Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
J Anim Ecol ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107996

ABSTRACT

Marine ecosystems are experiencing growing pressure from multiple threats caused by human activities, with far-reaching consequences for marine food webs. Determining the effects of multiple stressors is complex, in part, as they can affect different aspects of biological organisation (behaviour, individual traits and demographic rates). Determining the combined effects of stressors, through different biological pathways, is key to predict the consequences for the viability of populations threatened by global change. Due to their position in the food chain, top predators such as seabirds are considered more sensitive to environmental changes. Climate change is affecting the prey resources available for seabirds, through bottom-up effects, while organic pollutants can bioaccumulate in food chains with the greatest impacts on top predators. However, knowledge of their combined effects on population dynamics is scarce. Using a path analysis, we quantify the effects of climate change and pollution on the survival of adult great black-backed gulls, both directly and through effects of individuals' body mass. Warmer ocean temperatures in gulls' winter foraging areas in the North Sea were correlated with higher survival, potentially explained by shifts in prey availability associated with global climate change. We also found support for indirect negative effects of organochlorines, highly toxic pollutants to seabirds, on survival, which acted, in part, through a negative effect on body mass. The results from this path analysis highlight how, even for such long-lived species where variance in survival tends to be limited, two stressors still have had a marked influence on adult survival and illustrate the potential of path models to improve predictions of population variability under multiple stressors.

2.
J Hazard Mater ; 476: 135107, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39013322

ABSTRACT

The objectives of this research were to assess ingested plastics and accumulated heavy metals in four urban gull species. Additionally, the relationships between ingested plastics and selected demographic and health metrics were assessed. Between 2020-2021 during the non-breeding seasons, 105 gulls (46 American herring gulls (HERG, Larus argentatus smithsonianus), 39 great black-backed gulls (GBBG, Larus marinus), 16 Iceland gulls (Larus glaucoides), 4 glaucous gulls (Larus hyperboreus)) were killed at a landfill in coastal Newfoundland and Labrador, Canada, as part of separate, permitted kill-to-scare operations related to aircraft safety. Birds were necropsied, the upper gastrointestinal tract contents were processed using standard techniques, and livers were analyzed for accumulated As, Cd, Hg, and Pb. The relationships between ingested plastics, demographics, and health metrics were assessed in HERG and GBBG. Across all four species, 85 % of birds had ingested at least one piece of anthropogenic debris, with 79 % ingesting at least one piece of plastic. We detected interspecific differences in plastic ingestion and hepatic trace metals, with increased ingested plastics detected in GBBG compared with HERG. For GBBG, levels of ingested plastic were relatively greater for birds with higher scaled mass index, while HERG with more ingested plastic had higher liver lead concentrations.


Subject(s)
Charadriiformes , Metals, Heavy , Plastics , Animals , Charadriiformes/metabolism , Metals, Heavy/analysis , Waste Disposal Facilities , Eating , Newfoundland and Labrador , Environmental Pollutants/analysis , Liver/metabolism , Environmental Monitoring
3.
Environ Pollut ; 359: 124563, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39019307

ABSTRACT

Gulls commonly rely on human-generated waste as their primary food source, contributing to the spread of antibiotic-resistant bacteria and their resistance genes, both locally and globally. Our understanding of this process remains incomplete, particularly in relation to its potential interaction with surrounding soil and water. We studied the lesser black-backed gull, Larus fuscus, as a model to examine the spatial variation of faecal bacterial communities, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) and its relationship with the surrounding water and soil. We conducted sampling campaigns within a connectivity network of different flocks of gulls moving across functional units (FUs), each of which represents a module of highly interconnected patches of habitats used for roosting and feeding. The FUs vary in habitat use, with some gulls using more polluted sites (notably landfills), while others prefer more natural environments (e.g., wetlands or beaches). Faecal bacterial communities in gulls from flocks that visit and spend more time in landfills exhibited higher richness and diversity. The faecal microbiota showed a high compositional overlap with bacterial communities in soil. The overlap was greater when compared to landfill (11%) than to wetland soils (6%), and much lower when compared to bacterial communities in surrounding water (2% and 1% for landfill and wetland water, respectively). The relative abundance of ARGs and MGEs were similar between FUs, with variations observed only for specific families of ARGs and MGEs. When exploring the faecal carriage of ARGs and MGEs in bird faeces relative to soil and water compartments, gull faeces were enriched in ARGs classified as High-Risk. Our results shed light on the complex dynamics of antibiotic resistance spread in wild bird populations, providing insights into the interactions among gull movement and feeding behavior, habitat characteristics, and the dissemination of antibiotic resistance determinants across environmental reservoirs.


Subject(s)
Charadriiformes , Feces , Charadriiformes/microbiology , Animals , Feces/microbiology , Drug Resistance, Microbial/genetics , Ecosystem , Microbiota/genetics , Microbiota/drug effects , Environmental Monitoring , Bacteria/genetics , Bacteria/drug effects , Anti-Bacterial Agents/pharmacology , Soil Microbiology
4.
Front Microbiol ; 15: 1423367, 2024.
Article in English | MEDLINE | ID: mdl-38933020

ABSTRACT

Deltacoronavirus, widely distributed among pigs and wild birds, pose a significant risk of cross-species transmission, including potential human epidemics. Metagenomic analysis of bird samples from Qinghai Lake, China in 2021 reported the presence of Deltacoronavirus. A specific gene fragment of Deltacoronavirus was detected in fecal samples from wild birds at a positive rate of 5.94% (6/101). Next-generation sequencing (NGS) identified a novel Deltacoronavirus strain, which was closely related to isolates from the United Arab Emirates (2018), China (2022), and Poland (2023). Subsequently the strain was named A/black-headed gull/Qinghai/2021(BHG-QH-2021) upon confirmation of the Cytochrome b gene of black-headed gull in the sample. All available genome sequences of avian Deltacoronavirus, including the newly identified BHG-QH-2021 and 5 representative strains of porcine Deltacoronavirus (PDCoV), were classified according to ICTV criteria. In contrast to Coronavirus HKU15, which infects both mammals and birds and shows the possibility of cross-species transmission from bird to mammal host, our analysis revealed that BHG-QH-2021 is classified as Putative species 4. Putative species 4 has been reported to infect 5 species of birds but not mammals, suggesting that cross-species transmission of Putative species 4 is more prevalent among birds. Recombination analysis traced BHG-QH-2021 origin to dut148cor1 and MW01_1o strains, with MW01_1o contributing the S gene. Surprisingly, SwissModle prediction showed that the optimal template for receptor-binding domain (RBD) of BHG-QH-2021 is derived from the human coronavirus 229E, a member of the Alphacoronavirus, rather than the anticipated RBD structure of PDCoV of Deltacoronavirus. Further molecular docking analysis revealed that substituting the loop 1-2 segments of HCoV-229E significantly enhanced the binding capability of BHG-QH-2021 with human Aminopeptidase N (hAPN), surpassing its native receptor-binding domain (RBD). Most importantly, this finding was further confirmed by co-immunoprecipitation experiment that loop 1-2 segments of HCoV-229E enable BHG-QH-2021 RBD binding to hAPN, indicating that the loop 1-2 segment of the RBD in Putative species 4 is a probable key determinant for the virus ability to spill over into humans. Our results summarize the phylogenetic relationships among known Deltacoronavirus, reveal an independent putative avian Deltacoronavirus species with inter-continental and inter-species transmission potential, and underscore the importance of continuous surveillance of wildlife Deltacoronavirus.

5.
Euro Surveill ; 29(25)2024 Jun.
Article in English | MEDLINE | ID: mdl-38904109

ABSTRACT

Highly pathogenic avian influenza (HPAI) has caused widespread mortality in both wild and domestic birds in Europe 2020-2023. In July 2023, HPAI A(H5N1) was detected on 27 fur farms in Finland. In total, infections in silver and blue foxes, American minks and raccoon dogs were confirmed by RT-PCR. The pathological findings in the animals include widespread inflammatory lesions in the lungs, brain and liver, indicating efficient systemic dissemination of the virus. Phylogenetic analysis of Finnish A(H5N1) strains from fur animals and wild birds has identified three clusters (Finland I-III), and molecular analyses revealed emergence of mutations known to facilitate viral adaptation to mammals in the PB2 and NA proteins. Findings of avian influenza in fur animals were spatially and temporally connected with mass mortalities in wild birds. The mechanisms of virus transmission within and between farms have not been conclusively identified, but several different routes relating to limited biosecurity on the farms are implicated. The outbreak was managed in close collaboration between animal and human health authorities to mitigate and monitor the impact for both animal and human health.


Subject(s)
Animals, Wild , Charadriiformes , Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Phylogeny , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , Finland/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/isolation & purification , Animals, Wild/virology , Charadriiformes/virology , Disease Outbreaks/veterinary , Farms , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/mortality , Orthomyxoviridae Infections/epidemiology , Foxes/virology , Birds/virology , Mink/virology
6.
Article in English | MEDLINE | ID: mdl-38761237

ABSTRACT

The incidence of geriatric acetabular fractures has shown a sharp increase in the last decades. The majority of patients are male, which is different to other osteoporotic fractures. The typical pathomechanism generally differs from acetabular fractures in young patients regarding both the direction and the amount of force transmission to the acetabulum via the femoral head. Geriatric fractures very frequently involve anterior structures of the acetabulum, while the posterior wall is less frequently involved. The anterior column and posterior hemitransverse (ACPHT) fracture is the most common fracture type. Superomedial dome impactions (gull sign) are a frequent feature in geriatric acetabular fractures as well. Treatment options include nonoperative treatment, internal fixation and arthoplasty. Nonoperative treatment includes rapid mobilisation and full weighbearing under analgesia and is advisable in non- or minimally displaced fractures without subluxation of the hip joint and without positive gull sign. Open reduction and internal fixation of geriatric acetabular fractures leads to good or excellent results, if anatomic reduction is achieved intraoperatively and loss of reduction does not occur postoperatively. Primary arthroplasty of geriatric acetabular fractures is a treatment option, which does not require anatomic reduction, allows for immediate postoperative full weightbearing and obviates several complications, which are associated with internal fixation. The major issue is the fixation of the acetabular cup in the fractured bone. Primary cups, reinforcement rings or a combination of arthroplasty and internal fixation may be applied depending on the acetabular fracture type.

7.
J Parasitol ; 110(3): 206-209, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38802105

ABSTRACT

Toxoplasma gondii is a zoonotic protozoan parasite that infects most warm-blooded animals, including birds. Scavenging birds are epidemiologically important hosts because they can serve as indicators of environmental T. gondii levels. A rapid point-of-care (POC) test that detects antibodies to T. gondii in humans is commercially available. In this research, we assessed the ability of the human POC test to detect anti-T. gondii antibodies in 106 black vultures (Coragyps atratus) and 23 ring-billed gulls (Larus delawarensis) from Pennsylvania, USA. Serum samples were tested with the POC test and compared to the modified agglutination test (MAT) in a blinded study. Overall, anti-T. gondii antibodies were detected in 2.8% (3/106) of black vultures and 60.9% (14/23) of ring-billed gulls by the POC test. One false-positive POC test occurred in a black vulture that was negative by MAT. False-negative results were obtained in 2 black vultures and 4 ring-billed gulls that had MAT titers of 1:25 or 1:50. The sensitivity and specificity of the POC for both black vultures and ring-billed gulls combined were 95.7% and 95.5%, respectively. This is the first study using human POC tests to detect antibodies to T. gondii in birds. Further study of the rapid test as a screening tool for serological surveillance of T. gondii in birds is warranted.


Subject(s)
Agglutination Tests , Antibodies, Protozoan , Bird Diseases , Charadriiformes , Falconiformes , Toxoplasma , Toxoplasmosis, Animal , Animals , Antibodies, Protozoan/blood , Toxoplasma/immunology , Charadriiformes/parasitology , Pennsylvania/epidemiology , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/immunology , Bird Diseases/parasitology , Bird Diseases/diagnosis , Bird Diseases/epidemiology , Bird Diseases/immunology , Falconiformes/parasitology , Agglutination Tests/veterinary , Sensitivity and Specificity , Point-of-Care Testing
8.
Environ Pollut ; 350: 124001, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38642793

ABSTRACT

In the southeast and east coasts of the Republic of Korea, it is essential to monitor mercury accumulation in coastal organisms in view of the higher mercury distribution in sediments and human samples. However, mercury pollution monitoring in organisms, especially higher trophic-level organisms that can exhibit high mercury accumulation, is limited. Here, we examined the applicability of the eggs of the black-tailed gull (Larus crassirostris), which belongs to a high trophic level, for mercury monitoring in coastal areas. Breeding sites were selected in West, Southeast, and East Seas with different mercury concentrations in other matrices (sediment and biological samples of residents). The 5-year mean total mercury concentration in eggs collected during the breeding seasons from 2016 to 2020 was lower in Baengnyeongdo (705 ± 81 ng/g dry weight (dry), West Sea) than in Hongdo (1,207 ± 214 ng/g dry, Southeast Sea) and Ulleungdo (1,095 ± 95 ng/g dry, East Sea). The different patterns of mercury concentration in gull eggs among the breeding sites was consistent with those in the other matrices among the coastal areas. These results support the applicability of the black-tailed gull egg as an indicator for establishing a monitoring framework in the coastal areas of the Republic of Korea.


Subject(s)
Charadriiformes , Environmental Monitoring , Mercury , Ovum , Mercury/analysis , Republic of Korea , Charadriiformes/metabolism , Environmental Monitoring/methods , Animals , Ovum/chemistry , Water Pollutants, Chemical/analysis , Environmental Pollutants/analysis
9.
Mar Pollut Bull ; 202: 116327, 2024 May.
Article in English | MEDLINE | ID: mdl-38581734

ABSTRACT

The increasing human population and associated urban waste pose a significant threat to wildlife. Our study focused on the Kelp gull (Larus dominicanus), known for opportunistic feeding in anthropogenic areas, particularly urban landfills. We assessed the physiological status of Kelp gulls at a landfill and compared it with gulls from a protected natural site. Results indicate that gulls from the anthropogenic site exhibited lower levels of key physiological parameters linked to diet, including triglycerides, total proteins, uric acid, plasmatic enzyme activity, body condition index, and leukocyte count, in comparison to their counterparts from the natural site. These findings suggest that Kelp gulls experience inferior physical and nutritional conditions when utilizing anthropogenic sites like landfills governmentally managed.


Subject(s)
Charadriiformes , Waste Disposal Facilities , Animals , Charadriiformes/physiology , Environmental Monitoring
10.
Horm Behav ; 163: 105549, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663281

ABSTRACT

The peptide hormone prolactin plays an important role in the expression of parental care behaviours across bird and mammal taxa. While a great deal is known about how plasma prolactin concentrations vary across the reproductive cycle, the few studies that investigate how prolactin relates to individual-level variation in parental care have reported mixed results. We argue that, since parental care is also affected by social interactions and environmental constraints, prolactin may better reflect behaviours that are indirectly related to parenting than the absolute level of care that is eventually expressed. In this study, we tested for associations between plasma prolactin and the expression of both parental care and proximity to the partner in incubating black-headed gulls, Chroicocephalus ridibundus. Baseline prolactin levels increased with calendar date but were unrelated to incubation behaviours. However, parents who showed a weaker decrease in prolactin to an acute stressor spent more time in close proximity to their incubating partner while not on the nest themselves, suggesting that individual variation in stress-induced prolactin changes reflect differences in parents' tendency to be closely associated with their partner and the joint nesting attempt. Baseline and stress-induced levels of the stress hormone corticosterone were unrelated to both prolactin levels and parental behaviours, suggesting that this hormone is not a strong moderator of parental care in black-headed gulls. One potential explanation for the link between prolactin dynamics and partner proximity is that prolactin reflects parental motivation to provide parental care or retain contact with the breeding partner, but further work is needed to directly test this hypothesis.


Subject(s)
Charadriiformes , Maternal Behavior , Nesting Behavior , Paternal Behavior , Prolactin , Animals , Charadriiformes/physiology , Charadriiformes/blood , Prolactin/blood , Female , Nesting Behavior/physiology , Paternal Behavior/physiology , Maternal Behavior/physiology , Male , Corticosterone/blood
11.
Environ Pollut ; 347: 123777, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38490523

ABSTRACT

Plastic ingestion presents many potential avenues of risk for wildlife. Understanding which species and environments are most exposed to plastic pollution is a critical first step in investigating the One Health implications of plastic exposure. The objectives of this study were the following: 1) Utilize necropsy as part of ongoing passive disease surveillance to investigate ingested mesoplastics in birds collected in Ontario and Nunavut, and examine the relationships between bird-level factors and ingested debris; 2) evaluate microplastic ingestion compared to ingested mesodebris in raptors; and 3) identify potential sentinel species for plastic pollution monitoring in understudied freshwater and terrestrial (inland) environments. Between 2020 and 2022, 457 free-ranging birds across 52 species were received for postmortem examination. The upper gastrointestinal tracts were examined for mesoplastics and other debris (>2 mm) using standard techniques. Twenty-four individuals (5.3%) retained mesodebris and prevalence varied across species, with foraging technique, food type, and foraging substrate all associated with different metrics of debris ingestion. The odds of ingesting any type of anthropogenic mesodebris was nine times higher for non-raptorial species than for raptors. For a subset of raptors (N = 54) across 14 species, the terminal portion of the distal intestinal tract was digested with potassium hydroxide and microparticles were assessed using stereo-microscopy. Although only one of 54 (1.9%) raptors included in both analyses retained mesodebris in the upper gastrointestinal tract, 24 (44.4%) contained microparticles in the distal intestine. This study demonstrates that a variety of Canadian bird species ingest anthropogenic debris in inland systems, and suggests that life history and behaviour are associated with ingestion risk. For raptors, the mechanisms governing exposure and ingestion of mesoplastics appear to be different than those that govern microplastics. Herring gulls (Larus argentatus) and ring-billed gulls (Larus delawarensis) are proposed as ideal sentinels for plastic pollution monitoring in inland systems.


Subject(s)
Charadriiformes , Plastics , Animals , Birds , Eating , Environmental Monitoring/methods , Fresh Water , Microplastics , Ontario , Plastics/analysis
12.
Environ Pollut ; 347: 123739, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38458513

ABSTRACT

Mercury (Hg) is a global pollutant, which particularly affects aquatic ecosystems, both marine and freshwater. Top-predators depending on these environments, such as seabirds, are regarded as suitable bioindicators of Hg pollution. In the Ebro Delta (NE Iberian Peninsula), legacy Hg pollution from a chlor-alkali industry operating in Flix and located ca. 100 km upstream of the Ebro River mouth has been impacting the delta environment and the neighboring coastal area. Furthermore, levels of Hg in the biota of the Mediterranean Sea are known to be high compared to other marine areas. In this work we used a Hg stable isotopes approach in feathers to understand the processes leading to different Hg concentrations in three Laridae species breeding in sympatry in the area (Audouin's gull Ichthyaetus audouinii, black-headed gull Chroicocephalus ridibundus, common tern Sterna hirundo). These species have distinct trophic ecologies, exhibiting a differential use of marine resources and freshwater resources (i.e., rice paddies prey). Moreover, for Audouin's gull, in which in the Ebro Delta colony temporal differences in Hg levels were documented previously, we used Hg stable isotopes to understand the impact of anthropogenic activities on Hg levels in the colony over time. Hg stable isotopes differentiated the three Laridae species according to their trophic ecologies. Furthermore, for Audouin's gull we observed temporal variations in Hg isotopic signatures possibly owing to anthropogenic-derived pollution in the Ebro Delta. To the best of our knowledge this is the first time Hg stable isotopes have been reported in seabirds from the NW Mediterranean.


Subject(s)
Charadriiformes , Mercury , Animals , Mercury Isotopes , Ecosystem , Environmental Monitoring , Plant Breeding , Mercury/analysis , Isotopes
13.
Viruses ; 16(2)2024 02 12.
Article in English | MEDLINE | ID: mdl-38400060

ABSTRACT

Avian influenza virus (AIV) is a pathogen with zoonotic and pandemic potential. Migratory birds are natural reservoirs of all known subtypes of AIVs, except for H17N10 and H18N11, and they have been implicated in previous highly pathogenic avian influenza outbreaks worldwide. This study identified and characterized the first isolate of the H13N6 subtype from a Vega gull (Larus vegae mongolicus) in South Korea. The amino acid sequence of hemagglutinin gene showed a low pathogenic AIV subtype and various amino acid substitutions were found in the sequence compared to the reference sequence and known H13 isolates. High sequence homology with other H13N6 isolates was found in HA, NA, PB1, and PA genes, but not for PB2, NP, M, and NS genes. Interestingly, various point amino acid mutations were found on all gene segments, and some are linked to an increased binding to human-type receptors, resistance to antivirals, and virulence. Evolutionary and phylogenetic analyses showed that all gene segments are gull-adapted, with a phylogeographic origin of mostly Eurasian, except for PB2, PA, and M. Findings from this study support the evidence that reassortment of AIVs continuously occurs in nature, and migratory birds are vital in the intercontinental spread of avian influenza viruses.


Subject(s)
Charadriiformes , Influenza A virus , Influenza in Birds , Animals , Humans , Phylogeny , Birds
14.
Microbiome ; 12(1): 8, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191447

ABSTRACT

BACKGROUND: Curbing the potential negative impact of antibiotic resistance, one of our era's growing global public health crises, requires regular monitoring of the resistance situations, including the reservoir of resistance genes. Wild birds, a possible bioindicator of antibiotic resistance, have been suggested to play a role in the dissemination of antibiotic-resistant bacteria. Therefore, this study was conducted with the objective of determining the phenotypic and genotypic antibiotic resistance profiles of 100 Escherichia coli isolates of gull and pigeon origin by using the Kirby-Bauer disk diffusion method and PCR. Furthermore, the genetic relationships of the isolates were determined by RAPD-PCR. RESULTS: Phenotypic antibiotic susceptibility testing revealed that 63% (63/100) and 29% (29/100) of E. coli isolates were resistant to at least one antibiotic and multidrug-resistant (MDR), respectively. With the exception of cephalothin, to which the E. coli isolates were 100% susceptible, tetracycline (52%), kanamycin (38%), streptomycin (37%), ampicillin (28%), chloramphenicol (21%), trimethoprim/sulfamethoxazole (19%), gentamicin (13%), enrofloxacin (12%) and ciprofloxacin (12%) resistances were detected at varying degrees. Among the investigated resistance genes, tet(B) (66%), tet(A) (63%), aphA1 (48%), sul3 (34%), sul2 (26%), strA/strB (24%) and sul1 (16%) were detected. Regarding the genetic diversity of the isolates, the RAPD-PCR-based dendrograms divided both pigeon and gull isolates into five different clusters based on a 70% similarity threshold. Dendrogram analysis revealed 47-100% similarities among pigeon-origin strains and 40-100% similarities among gull-origin E.coli strains. CONCLUSIONS: This study revealed that gulls and pigeons carry MDR E. coli isolates, which may pose a risk to animal and human health by contaminating the environment with their feces. However, a large-scale epidemiological study investigating the genetic relationship of the strains from a "one health" point of view is warranted to determine the possible transmission patterns of antibiotic-resistant bacteria between wild birds, the environment, humans, and other hosts. Video Abstract.


Subject(s)
Birds , Escherichia coli , Animals , Humans , Escherichia coli/genetics , Random Amplified Polymorphic DNA Technique , Genotype , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial
15.
Animals (Basel) ; 14(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38254371

ABSTRACT

In this study, GPS trackers were attached to black-tailed gulls (Larus crassirostris) breeding on five islands in Republic of Korea during April and May 2021, and their flight frequency, behavioral range, and flight altitude were compared during and after the breeding season. During the breeding season, the flight frequency was lowest on Dongman Island (28.7%), where mudflats were distributed nearby, and the range of activity was narrow. In contrast, it tended to be high on Gungsi Island (52%), where the breeding colony was far from land, resulting in a wider range of activity. Although the flight frequency on Dongman Island increased post-breeding season (42.7%), it decreased on other islands. The mean flight altitude during the breeding season was lowest on Dongman Island and highest on Napdaegi Island. In most breeding areas, the mean flight altitude during the post-breeding season was higher than that during the breeding season. However, the lead flight altitude was lower during the non-breeding season compared to that in the breeding season. The home range expanded after the breeding season, with no significant difference in lead time between the breeding and non-breeding seasons. Our findings reveal that black-tailed gulls exhibit varying home ranges and flight altitudes depending on season and geographical location. As generalists, gulls display flexible responses to environmental changes, indicating that flight behavior adapts to the evolving environment over time and across regions.

16.
Environ Pollut ; 343: 123119, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38092342

ABSTRACT

Since the 1970s, wildlife managers have prioritized the recovery of Great Lakes ecosystems from contamination by Persistent Organic Pollutants (POPs). Monitoring and quantifying the region's recovery is challenged by the diversity of legacy contaminants in the environment and the lack of benchmarks for their potential biological effects. We address this gap by introducing the Wildlife Environmental Quality Index (WEQI) based on prior water and sediment quality indices. The tool summarizes, in a single score, the exposure of wildlife to harmful levels of multiple contaminants - with harmful levels set by published guidelines for protecting piscivorous wildlife from biological impacts. We applied the new index to a combined Canadian and American dataset of Herring Gull (Larus argentatus) egg data to elucidate trends in wildlife for eight legacy industrial pollutants and insecticides in the Great Lakes. Environmental quality of the Great Lakes region (as indexed by WEQI) improved by 18% between 2002 and 2017. Improvement came from reductions in both the scope of contamination (the number of guideline-exceeding contaminants) and its amplitude (the average size of guideline exceedances) at bird colonies. But recovery was unequal among lakes, with Lake Erie showing no improvement at one extreme. Weakly- or non-recovering lakes (Erie, Ontario, Huron) were marked by inconsistent improvement in scope and amplitude, likely due to ongoing loading, sediment resuspension and other stressors reported elsewhere. Fast-recovering lakes (Superior and Michigan), meanwhile, improved in both scope and amplitude. Contrasting trends and contaminant profiles (e.g., exceedances of PCBs versus DDTs) highlight the importance of lake-specific management for equalizing recoveries. Lower environmental quality at American than Canadian colonies, particularly in Lake Huron, further suggest uneven success in - and opportunities for - the binational management of wildlife exposure to legacy contaminants.


Subject(s)
Charadriiformes , Water Pollutants, Chemical , Animals , Animals, Wild , Lakes , Ecosystem , Water Pollutants, Chemical/analysis , Great Lakes Region , Ontario , Environmental Monitoring
17.
Sci Total Environ ; 912: 168762, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38007121

ABSTRACT

Wildlife human interactions within cities are becoming more common with consequences for pathogen transmission and human health. Large gulls are opportunistic feeders, adapted to coexist with humans in urban environments, and are potential vectors for spread and transmission of pathogens, including antimicrobial-resistant bacteria. We investigated the potential role that urban gulls play in the spread and dispersal of these bacteria. We analysed 129 faecal swabs from yellow-legged gulls (Larus michahellis) of different ages (56 adults and 73 immatures) during the breeding period from three years in the highly populated city of Barcelona (northeastern Spain). Thirteen individuals tested positive for the pathogenic bacteria (Escherichia coli, Listeria monocytogenes, Campylobacter jejuni), including antibiotic-resistant strains. We modelled the potential spatial spread of pathogens using the GPS trajectories of 58 yellow-legged gulls (23 adults, 35 immature individuals), which included the thirteen individuals that tested positive for pathogenic bacteria. By overlapping the spatially explicit pathogen dispersal maps with the distribution of urban installations sensitive at risk of possible pathogen spillover (e.g. elder and medical centres, markets, food industries, kindergartens, or public water sources), we identified potential areas at risk of pathogen spillover. Pathogens may be potentially spread to municipalities beyond Barcelona city borders. The results revealed that immature gulls dispersed pathogens over larger areas than adults (maximum dispersal distances of 167 km versus 53.2 km, respectively). Recreational urban water sources were the most sensitive habitats visited by GPS-tagged gulls that tested positive, followed by schools. Combining GPS movement data with pathogen analytics allows spatially explicit maps to be generated using a One Health approach that can help urban and public health management within large cities, such as Barcelona, and identify areas used by humans that are sensitive to pathogen spillover from gulls.


Subject(s)
Charadriiformes , Animals , Humans , Aged , Charadriiformes/microbiology , Anti-Bacterial Agents , Spatial Analysis , Escherichia coli , Water
18.
Gen Comp Endocrinol ; 345: 114390, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37844650

ABSTRACT

Wild animals have been increasingly exposed to a wide range of stressors, mainly due to the intensification of human activities and habitat modifications. Consequently, new tools in order to assess the physiological and health status of wild animals have been developed. In particular, glucocorticoids have received a special attention. Primarily metabolic hormones, they are also used to evaluate the stress level of organisms. While historically measured in blood samples, new less-invasive methods have been recently developed to measure glucocorticoids in matrices such as faeces, hairs/feathers, or saliva. To date, measurements in saliva are still in their infancy despite the numerous advantages of the matrix: non-invasive, reflects the biologically active portion of glucocorticoids, allows to measure both baseline and stress-induced levels. In addition, most studies using saliva have been performed on domestic and captive animals, and recent development in wild animals have focused on mammals. Here, we show, for the first time, that saliva could also be reliably used in free-ranging birds, as glucocorticoid levels in saliva strongly correlated with plasma levels. This promising result opens new avenues for a non-invasive sampling method to assess health status of wild birds in conservation biology and ecology.


Subject(s)
Corticosterone , Glucocorticoids , Animals , Humans , Glucocorticoids/metabolism , Animals, Wild/metabolism , Birds/metabolism , Feathers/metabolism , Mammals/metabolism
19.
Sci Total Environ ; 913: 169732, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38160818

ABSTRACT

Recently, compound-specific isotope analysis (CSIA) using the amino acid nitrogen stable isotope ratio (δ15NAAs) has been widely used for accurate estimation of trophic position (TP). In addition, a quantitative fatty acid signature analysis (QFASA) offers insights into diet sources. In this study, we used these techniques to estimate the TP for seabirds that rely on diverse food sources across multiple ecosystems. This allows for the proper combination of factors used in TP calculation which are different for each ecosystem. The approach involved the application of a multi-mixing trophic discrimination factor (TDF) and mixing ß which is a Δδ15N between trophic and source amino acid of primary producer. Since the black-tailed gulls (BTGs) are income-breeding seabirds, which rely on energy sources obtained around their breeding sites, they and their eggs could be useful bioindicators for environmental monitoring. However, the ecological properties of BTGs such as habitats, diets, and TP are not well known due to their large migration range for wintering or breeding and their feeding habits on both aquatic and terrestrial prey. In this study, the eggs were used for estimating TP and for predicting TP of mother birds to overcome difficulties such as capturing birds and collecting non-invasive tissue samples. Eggs, sampled over a decade from three Korean islands, showed spatial differences in diet origin. Considering both the food chain and physiology of BTG, the TP of eggs was estimated to be 3.3-4.0. Notably, the TP was significantly higher at site H (3.8 ± 0.1) than at site B (3.5 ± 0.2), which indicated a higher contribution of marine diet as confirmed by QFASA. Using a reproductive shift of δ15NAAs, the TP of the mother birds was predicted to be 3.6-4.3, positioning them as the top predator in the food web. The advanced integration of multiple approaches provides valuable insights into bird ecology.


Subject(s)
Charadriiformes , Animals , Charadriiformes/metabolism , Ecosystem , Amino Acids/metabolism , Fatty Acids/metabolism , Food Chain , Nitrogen Isotopes/analysis , Birds/metabolism
20.
Genome Biol Evol ; 15(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37590950

ABSTRACT

Amidst the current biodiversity crisis, the availability of genomic resources for declining species can provide important insights into the factors driving population decline. In the early 1990s, the black-legged kittiwake (Rissa tridactyla), a pelagic gull widely distributed across the arctic, subarctic, and temperate zones, suffered a steep population decline following an abrupt warming of sea surface temperature across its distribution range and is currently listed as Vulnerable by the International Union for the Conservation of Nature. Kittiwakes have long been the focus for field studies of physiology, ecology, and ecotoxicology and are primary indicators of fluctuating ecological conditions in arctic and subarctic marine ecosystems. We present a high-quality chromosome-level reference genome and annotation for the black-legged kittiwake using a combination of Pacific Biosciences HiFi sequencing, Bionano optical maps, Hi-C reads, and RNA-Seq data. The final assembly spans 1.35 Gb across 32 chromosomes, with a scaffold N50 of 88.21 Mb and a BUSCO completeness of 97.4%. This genome assembly substantially improves the quality of a previous draft genome, showing an approximately 5× increase in contiguity and a more complete annotation. Using this new chromosome-level reference genome and three more chromosome-level assemblies of Charadriiformes, we uncover several lineage-specific chromosome fusions and fissions, but find no shared rearrangements, suggesting that interchromosomal rearrangements have been commonplace throughout the diversification of Charadriiformes. This new high-quality genome assembly will enable population genomic, transcriptomic, and phenotype-genotype association studies in a widely studied sentinel species, which may provide important insights into the impacts of global change on marine systems.


Subject(s)
Charadriiformes , Animals , Charadriiformes/genetics , Ecosystem , Gene Rearrangement , Genomics , Chromosomes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL