Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Evol Biol ; 36(1): 183-194, 2023 01.
Article in English | MEDLINE | ID: mdl-36357978

ABSTRACT

Nuptial food gift provisioning by males to females at mating is a strategy in many insects that is thought to be shaped by sexual conflict or sexual selection, as it affords males access to a female's physiology. While males often attempt to use these gifts to influence female behaviour to their own advantage, females can evolve counter mechanisms. In decorated crickets, the male's nuptial gift comprises part of the spermatophore, the spermatophylax, the feeding on which deters the female from prematurely terminating sperm transfer. However, ingested compounds in the spermatophylax and attachment of the sperm-containing ampulla could further influence female physiology and behaviour. We investigated how mating per se and these two distinct routes of potential male-mediated manipulation influence the female transcriptomic response. We conducted an RNA sequencing experiment on gut and head tissues from females for whom nuptial food gift consumption and receipt of an ejaculation were independently manipulated. In the gut tissue, we found that females not permitted to feed during mating exhibited decreased overall gene expression, possibly caused by a reduced gut function, but this was countered by feeding on the spermatophylax or a sham gift. In the head tissue, we found only low numbers of differentially expressed genes, but a gene co-expression network analysis revealed that ampulla attachment and spermatophylax consumption independently induce distinct gene expression patterns. This study provides evidence that spermatophylax feeding alters the female post-mating transcriptomic response in decorated crickets, highlighting its potential to mediate sexual conflict in this system.


Subject(s)
Gryllidae , Sexual Behavior, Animal , Animals , Male , Female , Sexual Behavior, Animal/physiology , Gryllidae/genetics , Gift Giving , Transcriptome , Feeding Behavior/physiology , Semen , Reproduction/physiology
2.
Rev. med. vet. zoot ; 69(3): 310-324, sep.-dic. 2022. tab, graf
Article in Spanish | LILACS | ID: biblio-1424224

ABSTRACT

RESUMEN Para el año 2050 se espera un aumento del 60% al 70% en el consumo de productos de origen animal. Este aumento en el consumo demandará enormes recursos, siendo las fuentes tradicionales de proteína las más costosas, sobreexplotadas y perjudiciales para el ambiente. Explorar nuevas fuentes de proteína animal se convierte en una necesidad para el sector agropecuario. Es por esta razón que la FAO (2009) incluyó el uso de insectos en la alimentación humana y animal como una fuente alternativa de nutrientes desde el 2003 debido a sus características nutricionales y a su bajo impacto ambiental. Una de las especies más promisorias es el grillo doméstico tropical (Gryllodes sigillatus), cuyo potencial como sistema productivo sostenible ha sido demostrado en varios países asiáticos como europeos. El propósito de este artículo es presentar los aspectos asociados al aprovechamiento y producción de la especie G. sigillatus que pueden hacerla sostenible como alimento en Colombia, dando cuenta de las características generales y nutricionales de la especie y las ventajas socioeconómicas y ambientales de la cría de estos grillos y de los insectos en general. Se establece que, aunque existen emprendimientos en el país, es importante continuar con la investigación sobre esta especie en términos de producción a gran escala, así como en términos nutricionales para potenciar el sector económico y mejorar las condiciones materiales de agricultores en el país.


ABSTRACT Global agriculture production must increase by about 60-70 percent from the current levels to meet the increased food demand in 2050, which will demand enormous resources, with traditional protein sources being the most expensive, overexploited, and environmentally damaging. New alternative protein sources are a necessity for the agricultural sector. Since 2003, FAO (2009) has included insects as feed and food as an alternative protein source because they are nutritious and environmentally sustainable. One of the most promising species is the tropical house cricket (Gryllodes sigillatus), whose potential as a sustainable production system has been demonstrated in several Asian and European countries. This article presents the aspects associated with using and producing the G. sigillatus that can make it sustainable as food in Colombia, accounting for the general and nutritional features of this species and the socioeconomic and environmental advantages of raising these crickets, and insects in general. It was established that, even though there are entrepreneurships in the country, research on this species needs to continue, both in terms of its large-scale production and of its nutritional qualities, to strengthen the economic sector and to improve the material conditions of farmers.


Subject(s)
Humans , Animals , Colombia
3.
Front Microbiol ; 12: 780796, 2021.
Article in English | MEDLINE | ID: mdl-34917059

ABSTRACT

Interest in developing food, feed, and other useful products from farmed insects has gained remarkable momentum in the past decade. Crickets are an especially popular group of farmed insects due to their nutritional quality, ease of rearing, and utility. However, production of crickets as an emerging commodity has been severely impacted by entomopathogenic infections, about which we know little. Here, we identified and characterized an unknown entomopathogen causing mass mortality in a lab-reared population of Gryllodes sigillatus crickets, a species used as an alternative to the popular Acheta domesticus due to its claimed tolerance to prevalent entomopathogenic viruses. Microdissection of sick and healthy crickets coupled with metagenomics-based identification and real-time qPCR viral quantification indicated high levels of cricket iridovirus (CrIV) in a symptomatic population, and evidence of covert CrIV infections in a healthy population. Our study also identified covert infections of Acheta domesticus densovirus (AdDNV) in both populations of G. sigillatus. These results add to the foundational research needed to better understand the pathology of mass-reared insects and ultimately develop the prevention, mitigation, and intervention strategies needed for economical production of insects as a commodity.

4.
Mitochondrial DNA B Resour ; 6(3): 1056-1058, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33796736

ABSTRACT

Gryllodes sigillatus is a cricket widely distributed throughout the world. In this study, we reported the first complete mitogenome sequence of Genus Gryllodes and inferred its phylogeny. The mitogenome of G. sigillatus was 16,369 bp and consisted of a control region and a typical set of 37 genes. It was AT-rich with strong codon usage bias and possessed a gene arrangement of trnE-trnS1-trnN. Phylogenetic analysis indicated G. sigillatus was sister species to Velarifictorus hemelytrus, together belonging to the Family Gryllidae. Our findings would contribute to understanding mitogenomic evolution and phylogeny of Ensifera.

5.
Molecules ; 25(22)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212841

ABSTRACT

The low consumer acceptance to entomophagy in Western society remains the strongest barrier of this practice, despite these numerous advantages. More positively, it was demonstrated that the attractiveness of edible insects can be enhanced by the use of insect ingredients. Currently, insect ingredients are mainly used as filler agents due to their poor functional properties. Nevertheless, new research on insect ingredient functionalities is emerging to overcome these issues. Recently, high hydrostatic pressure processing has been used to improve the functional properties of proteins. The study described here evaluates the functional properties of two commercial insect meals (Gryllodes sigillatus and Tenebrio molitor) and their respective hydrolysates generated by Alcalase®, conventionally and after pressurization pretreatment of the insect meals. Regardless of the insect species and treatments, water binding capacity, foaming and gelation properties did not improve after enzymatic hydrolysis. The low emulsion properties after enzymatic hydrolysis were due to rapid instability of emulsion. The pretreatment of mealworm meal with pressurization probably induced protein denaturation and aggregation phenomena which lowered the degree of hydrolysis. As expected, enzymatic digestion (with and without pressurization) increased the solubility, reaching values close to 100%. The pretreatment of mealworm meal with pressure further improved its solubility compared to control hydrolysate, while pressurization pretreatment decreased the solubility of cricket meal. These results may be related to the impact of pressurization on protein structure and therefore to the generation of different peptide compositions and profiles. The oil binding capacity also improved after enzymatic hydrolysis, but further for pressure-treated mealworm hydrolysate. Despite the moderate effect of pretreatment by high hydrostatic pressures, insect protein hydrolysates demonstrated interesting functional properties which could potentially facilitate their use in the food industry.


Subject(s)
Gryllidae/chemistry , Hydrostatic Pressure , Protein Hydrolysates/chemical synthesis , Tenebrio/chemistry , Animals , Emulsions/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Oils/chemistry , Particle Size , Probability , Rheology , Solubility , Viscosity , Water/chemistry
6.
Appl Environ Microbiol ; 84(12)2018 06 15.
Article in English | MEDLINE | ID: mdl-29625988

ABSTRACT

In this study, the microbiota during industrial rearing, processing, and storage of the edible tropical house cricket, Gryllodessigillatus, was investigated. To this end, we analyzed samples from the cricket feed, obtained before feeding as well as from the cages, and from the crickets during rearing, after harvest, and after processing into frozen, oven-dried, and smoked and oven-dried (smoked/dried) end products. Although the feed contained lower microbial numbers than the crickets, both were dominated by the same species-level operational taxonomic units, as determined by Illumina MiSeq sequencing. They corresponded, among others, to members of Porphyromonadaceae, Fusobacterium, Parabacteroides, and Erwinia The harvested crickets contained high microbial numbers, but none of the investigated food pathogens Salmonella spp., Listeria monocytogenes, Bacillus cereus, or coagulase-positive staphylococci. However, some possible mycotoxin-producing fungi were isolated from the crickets. A postharvest heat treatment, shortly boiling the crickets, reduced microbial numbers, but an endospore load of 2.4 log CFU/g remained. After processing, an increase in microbial counts was observed for the dried and smoked/dried crickets. Additionally, in the smoked/dried crickets, a high abundance of a Bacillus sp. was observed. Considering the possible occurrence of food-pathogenic species from this genus, it is advised to apply a heat treatment which is sufficient to eliminate spores. Nevertheless, the microbial numbers remained constant over a 6-month storage period, whether frozen (frozen end product) or at ambient temperature (oven-dried and smoked/dried end products).IMPORTANCE The need for sustainable protein sources has led to the emergence of a new food sector, producing and processing edible insects into foods. However, insight into the microbial quality of this new food and into the microbial dynamics during rearing, processing, and storage of edible insects is still limited. Samples monitored for their microbiota were obtained in this study from an industrial rearing and processing cycle. The results lead first to the identification of process steps which are critical for microbial food safety. Second, they can be used in the construction of a Hazard Analysis and Critical Control Points (HACCP) plan and of a Novel Food dossier, which is required in Europe for edible insects. Finally, they confirm the shelf-life period which was determined by the rearer.


Subject(s)
Bacteria/isolation & purification , Food Microbiology , Food Storage , Gryllidae/microbiology , Animals , Bacteria/genetics , Colony Count, Microbial , Europe , Food Handling , High-Throughput Nucleotide Sequencing , Spores, Bacterial , Tropical Climate
7.
Am Nat ; 191(4): 452-474, 2018 04.
Article in English | MEDLINE | ID: mdl-29570407

ABSTRACT

Life-history theory assumes that traits compete for limited resources, resulting in trade-offs. The most commonly manipulated resource in empirical studies is the quantity or quality of diet. Recent studies using the geometric framework for nutrition, however, suggest that trade-offs are often regulated by the intake of specific nutrients, but a formal approach to identify and quantify the strength of such trade-offs is lacking. We posit that trade-offs occur whenever life-history traits are maximized in different regions of nutrient space, as evidenced by nonoverlapping 95% confidence regions of the global maximum for each trait and large angles (θ) between linear nutritional vectors and Euclidean distances (d) between global maxima. We then examined the effects of protein and carbohydrate intake on the trade-off between reproduction and aspects of immune function in male and female Gryllodes sigillatus. Female encapsulation ability and egg production increased with the intake of both nutrients, whereas male encapsulation ability increased with protein intake but calling effort increased with carbohydrate intake. The trade-offs between traits was therefore larger in males than in females, as demonstrated by significant negative correlations between the traits in males, nonoverlapping 95% confidence regions, and larger estimates of θ and d. Under dietary choice, the sexes had similar regulated intakes, but neither optimally regulated nutrient intake for maximal trait expression. We highlight the fact that greater consideration of specific nutrient intake is needed when examining nutrient space-based trade-offs.


Subject(s)
Animal Nutritional Physiological Phenomena , Dietary Carbohydrates , Dietary Proteins , Gryllidae/physiology , Life History Traits , Animals , Female , Food Preferences , Male , Monophenol Monooxygenase/metabolism , Oviparity , Random Allocation , Sex Factors
8.
Evolution ; 72(3): 578-589, 2018 03.
Article in English | MEDLINE | ID: mdl-29392709

ABSTRACT

The terminal investment hypothesis proposes that decreased expectation of future reproduction (e.g., arising from a threat to survival) should precipitate increased investment in current reproduction. The level at which a cue of decreased survival is sufficient to trigger terminal investment (i.e., the terminal investment threshold) may vary according to other factors that influence expectation for future reproduction. We test whether the terminal investment threshold varies with age in male crickets, using heat-killed bacteria to simulate an immune-inducing infection. We measured calling effort (a behavior essential for mating) and hemolymph antimicrobial activity in young and old males across a gradient of increasing infection cue intensity. There was a significant interaction between the infection cue and age in their effect on calling effort, confirming the existence of a dynamic terminal investment threshold: young males reduced effort at all infection levels, whereas old males increased effort at the highest levels relative to naïve individuals. A lack of a corresponding decrease in antibacterial activity suggests that altered reproductive effort is not traded against investment in this component of immunity. Collectively, these results support the existence of a dynamic terminal investment threshold, perhaps accounting for some of the conflicting evidence in support of terminal investment.


Subject(s)
Animal Communication , Gryllidae/physiology , Sexual Behavior, Animal , Animals , Escherichia coli , Gryllidae/immunology , Male , Reproduction
9.
Int J Food Microbiol ; 261: 11-18, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-28881263

ABSTRACT

Despite the continuing development of new insect-derived food products, microbial research on edible insects and insect-based foods is still very limited. The goal of this study was to increase the knowledge on the microbial quality of edible insects by comparing the bacterial community composition of mealworms (Tenebrio molitor) and crickets (Acheta domesticus and Gryllodes sigillatus) from several production cycles and rearing companies. Remarkable differences in the bacterial community composition were found between different mealworm rearing companies and mealworm production cycles from the same company. In comparison with mealworms, the bacterial community composition of the investigated crickets was more similar among different companies, and was highly similar between both cricket species investigated. Mealworm communities were dominated by Spiroplasma and Erwinia species, while crickets were abundantly colonised by (Para)bacteroides species. With respect to food safety, only a few operational taxonomic units could be associated with potential human pathogens such as Cronobacter or spoilage bacteria such as Pseudomonas. In summary, our results implicate that at least for cricket rearing, production cycles of constant and good quality in terms of bacterial composition can be obtained by different rearing companies. For mealworms however, more variation in terms of microbial quality occurs between companies.


Subject(s)
Bacteria/genetics , Bacteria/isolation & purification , Gryllidae/microbiology , Tenebrio/microbiology , Animals , Bacteria/classification , Food Contamination/analysis , Food Safety , Humans , Larva/microbiology , Metagenomics
10.
J Evol Biol ; 30(4): 711-727, 2017 04.
Article in English | MEDLINE | ID: mdl-28029711

ABSTRACT

The condition dependence of male sexual traits plays a central role in sexual selection theory. Relatively little, however, is known about the condition dependence of chemical signals used in mate choice and their subsequent effects on male mating success. Furthermore, few studies have isolated the specific nutrients responsible for condition-dependent variation in male sexual traits. Here, we used nutritional geometry to determine the effect of protein (P) and carbohydrate (C) intake on male cuticular hydrocarbon (CHC) expression and mating success in male decorated crickets (Gryllodes sigillatus). We show that both traits are maximized at a moderate-to-high intake of nutrients in a P:C ratio of 1 : 1.5. We also show that female precopulatory mate choice exerts a complex pattern of linear and quadratic sexual selection on this condition-dependent variation in male CHC expression. Structural equation modelling revealed that although the effect of nutrient intake on mating success is mediated through condition-dependent CHC expression, it is not exclusively so, suggesting that other traits must also play an important role. Collectively, our results suggest that the complex interplay between nutrient intake, CHC expression and mating success plays an important role in the operation of sexual selection in G. sigillatus.


Subject(s)
Gryllidae/physiology , Hydrocarbons , Sexual Behavior, Animal , Animals , Female , Male , Phenotype , Reproduction
11.
J Evol Biol ; 29(2): 395-406, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26563682

ABSTRACT

Sexual conflict results in a diversity of sex-specific adaptations, including chemical additions to ejaculates. Male decorated crickets (Gryllodes sigillatus) produce a gelatinous nuptial gift (the spermatophylax) that varies in size and free amino acid composition, which influences a female's willingness to fully consume this gift. Complete consumption of this gift maximizes sperm transfer through increased retention of the sperm-containing ampulla, but hinders post-copulatory mate choice. Here, we examine the effects of protein (P) and carbohydrate (C) intake on the weight and amino acid composition of the spermatophylax that describes its gustatory appeal to the female, as well as the ability of this gift to regulate sexual conflict via ampulla attachment time. Nutrient intake had similar effects on the expression of these traits with each maximized at a high intake of nutrients with a P : C ratio of 1 : 1.3. Under dietary choice, males actively regulated their nutrient intake but this regulation did not coincide with the peak of the nutritional landscape for any trait. Our results therefore demonstrate that a balanced intake of nutrients is central to regulating sexual conflict in G. sigillatus, but males are constrained from reaching the optima needed to bias the outcome of this conflict in their favour.


Subject(s)
Diet , Gryllidae/physiology , Sexual Behavior, Animal/physiology , Aggression/physiology , Animals , Feeding Behavior/physiology , Female , Male
12.
J Evol Biol ; 28(12): 2175-86, 2015 12.
Article in English | MEDLINE | ID: mdl-26301596

ABSTRACT

Indirect genetic benefits derived from female mate choice comprise additive (good genes) and nonadditive genetic benefits (genetic compatibility). Although good genes can be revealed by condition-dependent display traits, the mechanism by which compatibility alleles are detected is unclear because evaluation of the genetic similarity of a prospective mate requires the female to assess the genotype of the male and compare it to her own. Cuticular hydrocarbons (CHCs), lipids coating the exoskeleton of most insects, influence female mate choice in a number of species and offer a way for females to assess genetic similarity of prospective mates. Here, we determine whether female mate choice in decorated crickets is based on male CHCs and whether it is influenced by females' own CHC profiles. We used multivariate selection analysis to estimate the strength and form of selection acting on male CHCs through female mate choice, and employed different measures of multivariate dissimilarity to determine whether a female's preference for male CHCs is based on similarity to her own CHC profile. Female mating preferences were significantly influenced by CHC profiles of males. Male CHC attractiveness was not, however, contingent on the CHC profile of the choosing female, as certain male CHC phenotypes were equally attractive to most females, evidenced by significant linear and stabilizing selection gradients. These results suggest that additive genetic benefits, rather than nonadditive genetic benefits, accrue to female mate choice, in support of earlier work showing that CHC expression of males, but not females, is condition dependent.


Subject(s)
Gryllidae/physiology , Hydrocarbons/metabolism , Sexual Behavior, Animal , Animals , Female , Humans , Male , Multivariate Analysis
13.
Evolution ; 50(2): 694-703, 1996 Apr.
Article in English | MEDLINE | ID: mdl-28568960

ABSTRACT

Manipulation of ejaculates is believed to be an important avenue of female choice throughout the animal kingdom, but evidence of its importance to sexual selection remains scarce. In crickets, such manipulation is manifest in the premature removal of the externally attached spermatophore, which may afford females an important means of postcopulatory mate choice. We tested the hypothesis that premature spermatophore removal contributes significantly to intraspecific variation in sperm precedence by (1) experimentally manipulating spermatophore attachment durations of competing male Gryllodes sigillatus and (2) employing protein electrophoresis to determine the paternity of doubly mated females. The relative spermatophore attachment durations of competing males had a significant influence on male paternity, but the pattern of sperm precedence deviated significantly from the predictions of an ideal lottery. Instead, paternity data and morphological evidence accorded best with a model of partial sperm displacement derived here. Our model is similar to a displacement model of Parker et al. in that sperm of the second male mixes instantaneously with that of the first throughout the displacement process, but the novel feature of our model is that the number of sperm displaced is only a fraction of the number of sperm transferred by the second male. Regardless of the underlying mechanism, female G. sigillatus can clearly alter the paternity of their offspring through their spermatophore-removal behavior, and employ such cryptic choice in favoring larger males and those providing larger courtship food gifts. We discuss how female control of sperm transfer and intraspecific variation in sperm precedence may be important precursors to the evolution of gift giving in insects.

SELECTION OF CITATIONS
SEARCH DETAIL
...