Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.033
Filter
1.
Biomed Pharmacother ; 177: 117087, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964178

ABSTRACT

Thirteen previously undescribed lindenane sesquiterpenoid dimers (LSDs), named chlorahololides G-S (1-13), were isolated from the whole plants of Chloranthus holostegius var. shimianensis, along with ten known analogues (14-23). The structures and absolute configurations of compounds 1-13 were elucidated through comprehensive spectroscopic analysis, NMR and electronic circular dichroism (ECD) calculations, and X-ray single-crystal diffraction. Chlorahololide G (1) represents the first instance of LSDs formed via a C-15-C-9' carbon-carbon single bond, whose plausible biosynthetic pathway was also proposed. Chlorahololides I and J (3 and 4) were deduced to be rare 8,9-seco and 9-deoxy LSDs with C-11-C-7' carbon-carbon bond, respectively. The inhibitory activity against NLRP3 inflammasome activation was evaluated for all isolates, with six compounds (5, 7, 8, 17, 22, and 23) exhibiting significant effects, and IC50 values ranging from 2.99 to 8.73 µM. Additionally, a preliminary structure-activity relationship analysis regarding their inhibition of NLRP3 inflammasome activation was summarized. Compound 17 exhibited dose-dependent inhibition of nigericin-induced pyroptosis in J774A.1 cells. Molecular docking studies suggested a strong interaction between compound 17 and NLRP3.

3.
J Pharm Biomed Anal ; 247: 116248, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823223

ABSTRACT

GS-441524 is an adenosine nucleoside antiviral demonstrating significant efficacy in the treatment of feline infectious peritonitis (FIP), an otherwise fatal illness, resulting from infection with feline coronavirus. However, following the emergence of COVID-19, veterinary development was halted, and Gilead pursued clinical development of a GS-441524 pro-drug, resulting in the approval of Remdesivir under an FDA emergency use authorization. Despite lack of regulatory approval, GS-441524 is available without a prescription through various unlicensed online distributors and is commonly purchased by pet owners for the treatment of FIP. Herein, we report data obtained from the analytical characterization of two feline renal calculi, demonstrating the propensity for GS-441524 to cause renal toxicity through drug-induced crystal nephropathy in vivo. As definitive diagnosis of drug-induced crystal nephropathy requires confirmation of the lithogenic material to accurately attribute a mechanism of toxicity, renal stone composition and crystalline matrix were characterized using ultra-performance liquid chromatography photodiode array detection (UPLC-PDA), ultra-performance liquid chromatography mass spectrometry (LCMS), nuclear magnetic resonance (NMR) spectroscopy, X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). This work serves to provide the first analytical confirmation of GS-441524-induced crystal nephropathy in an effort to support toxicologic identification of adverse renal effects caused by administration of GS-441524 or any pro-drug thereof.


Subject(s)
Adenosine Monophosphate , Alanine , Antiviral Agents , Animals , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/analysis , Cats , Kidney Calculi/chemically induced , COVID-19 Drug Treatment , Adenosine/analogs & derivatives , Cat Diseases/chemically induced , Cat Diseases/drug therapy , Chromatography, High Pressure Liquid/methods , Magnetic Resonance Spectroscopy/methods
4.
Handb Exp Pharmacol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38844580

ABSTRACT

ß-Adrenoceptors (ß-ARs) provide an important therapeutic target for the treatment of cardiovascular disease. Three ß-ARs, ß1-AR, ß2-AR, ß3-AR are localized to the human heart. Activation of ß1-AR and ß2-ARs increases heart rate, force of contraction (inotropy) and consequently cardiac output to meet physiological demand. However, in disease, chronic over-activation of ß1-AR is responsible for the progression of disease (e.g. heart failure) mediated by pathological hypertrophy, adverse remodelling and premature cell death. Furthermore, activation of ß1-AR is critical in the pathogenesis of cardiac arrhythmias while activation of ß2-AR directly influences blood pressure haemostasis. There is an increasing awareness of the contribution of ß2-AR in cardiovascular disease, particularly arrhythmia generation. All ß-blockers used therapeutically to treat cardiovascular disease block ß1-AR with variable blockade of ß2-AR depending on relative affinity for ß1-AR vs ß2-AR. Since the introduction of ß-blockers into clinical practice in 1965, ß-blockers with different properties have been trialled, used and evaluated, leading to better understanding of their therapeutic effects and tolerability in various cardiovascular conditions. ß-Blockers with the property of intrinsic sympathomimetic activity (ISA), i.e. ß-blockers that also activate the receptor, were used in the past for post-treatment of myocardial infarction and had limited use in heart failure. The ß-blocker carvedilol continues to intrigue due to numerous properties that differentiate it from other ß-blockers and is used successfully in the treatment of heart failure. The discovery of ß3-AR in human heart created interest in the role of ß3-AR in heart failure but has not resulted in therapeutics at this stage.

5.
J Infect Dis ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839047

ABSTRACT

BACKGROUND: Pregnant people with COVID-19 experience higher risk for severe disease and adverse pregnancy outcomes, but no pharmacokinetic (PK) data exist to support dosing of COVID-19 therapeutics during pregnancy. We report PK and safety data for intravenous remdesivir in pregnancy. METHODS: IMPAACT 2032 was a phase IV prospective, open-label, non-randomized opportunistic study of hospitalized pregnant and non-pregnant women receiving intravenous remdesivir as part of clinical care. Intensive PK sampling was performed on infusion days 3, 4, or 5 with collection of plasma and peripheral blood mononuclear cells (PBMCs). Safety data were recorded from first infusion through 4 weeks post-last infusion and at delivery. Geometric mean ratios (GMR) (90% confidence intervals [CI]) of PK parameters between pregnant and non-pregnant women were calculated. RESULTS: Fifty-three participants initiated remdesivir (25 pregnant; median (IQR) gestational age 27.6 (24.9, 31.0) weeks). Plasma exposures of remdesivir, its two major metabolites (GS-704277 and GS-441524), and the free remdesivir fraction were similar between pregnant and non-pregnant participants. Concentrations of the active triphosphate (GS-443902) in PBMCs increased 2.04-fold (90% CI 1.35, 3.03) with each additional infusion in non-pregnant versus pregnant participants. Three adverse events in non-pregnant participants were related to treatment (one Grade 3; two Grade 2 resulting in treatment discontinuation). There were no treatment-related adverse pregnancy outcomes or congenital anomalies detected. CONCLUSIONS: Plasma remdesivir PK parameters were comparable between pregnant and non-pregnant women, and no safety concerns were identified based on our limited data. These findings suggest no dose adjustments are indicated for intravenous remdesivir during pregnancy.

6.
Sci Rep ; 14(1): 12739, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830958

ABSTRACT

Understanding the characteristics and distribution patterns of the initial geo-stress field in tunnels is of great significance for studying the problem of large deformation of tunnels under high geo-stress conditions. This article proposes a ground stress field inversion method and large deformation level determination based on the GS-XGBoost algorithm and the Haba Snow Mountain Tunnel of the Lixiang Railway. Firstly, the hydraulic fracturing method is used to conduct on-site testing of tunnel ground stress and obtain tunnel ground stress data. Then, a three-dimensional model of the Haba Snow Mountain Tunnel will be established, and it will be combined with the GS-XGBoost regression algorithm model to obtain the optimal boundary conditions of the model. Finally, the optimal boundary condition parameters are substituted into the three-dimensional finite-difference calculation model for stress calculation, and the distribution of the in-situ stress field of the entire calculation model is obtained. Finally, the level of large deformation of the Haba Snow Mountain Tunnel will be determined. The results show that the ground stress of the tunnel increases with the increase of burial depth, with the maximum horizontal principal stress of 38.03 MPa and the minimum horizontal principal stress of 26.07 MPa. The Haba Snow Mountain Tunnel has large deformation problems of levels I, II, III, and IV. Level III and IV large deformations are generally accompanied by higher ground stress (above 28 MPa) and smaller surrounding rock strength. The distribution of surrounding rock strength along the tunnel axis shows a clear "W" shape, opposite to the surface elevation "M" shape. It is inferred that the mountain may be affected by geological structures on both sides of the north and south, causing more severe compression of the tunnel surrounding rock at the peak.

7.
Front Plant Sci ; 15: 1403276, 2024.
Article in English | MEDLINE | ID: mdl-38863531

ABSTRACT

Flax powdery mildew (PM), caused by Oidium lini, is a globally distributed fungal disease of flax, and seriously impairs its yield and quality. To data, only three resistance genes and a few putative quantitative trait loci (QTL) have been reported for flax PM resistance. To dissect the resistance mechanism against PM and identify resistant genetic regions, based on four years of phenotypic datasets (2017, 2019 to 2021), a genome-wide association study (GWAS) was performed on 200 flax core accessions using 674,074 SNPs and 7 models. A total of 434 unique quantitative trait nucleotides (QTNs) associated with 331 QTL were detected. Sixty-four loci shared in at least two datasets were found to be significant in haplotype analyses, and 20 of these sites were shared by multiple models. Simultaneously, a large-effect locus (qDI 11.2) was detected repeatedly, which was present in the mapping study of flax pasmo resistance loci. Oil flax had more QTL with positive-effect or favorable alleles (PQTL) and showed higher PM resistance than fiber flax, indicating that effects of these QTL were mainly additive. Furthermore, an excellent resistant variety C120 was identified and can be used to promote planting. Based on 331 QTLs identified through GWAS and the statistical model GBLUP, a genomic selection (GS) model related to flax PM resistance was constructed, and the prediction accuracy rate was 0.96. Our results provide valuable insights into the genetic basis of resistance and contribute to the advancement of breeding programs.

8.
Animal Model Exp Med ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38873818

ABSTRACT

BACKGROUND: Apoptosis signal-regulating kinase 1 (ASK1) is a MAP3K kinase in the MAPK signaling pathway activated by stressors and triggers downstream biological effects such as inflammation and apoptosis; therefore, inhibition of ASK1 kinase activity can protect cells from pathological injury. In this study, we designed and synthesized a novel selective ASK1 inhibitor, CS17919, and investigated its pharmacological effects in various animal models of metabolic injury. METHODS: First, we validated the ability of CS17919 to inhibit ASK1 in vitro and then tested the safety profile of CS17919 in cell lines compared with Selonsertib (GS-4997), a phase III ASK1 inhibitor. We then conducted pharmacokinetic (PK) studies in mice. Finally, we tested the in vivo efficacy of CS17919 in murine models of chronic kidney disease (CKD) and non-alcoholic steatohepatitis (NASH). RESULTS: Compared to GS-4997, CS17919 demonstrated comparable inhibition of ASK1 in vitro, exhibited lower toxicity, and provided greater protection in palmitic acid-treated LO2 cells. CS17919 also showed pronounced pharmacokinetic properties such as a high plasma concentration. In the unilateral ureteral obstruction model (UUO), CS17919 and GS-4997 preserved kidney function and showed a non-significant tendency to alleviate kidney fibrosis. In the diabetic kidney disease (DKD) model, CS17919 significantly improved serum creatinine and glomerular sclerosis. In the NASH model, the combination of CS17919 and a THRß agonist (CS27109) was found to significantly improve liver inflammation and substantially reduced liver fibrosis. CONCLUSIONS: CS17919 showed cell protective, anti-inflammatory, and antifibrotic effects in vitro and in vivo, suggesting its therapeutic potential for metabolic-related kidney and liver diseases.

9.
Vet Q ; 44(1): 1-13, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38712855

ABSTRACT

Feline infectious peritonitis (FIP) is a fatal illness caused by a mutated feline coronavirus (FCoV). This disease is characterized by its complexity, resulting from systemic infection, antibody-dependent enhancement (ADE), and challenges in accessing effective therapeutics. Extract derived from Vigna radiata (L.) R. Wilczek (VRE) exhibits various pharmacological effects, including antiviral activity. This study aimed to investigate the antiviral potential of VRE against FCoV, addressing the urgent need to advance the treatment of FIP. We explored the anti-FCoV activity, antiviral mechanism, and combinational application of VRE by means of in vitro antiviral assays. Our findings reveal that VRE effectively inhibited the cytopathic effect induced by FCoV, reduced viral proliferation, and downregulated spike protein expression. Moreover, VRE blocked FCoV in the early and late infection stages and was effective under in vitro ADE infection. Notably, when combined with VRE, the polymerase inhibitor GS-441524 or protease inhibitor GC376 suppressed FCoV more effectively than monotherapy. In conclusion, this study characterizes the antiviral property of VRE against FCoV in vitro, and VRE possesses therapeutic potential for FCoV treatment.


Subject(s)
Antiviral Agents , Coronavirus, Feline , Feline Infectious Peritonitis , Lactams , Leucine/analogs & derivatives , Plant Extracts , Sulfonic Acids , Vigna , Coronavirus, Feline/drug effects , Antiviral Agents/pharmacology , Animals , Plant Extracts/pharmacology , Cats , Feline Infectious Peritonitis/drug therapy , Feline Infectious Peritonitis/virology , Vigna/chemistry , Virus Replication/drug effects , Cell Line
10.
Braz J Microbiol ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777992

ABSTRACT

PURPOSE: For growth of methylotrophic yeast, glycerol is usually used as a carbon source. Glucose is used in some cases, but not widely consumed due to strong repressive effect on AOX1 promoter. However, glucose is still considered as a carbon source of choice since it has low production cost and guarantees growth rate comparable to glycerol. RESULTS: In flask cultivation of the recombinant yeast, Pichia pastoris GS115(pPIC9K-appA38M), while methanol induction point(OD600) and methanol concentration significantly affected the phytase expression, glucose addition in induction phase could enhance phytase expression. The optimal flask cultivation conditions illustrated by Response Surface Methodology were 10.37 OD600 induction point, 2.02 h before methanol feeding, 1.16% methanol concentration and 40.36µL glucose feeding amount(for 20 mL culture volume) in which the expressed phytase activity was 613.4 ± 10.2U/mL, the highest activity in flask cultivation. In bioreactor fermentation, the intermittent glucose feeding showed several advantageous results such as 68 h longer activity increment, 149.2% higher cell density and 200.1% higher activity compared to the sole methanol feeding method. These results implied that remaining glucose at induction point might exhibit a positive effect on the phytase expression. CONCLUSION: Glucose intermittent feeding could be exploited for economic phytase production and the other recombinant protein expression by P. pastoris GS115.

11.
Sci Rep ; 14(1): 11396, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762495

ABSTRACT

Acute liver injury, there is a risky neurological condition known as hepatic encephalopathy (HE). Herbacetin is a glycosylated flavonoid with many pharmacological characteristics. The purpose of this study was to assess the ability of herbacetin to protect against the cognitive deficits associated with thioacetamide (TAA) rat model and delineate the underlying behavioral and pharmacological mechanisms. Rats were pretreated with herbacetin (20 and 40 mg/kg) for 30days. On 30th day, the rats were injected with TAA (i.p. 350 mg/kg) in a single dose. In addition to a histpathological studies, ultra-structural architecture of the brain, liver functions, oxidative stress biomarkers, and behavioral tests were evaluated. Compared to the TAA-intoxicated group, herbacetin improved the locomotor and cognitive deficits, serum hepatotoxicity indices and ammonia levels. Herbacetin reduced brain levels of malodialdeyde, glutamine synthetase (GS), tumor necrosis factor- alpha (TNF-α), interleukin 1 B (IL-1ß), annexin v, and increased brain GSH, Sirtuin 1 (SIRT1), and AMP-activated kinase (AMPK) expression levels. Also, herbacetin improve the histopathological changes and ultra- structure of brain tissue via attenuating the number of inflammatory and apoptotic cells. Herbacetin treatment significantly reduced the toxicity caused by TAA. These findings suggest that herbacetin might be taken into account as a possible neuroprotective and cognitive enhancing agent due to its ability to reduce oxidative stress, inflammation and apoptosis associated with TAA.


Subject(s)
AMP-Activated Protein Kinases , Hepatic Encephalopathy , Neuroprotective Agents , Signal Transduction , Sirtuin 1 , Thioacetamide , Animals , Sirtuin 1/metabolism , Hepatic Encephalopathy/drug therapy , Hepatic Encephalopathy/metabolism , Hepatic Encephalopathy/chemically induced , Rats , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Male , Oxidative Stress/drug effects , Up-Regulation/drug effects , Cognition/drug effects , Brain/metabolism , Brain/drug effects , Brain/pathology , Rats, Wistar , Liver/drug effects , Liver/metabolism , Liver/pathology , Disease Models, Animal
12.
Iran J Med Sci ; 49(5): 275-285, 2024 May.
Article in English | MEDLINE | ID: mdl-38751873

ABSTRACT

Background: The RNA-dependent RNA polymerase (RdRp) inhibitors, molnupiravir and VV116, have the potential to maximize clinical benefits in the oral treatment of COVID-19. Subjects who consume these drugs may experience an increased incidence of adverse events. This study aimed to evaluate the safety profile of molnupiravir and VV116. Methods: A comprehensive search of scientific and medical databases, such as PubMed Central/Medline, Embase, Web of Science, and Cochrane Library, was conducted to find relevant articles in English from January 2020 to June 2023. Any kind of adverse events reported in the study were pooled and analyzed in the drug group versus the control group. Estimates of risk effects were summarized through the random effects model using Review Manager version 5.2, and sensitivity analysis was performed by Stata 17.0 software. Results: Fifteen studies involving 32,796 subjects were included. Eleven studies were placebo-controlled, and four were Paxlovid-controlled. Twelve studies reported adverse events for molnupiravir, and three studies described adverse events for VV116. The total odds ratio (OR) for adverse events in the RdRp inhibitor versus the placebo-controlled group was 1.01 (95% CI=0.84-1.22; I2=26%), P=0.88. The total OR for adverse events in the RdRp inhibitor versus the Paxlovid-controlled group was 0.32 (95% CI=0.16-0.65; I2=87%), P=0.002. Individual drug subgroup analysis in the placebo-controlled study showed that compared with the placebo group, a total OR for adverse events was 0.97 (95% CI, 0.85-1.10; I2=0%) in the molnupiravir group and 3.77 (95% CI=0.08-175.77; I2=85%) in the VV116 group. Conclusion: The RdRp inhibitors molnupiravir and VV116 are safe for oral treatment of COVID-19. Further evidence is necessary that RdRp inhibitors have a higher safety profile than Paxlovid.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Cytidine , Hydroxylamines , RNA-Dependent RNA Polymerase , Humans , Hydroxylamines/therapeutic use , Hydroxylamines/pharmacology , Cytidine/analogs & derivatives , Cytidine/therapeutic use , Cytidine/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , Administration, Oral , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2 , Adenosine/analogs & derivatives
13.
FEBS Lett ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38757247

ABSTRACT

Certain amino acid sites of 5-HT2AR play crucial roles in interacting with various G proteins. Hallucinogens and non-hallucinogens both act on 5-HT2AR but mediate different pharmacological effects, possibly due to the coupling of different G proteins. Therefore, this study identified the binding sites of hallucinogens and non-hallucinogens with 5-HT2AR through molecular docking. We conducted site mutation to examine the impact of these sites on G proteins, in order to find out the sites that can distinguish the pharmacological effects of hallucinogens and non-hallucinogens. Our results indicate that I4.60A and S3.39A did not affect the ability of hallucinogens to activate Gq signaling, but significantly reduced Gs signaling activation by hallucinogens. These results suggest that S3.39 and I4.60 are important for the activation of Gs signaling by hallucinogens.

14.
Viruses ; 16(5)2024 05 16.
Article in English | MEDLINE | ID: mdl-38793672

ABSTRACT

Until recently, the diagnosis of feline infectious peritonitis (FIP) in cats usually led to euthanasia, but recent research has revealed that antiviral drugs, including the nucleoside analog GS-441524, have the potential to effectively cure FIP. Alpha-1-acid glycoprotein (AGP) has been suggested as a diagnostic marker for FIP. However, AGP quantification methods are not easily accessible. This study aimed to establish a Spatial Proximity Analyte Reagent Capture Luminescence (SPARCLTM) assay on the VetBio-1 analyzer to determine the AGP concentrations in feline serum and effusion samples. Linearity was found in serial dilutions between 1:2000 and 1:32,000; the intra-run and inter-run precision was <5% and <15%, respectively; and AGP was stable in serum stored for at least 8 days at room temperature, at 4 °C and at -20 °C. Cats with confirmed FIP had significantly higher serum AGP concentrations (median: 2954 µg/mL (range: 200-5861 µg/mL)) than those with other inflammatory diseases (median: 1734 µg/mL (305-3449 µg/mL)) and clinically healthy cats (median 235 µg/mL (range: 78-616 µg/mL); pKW < 0.0001). The AGP concentrations were significantly higher in the effusions from cats with FIP than in those from diseased cats without FIP (pMWU < 0.0001). The AGP concentrations in the serum of cats with FIP undergoing GS-441524 treatment showed a significant drop within the first seven days of treatment and reached normal levels after ~14 days. In conclusion, the VetBio-1 SPARCLTM assay offers a precise, fast and cost-effective method to measure the AGP concentrations in serum and effusion samples of feline patients. The monitoring of the AGP concentration throughout FIP treatment provides a valuable marker to evaluate the treatment's effectiveness and identify potential relapses at an early stage.


Subject(s)
Biomarkers , Feline Infectious Peritonitis , Luminescent Measurements , Orosomucoid , Cats , Animals , Feline Infectious Peritonitis/diagnosis , Feline Infectious Peritonitis/drug therapy , Feline Infectious Peritonitis/virology , Feline Infectious Peritonitis/blood , Biomarkers/blood , Orosomucoid/analysis , Orosomucoid/metabolism , Luminescent Measurements/methods , Prognosis , Antiviral Agents/therapeutic use , Female , Male , Coronavirus, Feline/isolation & purification
15.
Cancer Cell Int ; 24(1): 186, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811958

ABSTRACT

BACKGROUND: Chronic myeloid leukemia (CML) is a common hematological malignancy, and tyrosine kinase inhibitors (TKIs) represent the primary therapeutic approach for CML. Activation of metabolism signaling pathway has been connected with BCR::ABL1-independent TKIs resistance in CML cells. However, the specific mechanism by which metabolism signaling mediates this drug resistance remains unclear. Here, we identified one relationship between glutamine synthetase (GS) and BCR::ABL1-independent Imatinib resistance in CML cells. METHODS: GS and PXN-AS1 in bone marrow samples of CML patients with Imatinib resistance (IR) were screened and detected by whole transcriptome sequencing. GS expression was upregulated using LVs and blocked using shRNAs respectively, then GS expression, Gln content, and cell cycle progression were respectively tested. The CML IR mice model were established by tail vein injection, prognosis of CML IR mice model were evaluated by Kaplan-Meier analysis, the ratio of spleen/body weight, HE staining, and IHC. PXN-AS1 level was blocked using shRNAs, and the effects of PXN-AS1 on CML IR cells in vitro and in vivo were tested the same as GS. Several RNA-RNA tools were used to predict the potential target microRNAs binding to both GS and PXN-AS1. RNA mimics and RNA inhibitors were used to explore the mechanism through which PXN-AS1 regulates miR-635 or miR-635 regulates GS. RESULTS: GS was highly expressed in the bone marrow samples of CML patients with Imatinib resistance. In addition, the lncRNA PXN-AS1 was found to mediate GS expression and disorder cell cycle in CML IR cells via mTOR signaling pathway. PXN-AS1 regulated GS expression by binding to miR-635. Additionally, knockdown of PXN-AS1 attenuated BCR::ABL1-independent Imatinib resistance in CML cells via PXN-AS1/miR-635/GS/Gln/mTOR signaling pathway. CONCLUSIONS: Thus, PXN-AS1 promotes GS-mediated BCR::ABL1-independent Imatinib resistance in CML cells via cell cycle signaling pathway.

16.
Microbiologyopen ; 13(3): e1412, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38711353

ABSTRACT

Cable bacteria, characterized by their multicellular filamentous growth, are prevalent in both freshwater and marine sediments. They possess the unique ability to transport electrons over distances of centimeters. Coupled with their capacity to fix CO2 and their record-breaking conductivity for biological materials, these bacteria present promising prospects for bioprocess engineering, including potential electrochemical applications. However, the cultivation of cable bacteria has been limited to their natural sediment, constraining their utility in production processes. To address this, our study designs synthetic sediment, drawing on ion exchange chromatography data from natural sediments and existing literature on the requirements of cable bacteria. We examined the effects of varying bentonite concentrations on water retention and the impacts of different sands. For the first time, we cultivated cable bacteria on synthetic sediment, specifically the freshwater strain Electronema aureum GS. This cultivation was conducted over 10 weeks in a specially developed sediment bioreactor, resulting in an increased density of cable bacteria in the sediment and growth up to a depth of 5 cm. The creation of this synthetic sediment paves the way for the reproducible cultivation of cable bacteria. It also opens up possibilities for future process scale-up using readily available components. This advancement holds significant implications for the broader field of bioprocess engineering.


Subject(s)
Geologic Sediments , Geologic Sediments/microbiology , Bioreactors/microbiology
17.
J Virol ; 98(6): e0043424, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38690875

ABSTRACT

The globally reemerging respiratory pathogen enterovirus D68 (EV-D68) is implicated in outbreaks of severe respiratory illness and associated with acute flaccid myelitis. However, there remains a lack of effective treatments for EV-D68 infection. In this work, we found that the host Toll-like receptor 7 (TLR7) proteins, which function as powerful innate immune sensors, were selectively elevated in expression in response to EV-D68 infection. Subsequently, we investigated the impact of Vesatolimod (GS-9620), a Toll-like receptor 7 agonist, on EV-D68 replication. Our findings revealed that EV-D68 infection resulted in increased mRNA levels of TLR7. Treatment with Vesatolimod significantly inhibited EV-D68 replication [half maximal effective concentration (EC50) = 0.1427 µM] without inducing significant cytotoxicity at virucidal concentrations. Although Vesatolimod exhibited limited impact on EV-D68 attachment, it suppressed RNA replication and viral protein synthesis after virus entry. Vesatolimod broadly inhibited the replication of circulating isolated strains of EV-D68. Furthermore, our findings demonstrated that treatment with Vesatolimod conferred resistance to both respiratory and neural cells against EV-D68 infection. Overall, these results present a promising strategy for drug development by pharmacologically activating TLR7 to initiate an antiviral state in EV-D68-infected cells selectively.IMPORTANCEConventional strategies for antiviral drug development primarily focus on directly targeting viral proteases or key components, as well as host proteins involved in viral replication. In this study, based on our intriguing discovery that enterovirus D68 (EV-D68) infection specifically upregulates the expression of immune sensor Toll-like receptor 7 (TLR7) protein, which is either absent or expressed at low levels in respiratory cells, we propose a potential antiviral approach utilizing TLR7 agonists to activate EV-D68-infected cells into an anti-viral defense state. Notably, our findings demonstrate that pharmacological activation of TLR7 effectively suppresses EV-D68 replication in respiratory tract cells through a TLR7/MyD88-dependent mechanism. This study not only presents a promising drug candidate and target against EV-D68 dissemination but also highlights the potential to exploit unique alterations in cellular innate immune responses induced by viral infections, selectively inducing a defensive state in infected cells while safeguarding uninfected normal cells from potential adverse effects associated with therapeutic interventions.


Subject(s)
Antiviral Agents , Enterovirus D, Human , Toll-Like Receptor 7 , Virus Replication , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/metabolism , Humans , Virus Replication/drug effects , Enterovirus D, Human/drug effects , Antiviral Agents/pharmacology , Indoles/pharmacology , Enterovirus Infections/virology , Immunity, Innate/drug effects , Cell Line , Virus Internalization/drug effects , Pteridines
18.
Cancers (Basel) ; 16(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791901

ABSTRACT

BACKGROUND: Accurate, reliable, non-invasive assessment of patients diagnosed with prostate cancer is essential for proper disease management. Quantitative assessment of multi-parametric MRI, such as through artificial intelligence or spectral/statistical approaches, can provide a non-invasive objective determination of the prostate tumor aggressiveness without side effects or potential poor sampling from needle biopsy or overdiagnosis from prostate serum antigen measurements. To simplify and expedite prostate tumor evaluation, this study examined the efficacy of autonomously extracting tumor spectral signatures for spectral/statistical algorithms for spatially registered bi-parametric MRI. METHODS: Spatially registered hypercubes were digitally constructed by resizing, translating, and cropping from the image sequences (Apparent Diffusion Coefficient (ADC), High B-value, T2) from 42 consecutive patients in the bi-parametric MRI PI-CAI dataset. Prostate cancer blobs exceeded a threshold applied to the registered set from normalizing the registered set into an image that maximizes High B-value, but minimizes the ADC and T2 images, appearing "green" in the color composite. Clinically significant blobs were selected based on size, average normalized green value, sliding window statistics within a blob, and position within the hypercube. The center of mass and maximized sliding window statistics within the blobs identified voxels associated with tumor signatures. We used correlation coefficients (R) and p-values, to evaluate the linear regression fits of the z-score and SCR (with processed covariance matrix) to tumor aggressiveness, as well as Area Under the Curves (AUC) for Receiver Operator Curves (ROC) from logistic probability fits to clinically significant prostate cancer. RESULTS: The highest R (R > 0.45), AUC (>0.90), and lowest p-values (<0.01) were achieved using z-score and modified registration applied to the covariance matrix and tumor signatures selected from the "greenest" parts from the selected blob. CONCLUSIONS: The first autonomous tumor signature applied to spatially registered bi-parametric MRI shows promise for determining prostate tumor aggressiveness.

19.
JBMR Plus ; 8(5): ziae011, 2024 May.
Article in English | MEDLINE | ID: mdl-38577521

ABSTRACT

G protein-coupled receptors (GPCRs) mediate a wide spectrum of physiological functions, including the development, remodeling, and repair of the skeleton. Fibrous dysplasia (FD) of the bone is characterized by fibrotic, expansile bone lesions caused by activating mutations in GNAS. There are no effective therapies for FD. We previously showed that ColI(2.3)+/Rs1+ mice, in which Gs-GPCR signaling was hyper-activated in osteoblastic cell lineages using an engineered receptor strategy, developed a fibrotic bone phenotype with trabecularization that could be reversed by normalizing Gs-GPCR signaling, suggesting that targeting the Gs-GPCR or components of the downstream signaling pathway could serve as a promising therapeutic strategy for FD. The Wnt signaling pathway has been implicated in the pathogenesis of FD-like bone, but the specific Wnts and which cells produce them remain largely unknown. Single-cell RNA sequencing on long-bone stromal cells of 9-wk-old male ColI(2.3)+/Rs1+ mice and littermate controls showed that fibroblastic stromal cells in ColI(2.3)+/Rs1+ mice were expanded. Multiple Wnt ligands were up- or downregulated in different cellular populations, including in non-osteoblastic cells. Treatment with the porcupine inhibitor LGK974, which blocks Wnt signaling broadly, induced partial resorption of the trabecular bone in the femurs of ColI(2.3)+/Rs1+ mice, but no significant changes in the craniofacial skeleton. Bone fibrosis remained evident after treatment. Notably, LGK974 caused significant bone loss in control mice. These results provide new insights into the role of Wnt and Gs-signaling in fibrosis and bone formation in a mouse model of Gs-GPCR pathway overactivation.

20.
Int J Mol Sci ; 25(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38612545

ABSTRACT

HIV-1 capsid protein (CA) is the molecular target of the recently FDA-approved long acting injectable (LAI) drug lenacapavir (GS-6207). The quick emergence of CA mutations resistant to GS-6207 necessitates the design and synthesis of novel sub-chemotypes. We have conducted the structure-based design of two new sub-chemotypes combining the scaffold of GS-6207 and the N-terminal cap of PF74 analogs, the other important CA-targeting chemotype. The design was validated via induced-fit molecular docking. More importantly, we have worked out a general synthetic route to allow the modular synthesis of novel GS-6207 subtypes. Significantly, the desired stereochemistry of the skeleton C2 was confirmed via an X-ray crystal structure of the key synthetic intermediate 22a. Although the newly synthesized analogs did not show significant potency, our efforts herein will facilitate the future design and synthesis of novel subtypes with improved potency.


Subject(s)
Anti-HIV Agents , HIV-1 , Capsid Proteins/genetics , HIV-1/genetics , Molecular Docking Simulation , Anti-HIV Agents/pharmacology , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...