three sampling positions (center, inner and outer areas of the paddocks) and two soil sampling depths (0-30 and 30-90 cm). The experimental design was a completely randomized block with three field replicates. Data were analyzed using the PROC GLIMMIX procedure of SAS/STAT ® Version 9.4. Greater ground cover and lesser soil nutrient concentrations were registered in bermudagrass paddocks managed with 37 pigs ha-1. The results of this study also validated the existence of a spatial pattern of soil properties, which differed among sampling positions and depths.

17.
J Econ Entomol ; 113(5): 2354-2361, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32696968

ABSTRACT

Grapevine red blotch virus (GRBV) is the causal agent of grapevine red blotch disease, which affects wine grapes and leads to reduced crop yield and quality. While some virus spread can be attributed to the propagation of infected plant material, a greenhouse assay recently demonstrated that the threecornered alfalfa hopper (Membracidae: Spissistilus festinus Say) can transmit GRBV between grapevines. While S. festinus is not considered an economic pest of wine grapes, this species is present in California vineyards and their feeding can cause petiole girdling. Recent surveys have noted a correlation between S. festinus populations and GRBV-positive vines in vineyard areas adjacent to riparian habitat. Here, S. festinus populations were monitored over a 2-yr period at multiple vineyard sites adjacent to riparian habitats. At each site, insects were sampled from ground covers and the vine canopy at the vineyard edge and interior, and vines in both locations were evaluated for petiole girdling. Results indicate that there was no difference in abundance of S. festinus at the vineyard edge and interior. Populations in the vine canopy were highest in the late spring and early summer, and this was followed by the appearance of petiole girdling, indicating a key period of potential GRBV transmission. Furthermore, activity in the vine canopy appears to be amplified when the quality of ground covers is reduced as the season progresses. That said, overall populations of S. festinus were relatively low and additional work is needed to characterize the timing and efficiency of transmission under field conditions.


Subject(s)
Hemiptera , Vitis , Animals , Ecosystem , Farms , Medicago sativa , Plant Diseases
18.
Animals (Basel) ; 10(6)2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32560507

ABSTRACT

Ground cover maintenance and nutrients management are key elements to reduce the environmental impact of outdoor swine production. The objective of this study was to determine the effects of sows-gilts stocking rates on vegetative ground cover and soil nutrient concentrations in rotationally stocked bermudagrass (Cynodon dactylon L. Pers) pastures. Three stocking rates (10, 15 and 25 sows-gilts ha-1) were compared during three 8-week grazing periods. Increasing the stocking rate from 10 to 25 sows-gilts ha-1 decreased the ground cover of the paddocks from 65 to 48%, and increased soil nutrient concentrations (ammonium 47%; nitrate 129%; phosphorus 53%; zinc 84%; and copper 29%).

19.
Biodivers Data J ; 8: e51817, 2020.
Article in English | MEDLINE | ID: mdl-32296286

ABSTRACT

BACKGROUND: The foothills and shortgrass prairie ecosystems of Colorado, United States, have undergone substantial and sustained anthropogenic habitat change over the past two centuries. Riparian systems have been dramatically altered by agriculture, hydrological engineering, urbanisation and the introduction of non-native invasive species. In 2016, Denver Botanic Gardens began a restoration effort of Deer Creek which seeks to modify the hydrology of the creek by mimicking the effects of beaver dams with artificial structures. The site, owned by the US Army Core of Engineers and managed by Denver Botanic Gardens, had been the subject of previous botanical surveys. With the initiation of the restoration project, permanent transects were established along the stream and are sampled for ground vegetation richness and abundance, canopy cover, soil and stream conditions and aquatic macroinvertebrate community makeup on an annual basis. To provide a means for tracking any post-intervention changes in the riparian ecosystem, this resource reports all recorded occurrences and measurements, along with methodologies and motivations from past and current surveys in the form of a sampling event dataset. NEW INFORMATION: The current project and past surveys document 382 plant taxa and 157 aquatic macroinvertebrate taxa. A total of 16304 occurrences and 7422 measurements are included in the resource. Occurrence and measurement data taken from transects provide a means to measure species abundance, ground cover and other biotic and abiotic characteristics relevant to assessing the effects of hydrological restoration on riparian plant communities.

20.
Ecol Evol ; 9(10): 5542-5550, 2019 May.
Article in English | MEDLINE | ID: mdl-31160981

ABSTRACT

Niche breadth is predicted to correlate with environmental heterogeneity, such that generalists will evolve in heterogeneous environments and specialists will evolve in environments that vary less over space and time. We tested the hypothesis that lizards in a heterogeneous environment were generalists compared to lizards in a homogeneous environment. We compared niche breadths of greater short-horned lizards by quantifying resource selection in terms of two different niche axes, diet (prey items and trophic level), and microhabitat (ground cover and shade cover) between two populations occurring at different elevations. We assessed the heterogeneity of dietary and microhabitat resources within each population's environment by quantifying the availability of prey items, ground cover, and shade cover in each environment. Overall, our results demonstrate that despite differences in resource heterogeneity between elevations, resource selection did not consistently differ between populations. Moreover, environmental heterogeneity was not associated with generalization of resource use. The low-elevation site had a broader range of available prey items, yet lizards at the high-elevation site demonstrated more generalization in diet. In contrast, the high-elevation site had a broader range of available microhabitats, but the lizard populations at both sites were similarly generalized for shade cover selection and were similarly specialized for ground cover selection. Our results demonstrate that environmental heterogeneity of a particular resource does not necessarily predict the degree to which organisms specialize on that resource.

SELECTION OF CITATIONS
SEARCH DETAIL
...