Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39.803
Filter
1.
Front Cell Dev Biol ; 12: 1421438, 2024.
Article in English | MEDLINE | ID: mdl-39045455

ABSTRACT

Insulin-like Growth Factor-Binding Protein 7 (IGFBP7) is an extracellular matrix (ECM) glycoprotein, highly enriched in activated vasculature during development, physiological and pathological tissue remodeling. Despite decades of research, its role in tissue (re-)vascularization is highly ambiguous, exhibiting pro- and anti-angiogenic properties in different tissue remodeling states. IGFBP7 has multiple binding partners, including structural ECM components, cytokines, chemokines, as well as several receptors. Based on current evidence, it is suggested that IGFBP7's bioactivity is strongly dependent on the microenvironment it is embedded in. Current studies indicate that during physiological angiogenesis, IGFBP7 promotes endothelial cell attachment, luminogenesis, vessel stabilization and maturation. Its effects on other stages of angiogenesis and vessel function remain to be determined. IGFBP7 also modulates the pro-angiogenic properties of other signaling factors, such as VEGF-A and IGF, and potentially acts as a growth factor reservoir, while its actual effects on the factors' signaling may depend on the environment IGFBP7 is embedded in. Besides (re-)vascularization, IGFBP7 clearly promotes progenitor and stem cell commitment and may exhibit anti-inflammatory and anti-fibrotic properties. Nonetheless, its role in inflammation, immunomodulation, fibrosis and cellular senescence is again likely to be context-dependent. Future studies are required to shed more light on the intricate functioning of IGFBP7.

2.
Mol Ther Nucleic Acids ; 35(3): 102258, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39045516

ABSTRACT

Ocular neurodegenerative diseases like glaucoma lead to progressive retinal ganglion cell (RGC) loss, causing irreversible vision impairment. Neuroprotection is needed to preserve RGCs across debilitating conditions. Nerve growth factor (NGF) protein therapy shows efficacy, but struggles with limited bioavailability and a short half-life. Here we explore a novel approach to address this deficiency by utilizing circular RNA (circRNA)-based therapy. We show that circRNAs exhibit an exceptional capacity for prolonged protein expression and circRNA-expressed NGF protects cells from glucose deprivation. In a mouse optic nerve crush model, lipid nanoparticle (LNP)-formulated circNGF administered intravitreally protects RGCs and axons from injury-induced degeneration. It also significantly outperforms NGF protein therapy without detectable retinal toxicity. Furthermore, single-cell transcriptomics revealed LNP-circNGF's multifaceted therapeutic effects, enhancing genes related to visual perception while reducing trauma-associated changes. This study signifies the promise of circRNA-based therapies for treating ocular neurodegenerative diseases and provides an innovative intervention platform for other ocular diseases.

3.
Front Oncol ; 14: 1382376, 2024.
Article in English | MEDLINE | ID: mdl-39045556

ABSTRACT

Extramammary Paget disease (EMPD) is a rare cutaneous intraepithelial adenocarcinoma, which is mostly distributed in areas with sweat gland cells and mainly occurs in the anogenital skin of women. The male genital tract involvement is extremely rare and often occurs with other malignant tumors. Paget's disease in the scrotum with sweat gland carcinoma is even rarer. In the first report of scrotal endocrine sweat gland carcinoma associated with Paget disease by Saidi et al. in 1997, no more than 50 cases have been reported in the relevant research worldwide. Early EMPD combined with sweat gland carcinoma is mainly surgical treatment, and there is no standard treatment plan for advanced EMPD with sweat gland carcinoma. Previous article has reported that chemotherapy such as paclitaxel, fluorouracil, platinum, and vinblastine and molecular targeted therapy based on the genetic test results of patients have certain efficacy. Here, we report a 79-year-old male case diagnosed with human epidermal growth factor receptor 2 (HER-2) overexpression, which was effectively controlled by chemotherapy and anti-HER-2 treatment such as pyrotinib.

4.
Bioact Mater ; 40: 417-429, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39022184

ABSTRACT

In situ-forming hydrogels are an attractive option for corneal regeneration, and the delivery of growth factors from such constructs have the potential to improve re-epithelialization and stromal remodeling. However, challenges persist in controlling the release of therapeutic molecules from hydrogels. Here, an in situ-forming bio-orthogonally crosslinked hydrogel containing growth factors tethered via photocleavable linkages (PC-HACol hydrogel) was developed to accelerate corneal regeneration. Epidermal growth factor (EGF) was conjugated to the hydrogel backbone through photo-cleavable (PC) spacer arms and was released when exposed to mild intensity ultraviolet (UV) light (2-5 mW/cm2, 365 nm). The PC-HACol hydrogel rapidly gelled within a few minutes when applied to corneal defects, with excellent transparency and biocompatibility. After subsequent exposure to UV irradiation, the hydrogel promoted the proliferation and migration of corneal epithelial cells in vitro. The rate of re-epithelialization was positively correlated to the frequency of irradiation, verified through ex vivo rabbit cornea organ culture studies. In an in vivo rat corneal wound healing study, the PC-HACol hydrogel exposed to UV light significantly promoted re-epithelialization, the remodeling of stromal layers, and exhibited significant anti-scarring effects, with minimal α-SMA and robust ALDH3A1 expression. Normal differentiation of the regenerated epithelia after healing was evaluated by expression of the corneal epithelial biomarker, CK12. The remodeled cornea exhibited full recovery of corneal thickness and layer number without hyperplasia of the epithelium.

5.
Quant Imaging Med Surg ; 14(7): 4749-4762, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39022238

ABSTRACT

Background: The preoperative identification of epidermal growth factor receptor (EGFR) mutations and subtypes based on magnetic resonance imaging (MRI) of brain metastases (BM) is necessary to facilitate individualized therapy. This study aimed to develop a deep learning model to preoperatively detect EGFR mutations and identify the location of EGFR mutations in patients with non-small cell lung cancer (NSCLC) and BM. Methods: We included 160 and 72 patients who underwent contrast-enhanced T1-weighted (T1w-CE) and T2-weighted (T2W) MRI at Liaoning Cancer Hospital and Institute (center 1) and Shengjing Hospital of China Medical University (center 2) to form a training cohort and an external validation cohort, respectively. A multiscale feature fusion network (MSF-Net) was developed by adaptively integrating features based on different stages of residual network (ResNet) 50 and by introducing channel and spatial attention modules. The external validation set from center 2 was used to assess the performance of MSF-Net and to compare it with that of handcrafted radiomics features. Receiver operating characteristic (ROC) curves, accuracy, precision, recall, and F1-score were used to evaluate the effectiveness of the models. Gradient-weighted class activation mapping (Grad-CAM) was used to demonstrate the attention of the MSF-Net model. Results: The developed MSF-Net generated a better diagnostic performance than did the handcrafted radiomics in terms of the microaveraged area under the curve (AUC) (MSF-Net: 0.91; radiomics: 0.80) and macroaveraged AUC (MSF-Net: 0.90; radiomics: 0.81) for predicting EGFR mutations and subtypes. Conclusions: This study provides an end-to-end and noninvasive imaging tool for the preoperative prediction of EGFR mutation status and subtypes based on BM, which may be helpful for facilitating individualized clinical treatment plans.

6.
Mod Pathol ; 37(9): 100556, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964502

ABSTRACT

Recently, low human epidermal growth factor receptor 2 (HER2) protein expression has been proposed as a predictive biomarker for response to the antibody-drug conjugate trastuzumab deruxtecan (T-DXd) in metastatic breast cancer. HER2 expression in non-small cell lung cancer (NSCLC) patients has never been carefully measured, and little is known about the frequency of cases with unamplified but detectable levels of the protein. Although some HER2-targeted therapies have been studied in NSCLC patients, they have been restricted to those with genomic ERBB2 gene alterations, which only represent relatively rare cases of NSCLC. Still, emerging investigations of T-DXd in NSCLC have shown promise in patients with unamplified HER2. Taken together, we hypothesize that there may be many cases of NSCLC with levels of HER2 protein expression comparable with levels seen in breast cancer that benefit from T-DXd. Here, we used a previously validated, analytic, quantitative immunofluorescence (QIF) assay that is more sensitive than legacy clinical HER2 immunohistochemistry assays. We measured HER2 protein levels in NSCLC cases to determine the proportion of cases with detectable HER2 expression. Using cell line calibration microarrays alongside our QIF method enabled us to convert HER2 signal into units of attomoles per mm2. We found that over 63% of the 741 analyzed NSCLC cases exhibited HER2 expression above the limit of detection, with more than 17% of them exceeding the lower limit of quantification. Although the threshold for response to T-DXd in breast cancer is still unknown, many cases of NSCLC have expression in a range comparable to breast cancer cases with immunohistochemistry scores of 1+ or 2+. Our assay could potentially select NSCLC cases with a detectable target (ie, HER2) that might benefit from HER2 antibody-drug conjugates, irrespective of ERBB2 genomic alterations.

7.
Gene ; 928: 148763, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002784

ABSTRACT

OBJECTIVE: This study aimed to analyze the impact of HGF on cardiomyocyte injury, apoptosis, and inflammatory response induced by lipopolysaccharide (LPS). METHODS: Enzyme-linked immunosorbent assay (ELISA) was utilized to quantify the levels of HGF, interleukin (IL)-6, IL-10, creatine phosphokinase-isoenzyme-MB (CK-MB), and cardiac troponin I (cTnI) in the samples. qPCR and Western blotting (WB) were employed to assess the mRNA and protein expressions of HGF, IL-10, IL-6, PI3K, AKT, p-PI3K, and p-AKT. RESULTS: The outcomes of the in vivo experiment revealed that serum levels of IL-6, IL-10, HGF and SOFA scores in the SC group were elevated in contrast to the non-SC group. The correlation analysis indicated a substantial and positive association among serum HGF, IL-6, and IL-10 levels and SOFA scores. Relative to IL-6, IL-10 levels, and SOFA scores, serum HGF demonstrated the highest diagnostic value for SC. Following LPS administration to stimulate H9c2 cells across various periods (0, 12, 24, 48, and 72 h), the levels of myocardial injury markers (CK-MB and cTnI) in the cell supernatants, intracellular inflammatory factors (mRNA and protein levels of IL-10 and IL-6), apoptosis and ROS levels, exhibited a gradual increase followed by a subsequent decline. Following the overexpression of HGF, there was an increase in cell viability, and a decrease in apoptosis, inflammation, oxidative stress injuries, and the protein phosphorylation expressions of PI3K and AKT. After knockdown of HGF expression, the activity of LPS-induced H9c2 cells was further reduced, leading to increased cell injury, apoptosis, inflammation, oxidative stress,and the expression levels of PI3K and Akt protein phosphorylation were further elevated. CONCLUSION: HGF was associated with decreased LPS-induced H9c2 apoptosis and inflammation in H9c2 cells, alongside an improvement in cell viability, indicating potential cytoprotective effects. The mechanism underlying these impacts may be ascribed to the suppression of the PI3K/AKT signaling pathway.

8.
Zhongguo Fei Ai Za Zhi ; 27(6): 431-440, 2024 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-39026494

ABSTRACT

Lung cancer is the most common malignant tumor and the second most common malignant tumor in terms of mortality in the world. Non-small cell lung cancer (NSCLC) is the most common pathological type of lung cancer. Currently, the first-line standard treatment for advanced NSCLC is immunotherapy and targeted therapy. Although these treatments prolong the survival of patients, acquired drug resistance is still inevitable. Antibody-drug conjugates (ADCs) are a new type of anti-tumor drug made by coupling cytotoxic payloads to specific monoclonal antibodies via linkers. Compared with chemotherapy drugs, ADCs have the advantages of accurate recognition, local release, and high patient tolerance. In recent years, they have shown good clinical benefits in the treatment of NSCLC. This article provides an overview of the mechanism of action of ADCs, clinical studies progress in advanced NSCLC, and existing problems and challenges.
.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Immunoconjugates , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/immunology , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Immunoconjugates/therapeutic use , Antineoplastic Agents/therapeutic use , Animals , Antibodies, Monoclonal/therapeutic use
9.
Prep Biochem Biotechnol ; : 1-11, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028537

ABSTRACT

Recombinant human acidic fibroblast growth factor (rh-aFGF) is a widely used biological product, but it is unstable and its biological activity is easy to decrease. In order to maintain the long-term stability and biological activity of rh-aFGF, based on the response surface method, the freeze-drying characterization and cell proliferation rate of rh-aFGF freeze-dried powder were evaluated by scoring and Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay in this study. The optimal concentrations of trehalose, glycine and BSA were optimized, and the optimal formulation was verified by regression experiment. The results showed that trehalose, glycine and BSA had significant effects on the characterization of lyophilized rh-aFGF and cell proliferation. The optimal formulation of 5.7% trehalose, 2.04% glycine and 1.98%BSA combined with rh-aFGF could achieve the optimal freeze-dried characterization and biological activity. Using the best formulation to verify, the freeze-dried formability index of the freeze-dried powder was 23.35, and the rate of cell proliferation was 43.59%, which was close to the expected 23 and 41.69%. This study determined a freeze-dried formulation of rh-aFGF that meets the requirements of freeze-dried formalization integrity and maintains biological activity, providing reliable support for the subsequent development of related drugs.

10.
J Vet Intern Med ; 38(4): 2180-2195, 2024.
Article in English | MEDLINE | ID: mdl-38952053

ABSTRACT

BACKGROUND: Plasma total magnesium concentration (tMg) is a prognostic indicator in cats with chronic kidney disease (CKD), shorter survival time being associated with hypomagnesemia. Whether this risk factor is modifiable with dietary magnesium supplementation remains unexplored. OBJECTIVES: Evaluate effects of a magnesium-enriched phosphate-restricted diet (PRD) on CKD-mineral bone disorder (CKD-MBD) variables. ANIMALS: Sixty euthyroid client-owned cats with azotemic CKD, with 27 and 33 allocated to magnesium-enriched PRD or control PRD, respectively. METHODS: Prospective double-blind, parallel-group randomized trial. Cats with CKD, stabilized on a PRD, without hypermagnesemia (tMg >2.43 mg/dL) or hypercalcemia (plasma ionized calcium concentration, (iCa) >6 mg/dL), were recruited. Both intention-to-treat and per-protocol (eating ≥50% of study diet) analyses were performed; effects of dietary magnesium supplementation on clinicopathological variables were evaluated using linear mixed effects models. RESULTS: In the per-protocol analysis, tMg increased in cats consuming a magnesium-enriched PRD (ß, 0.25 ± .07 mg/dL/month; P < .001). Five magnesium supplemented cats had tMg >2.92 mg/dL, but none experienced adverse effects. Rate of change in iCa differed between groups (P = .01), with decreasing and increasing trends observed in cats fed magnesium-enriched PRD and control PRD, respectively. Four control cats developed ionized hypercalcemia versus none in the magnesium supplemented group. Log-transformed plasma fibroblast growth factor-23 concentration (FGF23) increased significantly in controls (ß, 0.14 ± .05 pg/mL/month; P = .01), but remained stable in the magnesium supplemented group (ß, 0.05±.06 pg/mL/month; P =.37). CONCLUSIONS AND CLINICAL IMPORTANCE: Magnesium-enriched PRD is a novel therapeutic strategy for managing feline CKD-MBD in cats, further stabilizing plasma FGF23 and preventing hypercalcemia.


Subject(s)
Cat Diseases , Dietary Supplements , Magnesium , Renal Insufficiency, Chronic , Animals , Cats , Magnesium/blood , Magnesium/administration & dosage , Magnesium/therapeutic use , Cat Diseases/diet therapy , Cat Diseases/drug therapy , Renal Insufficiency, Chronic/veterinary , Renal Insufficiency, Chronic/diet therapy , Double-Blind Method , Female , Male , Prospective Studies , Diet/veterinary , Fibroblast Growth Factor-23 , Phosphates/blood , Calcium/blood
11.
J Zhejiang Univ Sci B ; 25(7): 568-580, 2024 Jul 10.
Article in English, Chinese | MEDLINE | ID: mdl-39011677

ABSTRACT

Diabetes mellitus (DM) is a disease syndrome characterized by chronic hyperglycaemia. A long-term high-glucose environment leads to reactive oxygen species (ROS) production and nuclear DNA damage. Human umbilical cord mesenchymal stem cell (HUcMSC) infusion induces significant antidiabetic effects in type 2 diabetes mellitus (T2DM) rats. Insulin-like growth factor 1 (IGF1) receptor (IGF1R) is important in promoting glucose metabolism in diabetes; however, the mechanism by which HUcMSC can treat diabetes through IGF1R and DNA damage repair remains unclear. In this study, a DM rat model was induced with high-fat diet feeding and streptozotocin (STZ) administration and rats were infused four times with HUcMSC. Blood glucose, interleukin-6 (IL-6), IL-10, glomerular basement membrane, and renal function were examined. Proteins that interacted with IGF1R were determined through coimmunoprecipitation assays. The expression of IGF1R, phosphorylated checkpoint kinase 2 (p-CHK2), and phosphorylated protein 53 (p-p53) was examined using immunohistochemistry (IHC) and western blot analysis. Enzyme-linked immunosorbent assay (ELISA) was used to determine the serum levels of 8-hydroxydeoxyguanosine (8-OHdG). Flow cytometry experiments were used to detect the surface markers of HUcMSC. The identification of the morphology and phenotype of HUcMSC was performed by way of oil red "O" staining and Alizarin red staining. DM rats exhibited abnormal blood glucose and IL-6/10 levels and renal function changes in the glomerular basement membrane, increased the expression of IGF1 and IGF1R. IGF1R interacted with CHK2, and the expression of p-CHK2 was significantly decreased in IGF1R-knockdown cells. When cisplatin was used to induce DNA damage, the expression of p-CHK2 was higher than that in the IGF1R-knockdown group without cisplatin treatment. HUcMSC infusion ameliorated abnormalities and preserved kidney structure and function in DM rats. The expression of IGF1, IGF1R, p-CHK2, and p-p53, and the level of 8-OHdG in the DM group increased significantly compared with those in the control group, and decreased after HUcMSC treatment. Our results suggested that IGF1R could interact with CHK2 and mediate DNA damage. HUcMSC infusion protected against kidney injury in DM rats. The underlying mechanisms may include HUcMSC-mediated enhancement of diabetes treatment via the IGF1R-CHK2-p53 signalling pathway.


Subject(s)
Checkpoint Kinase 2 , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Rats, Sprague-Dawley , Receptor, IGF Type 1 , Signal Transduction , Tumor Suppressor Protein p53 , Umbilical Cord , Animals , Male , Rats , Receptor, IGF Type 1/metabolism , Tumor Suppressor Protein p53/metabolism , Humans , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/therapy , Umbilical Cord/cytology , Checkpoint Kinase 2/metabolism , Mesenchymal Stem Cells/metabolism , Diabetic Nephropathies/therapy , Diabetic Nephropathies/metabolism , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Experimental/metabolism , Diet, High-Fat , DNA Damage , Blood Glucose/metabolism
12.
BMC Ophthalmol ; 24(1): 290, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020305

ABSTRACT

BACKGROUND: Dry eye disease (DED) includes neurosensory abnormalities as part of its multifactorial etiology. Nerve growth factor is important for maintaining corneal nerve integrity and wound healing. Cenegermin (recombinant human nerve growth factor) is a topical biologic that promotes corneal healing in patients with neurotrophic keratitis. The purpose of this study was to evaluate efficacy and safety of cenegermin in moderate-to-severe DED and identify an optimal dosing strategy. METHODS: This was a phase II, multicenter, randomized, double-masked, vehicle-controlled, dose-ranging clinical trial in patients with moderate-to-severe DED, including Sjögren's DED (NCT03982368). Patients received 1 drop of cenegermin 3 times daily (t.i.d.; 20 mcg/mL), cenegermin 2 times daily (b.i.d.; 20 mcg/mL) and vehicle once daily, or vehicle t.i.d. for 4 weeks. Follow-up continued for 12 additional weeks. The primary endpoint was change in Schirmer I score from baseline to week 4. Other key endpoints included rate of responders (Schirmer I test > 10 mm/5 min) after treatment and change in Symptoms Assessment iN Dry Eye (SANDE) scores from baseline to end of follow-up. A 1-sided test (α = 0.025) was used to evaluate statistical significance. RESULTS: At week 4, mean changes in Schirmer I scores were not statistically significantly different in either cenegermin group versus vehicle (cenegermin vs vehicle [treatment difference; 95% CI]: t.i.d., 2.60 mm and b.i.d., 3.99 mm vs 1.68 mm [t.i.d.: 0.93; -1.47 to 3.32, P = 0.078; b.i.d.: 2.31; -0.08 to 4.70, P = 0.066]). More patients responded to treatment with cenegermin t.i.d. and b.i.d. versus vehicle (t.i.d.: 25.9% [21/81, P = 0.028]; b.i.d.: 29.3% [24/82, P = 0.007] vs 11.9% [10/84]), with statistical significance (set at P < 0.025) observed in the b.i.d. group. Only cenegermin t.i.d. yielded statistically significant (P < 0.025) reductions in SANDE scores versus vehicle, which were sustained up to the end of follow-up (P value range, 0.002-0.008). Eye pain, primarily mild and transient, was the most frequently observed treatment-emergent adverse event with cenegermin. Similar results were observed in patients with Sjögren's DED. CONCLUSIONS: Cenegermin was well tolerated and although this study did not meet its primary endpoint, significant improvement in patient-reported symptoms of dry eye was observed through follow-up. Larger studies evaluating cenegermin in patients with DED are warranted. TRIAL REGISTRATION: NCT03982368; registered May 23, 2019.


Subject(s)
Dry Eye Syndromes , Nerve Growth Factor , Ophthalmic Solutions , Humans , Male , Female , Dry Eye Syndromes/drug therapy , Middle Aged , Double-Blind Method , Nerve Growth Factor/administration & dosage , Nerve Growth Factor/therapeutic use , Ophthalmic Solutions/administration & dosage , Adult , Recombinant Proteins/administration & dosage , Aged , Dose-Response Relationship, Drug , Treatment Outcome , Tears/metabolism
13.
Elife ; 122024 Jul 18.
Article in English | MEDLINE | ID: mdl-39024007

ABSTRACT

Brain microvessels possess the unique properties of a blood-brain barrier (BBB), tightly regulating the passage of molecules from the blood to the brain neuropil and vice versa. In models of brain injury, BBB dysfunction and the associated leakage of serum albumin to the neuropil have been shown to induce pathological plasticity, neuronal hyper-excitability, and seizures. The effect of neuronal activity on BBB function and whether it plays a role in plasticity in the healthy brain remain unclear. Here we show that neuronal activity induces modulation of microvascular permeability in the healthy brain and that it has a role in local network reorganization. Combining simultaneous electrophysiological recording and vascular imaging with transcriptomic analysis in rats, and functional and BBB-mapping MRI in human subjects, we show that prolonged stimulation of the limb induces a focal increase in BBB permeability in the corresponding somatosensory cortex that is associated with long-term synaptic plasticity. We further show that the increased microvascular permeability depends on neuronal activity and involves caveolae-mediated transcytosis and transforming growth factor ß signaling. Our results reveal a role of BBB modulation in cortical plasticity in the healthy brain, highlighting the importance of neurovascular interactions for sensory experience and learning.


Subject(s)
Blood-Brain Barrier , Neuronal Plasticity , Animals , Neuronal Plasticity/physiology , Rats , Humans , Male , Magnetic Resonance Imaging , Somatosensory Cortex/physiology , Capillary Permeability , Adult
14.
Biochem Biophys Res Commun ; 733: 150429, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39053106

ABSTRACT

Fibroblast growth factor (FGF)-21 is a salient liver-derived endocrine regulator for metabolism of glucose and triglyceride as well as bone remodeling. Previously, certain peptides in the FGF family have been shown to modulate calcium absorption across the intestinal epithelia. Since FGF21 receptor, i.e., FGF receptor-1, is abundantly expressed in the enterocytes, there was a possibility that FGF21 might exert direct actions on the intestine. Herein, a large-scale production of recombinant FGF21 at the multi-gram level was developed in order to minimize variations among various batches. In the oral glucose tolerance test, recombinant FGF21 was found to reduce plasma glucose levels in mice fed high-fat diet. A series of experiments applying radioactive tracer 45Ca in Ussing chamber showed that FGF21 potentiated the stimulatory effect of low-dose 1,25-dihydroxyvitamin D3 [10 nM 1,25(OH)2D3] on the transepithelial calcium transport across intestinal epithelium-like Caco-2 monolayer. FGF21 + 1,25(OH)2D3 also decreased transepithelial resistance, but had no effect on epithelial potential difference or short-circuit current. Furthermore, 1,25(OH)2D3 alone upregulated the Caco-2 mRNA expression of the major apical calcium channels, i.e., transient receptor potential vanilloid subfamily member 6 (TRPV6), which was further elevated by a combination of FGF21 and 1,25(OH)2D3, consistent with the upregulated TRPV6 protein expression in enterocytes of FGF21-treated mice. However, FGF21 was without effects on the mRNA expression of voltage-gated calcium channel 1.3, calbindin-D9k, plasma membrane Ca2+-ATPase 1b, claudin-12 or claudin-15. In conclusion, FGF21 did exert a direct action on the intestinal epithelial cells by potentiating the 1,25(OH)2D3-enhanced calcium transport, presumably through the upregulation of TRPV6 expression.

15.
J Int Med Res ; 52(7): 3000605241259669, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39053452

ABSTRACT

Parathyroid carcinoma (PC) is a rare and aggressive endocrine malignancy with limited treatment options. Current treatments such as chemotherapy and radiotherapy have demonstrated limited efficacy. Here, we report the case of a male patient who presented with symptoms including polydipsia, polyuria, and joint pain. Further examination revealed a neck lump, hypercalcemia, and hyperparathyroidism, leading to a diagnosis of PC after en bloc surgery. Seven months later, the patient developed local recurrence and lung metastases, which were resected via left lateral neck dissection and thoracoscopic wedge resection. A 422-gene panel test revealed the presence of epidermal growth factor receptor (EGFR) p.L858R (c. T2573G) mutation, which may sensitize the EGFR-tyrosine kinase inhibitor response, and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) p.E545KV (c. G1633A) mutation. After multidisciplinary treatment discussions, the patient was treated with the multi-target tyrosine kinase inhibitor, anlotinib, resulting in survival benefits for 19 months. This case highlights the potential of targeted therapy in terms of long-term survival in patients with distant metastatic PC, as well as the importance of precision therapy guided by genome sequencing to identify potential therapeutic targets.


Subject(s)
ErbB Receptors , Mutation , Parathyroid Neoplasms , Humans , Male , ErbB Receptors/genetics , ErbB Receptors/antagonists & inhibitors , Parathyroid Neoplasms/genetics , Parathyroid Neoplasms/pathology , Middle Aged , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Lung Neoplasms/drug therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology
16.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(3): 346-352, 2024 Jun 01.
Article in English, Chinese | MEDLINE | ID: mdl-39049655

ABSTRACT

OBJECTIVES: This study aims to evaluate the efficacy of concentrated growth factor (CGF) membrane and collagen as barrier materials in sealing the alveolar socket in alveolar ridge preservation (ARP) in the posterior region during a one-year follow-up. METHODS: A total of 24 patients who underwent ARP in the posterior region were selected for inclusion and randomly assigned to the CGF group (12 cases) and Collagen group (12 cases). The patients in both groups underwent extraction of posterior teeth. The extraction sockets were filled with a bone substitute to the level of the pre-extraction buccal and lingual or palatal alveolar bone plates. The wounds in the CGF group were closed with a fabricated CGF overlaying the upper edge of the bone substitute material, whereas those in the Collagen group were closed with Bio-Oss Collagen. The implants were placed after 6 months. The evaluation was based on implant retention, re-grafting rate, and vertical and horizontal alveolar ridge bone volume changes measured by cone beam computed tomography (CBCT). Data were statistically analyzed using SPSS 28.0 software. RESULTS: No patient withdrew throughout the follow-up period. No implant failure and no severe peri-implant or mucosal soft tissue complications were observed. Six months after the operation, the degree of vertical alveolar ridge height resorption in the CGF group was lower than that in the Collagen group (P<0.05). There were no statistically difference between the groups at 1 year after the operation (P>0.05). The amount of bone reduction in horizontal alveolar ridge width showed no difference between the groups at 6 months and 1 year after surgery (P>0.05). CONCLUSIONS: CGF membrane and Bio-Oss Collagen as barrier materials for posterior ARP inhibited reduction in alveolar ridge bone mass.


Subject(s)
Alveolar Ridge Augmentation , Bone Substitutes , Collagen , Tooth Extraction , Tooth Socket , Humans , Prospective Studies , Alveolar Ridge Augmentation/methods , Tooth Socket/surgery , Bone Substitutes/therapeutic use , Follow-Up Studies , Intercellular Signaling Peptides and Proteins/therapeutic use , Alveolar Process/surgery , Cone-Beam Computed Tomography , Minerals , Alveolar Bone Loss/prevention & control
17.
Adv Sci (Weinh) ; : e2403075, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041890

ABSTRACT

The management of dysfunctional intestinal epithelium by promoting mucosal healing and modulating the gut microbiota represents a novel therapeutic strategy for inflammatory bowel disease (IBD). As a convenient and well-tolerated method of drug delivery, intrarectal administration may represent a viable alternative to oral administration for the treatment of IBD. Here, a biomimetic supramolecular assembly of hyaluronic acid (HA) and ß-cyclodextrin (HA-ß-CD) for the delivery of the C domain peptide of insulin-like growth factor-1 (IGF-1C), which gradually releases IGF-1C, is developed. It is identified that the supramolecular assembly of HA-ß-CD enhances the stability and prolongs the release of IGF-1C. Furthermore, this biomimetic supramolecular assembly potently inhibits the inflammatory response, thereby restoring intestinal barrier integrity. Following HA-ß-CD-IGF-1C administration, 16S rDNA sequencing reveals a significant increase in the abundance of the probiotic Akkermansia, suggesting enhanced intestinal microbiome homeostasis. In conclusion, the findings demonstrate the promise of the HA-based mimicking peptide delivery platform as a therapeutic approach for IBD. This biomimetic supramolecular assembly effectively ameliorates intestinal barrier function and intestinal microbiome homeostasis, suggesting its potential for treating IBD.

18.
F1000Res ; 13: 120, 2024.
Article in English | MEDLINE | ID: mdl-38988879

ABSTRACT

Fibroblasts are cells of mesenchymal origin that are found throughout the body. While these cells have several functions, their integral roles include maintaining tissue architecture through the production of key extracellular matrix components, and participation in wound healing after injury. Fibroblasts are also key mediators in disease progression during fibrosis, cancer, and other inflammatory diseases. Under these perturbed states, fibroblasts can activate into inflammatory fibroblasts or contractile myofibroblasts. Fibroblasts require various growth factors and mitogenic molecules for survival, proliferation, and differentiation. While the activity of mitogenic growth factors on fibroblasts in vitro was characterized as early as the 1970s, the proliferation and differentiation effects of growth factors on these cells in vivo are unclear. Recent work exploring the heterogeneity of fibroblasts raises questions as to whether all fibroblast cell states exhibit the same growth factor requirements. Here, we will examine and review existing studies on the influence of fibroblast growth factor receptors (FGFRs), platelet-derived growth factor receptors (PDGFRs), and transforming growth factor ß receptor (TGFßR) on fibroblast cell states.


Subject(s)
Fibroblasts , Homeostasis , Receptors, Fibroblast Growth Factor , Receptors, Platelet-Derived Growth Factor , Humans , Fibroblasts/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Animals , Receptors, Fibroblast Growth Factor/metabolism , Receptors, Transforming Growth Factor beta/metabolism
19.
Transl Cancer Res ; 13(6): 3016-3030, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988913

ABSTRACT

Background: Epidermal growth factor receptor inhibitors (EGFRIs) represent a cornerstone in the targeted therapy of malignant tumors. While effective, dermatological adverse events (dAEs) associated with EGFRIs pose a significant challenge, often necessitating treatment discontinuation due to their severity and potential to impede the continuity of cancer therapy. Despite extensive research, the specific mechanisms and predictors of these adverse events remain poorly understood, particularly in diverse populations. This gap in knowledge underscores the need for targeted studies to better predict and manage these events, enhancing patient outcomes and adherence to life-saving therapies. Methods: This observational study was conducted at The First Affiliated Hospital of Guangxi Medical University, covering cancer patients treated with EGFRIs from 2020 to 2022. We analyzed clinical data including patient demographics, treatment specifics, and the development and timing of dAEs. The study employed SPSS 26.0 software for data analysis, focusing on the incidence of dAEs and factors influencing their occurrence. We used Kaplan-Meier and Cox regression methods to establish a predictive model for dAEs, tracking their onset and impact on treatment continuity. Results: In our study of 120 patients treated with EGFR inhibitors at The First Affiliated Hospital of Guangxi Medical University, we found a high prevalence of dAEs, with 84.2% of patients experiencing such effects. The most common manifestations were papulopustular rashes, observed as pustules in 52.5% and papules in 57.4% of cases, followed by nail lesions in 62.4% of patients, oral or other mucosal ulcers in 34.7%, and hair changes in 26.7%. The median incubation time (MIT) for dAEs was 5 weeks. We identified drug type, ethnicity, and occupation as statistically significant risk factors (P<0.05 for all) that influenced the MIT, which the Cox regression model further identified as protective factors. Nomograms were developed to assess the risk of dAEs, although it is important to note that these models have only been internally validated, lacking external validation data at this stage. Conclusions: The study highlights the high incidence of EGFRIs-associated dAEs, with specific dermatological manifestations posing significant challenges in cancer therapy. The identification of drug type, ethnicity, and occupation as influential factors on the MIT for dAEs informs clinical decisions. Our prediction model serves as a practical tool for evaluating the risk of developing dAEs over time, aiming to optimize patient management and mitigate treatment interruptions.

20.
Front Vet Sci ; 11: 1388532, 2024.
Article in English | MEDLINE | ID: mdl-38988981

ABSTRACT

The Arctic fox (Vulpes lagopus) is a species indigenous to the Arctic and has developed unique lipid metabolism, but the mechanisms remain unclear. Here, the significantly increased body weight of Arctic foxes was consistent with the significantly increased serum very-low-density lipoprotein (VLDL), and the 40% crude fat diet further increased the Arctic fox body weight. The enhanced body weight gain stems primarily from increased subcutaneous adipose tissue accumulation. The adipose triacylglycerol and phosphatidylethanolamine were significantly greater in Arctic foxes. The adipose fatty-acid synthase content was significantly lower in Arctic foxes, highlighting the main role of exogenous fatty-acids in fat accumulation. Considering the same diet, liver-derived fat dominates adipose expansion in Arctic foxes. Liver transcriptome analysis revealed greater fat and VLDL synthesis in Arctic foxes, consistent with the greater VLDL. Glucose homeostasis wasn't impacted in Arctic foxes. And the free fatty-acids in adipose, which promote insulin resistance, also did not differ between groups. However, the hepatic glycogen was greater in Arctic foxes and transcriptome analysis revealed upregulated glycogen synthesis, improving glucose homeostasis. These results suggest that the superior fat accumulation capacity and distinct characteristics of hepatic and adipose lipid and glucose metabolism facilitate glucose homeostasis and massive fat accumulation in Arctic foxes.

SELECTION OF CITATIONS
SEARCH DETAIL
...