Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 592
Filter
1.
Heliyon ; 10(19): e38302, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39386817

ABSTRACT

Background: The gut microbiota thrives in a complex ecological environment and its dynamic balance is closely related to host health. Recent studies have shown that the occurrence of various diseases including prostate inflammation is related to the dysregulation of the gut microbiome. Objective: This review focus on the mechanisms by which the gut microbiota induces prostate inflammation and benign prostatic hyperplasia and its therapeutic implications. Materials and methods: Publications related to gut microbiota, prostate inflammation, and benign prostatic hyperplasia (BPH) until April 2023 were systematically reviewed. The research questions were formulated using the Problem, Intervention, Comparison/Control, and Outcome (PICO) frameworks. Results: Fifteen articles covering the relationship between the gut microbiota and prostate inflammation/BPH, the mechanisms by which the gut microbiota influences prostate inflammation and BPH, and potential therapeutic approaches targeting the gut microbiota for these conditions were included. Conclusion: Short-chain fatty acids (SCFAs), which are metabolites of the intestinal microbiota, protect the integrity of the intestinal barrier, regulate immunity, and inhibit inflammation. However, dysregulation of the gut microbiota significantly reduces the SCFA content in feces and impairs the integrity of the gut barrier, leading to the translocation of bacteria and bacterial components such as lipopolysaccharide, mediating the development of prostate inflammation through microbe-associated molecular patterns (MAMPs).

2.
J Adv Res ; 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39374734

ABSTRACT

INTRODUCTION: In responses to antibiotics exposure, gut dysbiosis is a risk factor not only for pathogen infection but also for facilitating pathobiont expansion, resulting in increased inflammatory responses in the gut and distant organs. However, how this process is regulated has not been fully elucidated. OBJECTIVES: In this study, we investigated the role of sialic acid, a host-derived carbohydrate, in the pathogenesis of gut dysbiosis-derived inflammation in distant organs. METHODS: Ampicillin (Amp)-induced gut dysbiotic mice were treated with N-glycolylneuraminic acid (Neu5Gc) and N-acetylneuraminic acid (Neu5Ac) for three weeks to assess the role of sialic acids in mastitis. The underlying mechanism by which sialic acids regulate mastitis was explored using 16S rRNA sequencing, transcriptomics and employed multiple molecular approaches. RESULTS: Administration of Neu5Ac and Neu5Gc exacerbated gut dysbiosis-induced mastitis and systemic inflammation. The gut dysbiosis caused by Amp was also aggravated by sialic acid. Notably, increased Enterococcus expansion, which was positively correlated with inflammatory markers, was observed in both Neu5Ac- and Neu5Gc-treated gut dysbiotic mice. Treatment of mice with Enterococcus cecorum (E. cecorum) aggravated gut dysbiosis-induced mastitis. Mechanically, sialic acid-facilitated E. cecorum expansion promoted muramyl dipeptide (MDP) release, which induced inflammatory responses by activating the NOD2-RIP2-NF-κB axis. CONCLUSIONS: Collectively, our data reveal a role of sialic acid-facilitated postantibiotic pathobiont expansion in gut dysbiosis-associated inflammation, highlighting a potential strategy for disease prevention by regulating the MDP-NOD2-RIP2 axis.

3.
Cardiovasc Toxicol ; 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377990

ABSTRACT

Myocardial infarction (MI) is a lethal cardiovascular disease worldwide. Emerging evidence has revealed the critical role of gut dysbiosis and impaired gut-brain axis in the pathological progression of MI. Tanshinone IIA (Tan IIA), a traditional Chinese medicine, has been demonstrated to exert therapeutic effects for MI. However, the effects of Tan IIA on gut-brain communication and its potential mechanisms post-MI are still unclear. In this study, we initially found that Tan IIA significantly reduced myocardial inflammation, apoptosis and fibrosis, therefore alleviating hypertrophy and improving cardiac function following MI, suggesting the cardioprotective effect of Tan IIA against MI. Additionally, we observed that Tan IIA improved the gut microbiota as evidenced by changing the α-diversity and ß-diversity, and reduced histopathological impairments by decreasing inflammation and permeability in the intestinal tissues, indicating the substantial improvement of Tan IIA in gut function post-MI. Lastly, Tan IIA notably reduced lipopolysaccharides (LPS) level in serum, inflammation responses in paraventricular nucleus (PVN) and sympathetic hyperexcitability following MI, suggesting that restoration of Tan IIA on MI-induced brain alterations. Collectively, these results indicated that the cardioprotective effects of Tan IIA against MI might be associated with improvement in gut-brain axis, and LPS might be the critical factor linking gut and brain. Mechanically, Tan IIA-induced decreased intestinal damage reduced LPS release into serum, and reduced serum LPS contributes to decreased neuroinflammation with PVN and sympathetic inactivation, therefore protecting the myocardium against MI-induced injury.

4.
J Pineal Res ; 76(6): e13007, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39269018

ABSTRACT

Intestinal barrier dysfunction with high serum endotoxin is common in patients with liver fibrosis, but the mechanisms underlying liver fibrosis remain unclear. Melatonin is a well-recognized antioxidant and an anti-inflammatory agent that benefits multiple organs. However, the beneficial effects of melatonin on gut leakiness-associated liver fibrosis have not been systemically studied. Here, we investigated the protective mechanisms of melatonin against thioacetamide (TAA)-induced gut barrier dysfunction and hepatic fibrosis by focusing on posttranslational protein modifications through the gut-liver axis. Our results showed that gut leakiness markers, including decreased gut tight/adherens junction proteins (TJ/AJs) with increased intestinal deformation, apoptosis, and serum endotoxin, were observed early at 1 week after TAA exposure. Liver injury, apoptosis, and fibrosis were prominent at 2 and 4 weeks. Mechanistically, we found that gut TJ/AJs were hyper-acetylated, followed by ubiquitin-dependent proteolysis, leading to their degradation and gut leakiness. Gut dysbiosis, hepatic protein hyper-acetylation, and SIRT1 downregulation were also observed. Consistently, intestinal Sirt1 deficiency greatly enhanced protein hyper-acetylation, gut leakiness, endotoxemia, and liver fibrosis. Pretreatment with melatonin prevented or improved all these changes in both the gut and liver. Furthermore, melatonin blunted protein acetylation and injury in TAA-exposed T84 human intestinal and AML12 mouse liver cells. Overall, this study demonstrated novel mechanisms by which melatonin prevents gut leakiness and liver fibrosis through the gut-liver axis by attenuating the acetylation of intestinal and hepatic proteins. Thus, melatonin consumption can become a potentially safe supplement for liver fibrosis patients by preventing protein hyper-acetylation and gut leakiness.


Subject(s)
Liver Cirrhosis , Melatonin , Sirtuin 1 , Thioacetamide , Thioacetamide/toxicity , Sirtuin 1/metabolism , Melatonin/pharmacology , Animals , Liver Cirrhosis/metabolism , Liver Cirrhosis/chemically induced , Mice , Liver/metabolism , Liver/drug effects , Liver/pathology , Male , Mice, Inbred C57BL , Acetylation/drug effects , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology
5.
BMC Microbiol ; 24(1): 342, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271995

ABSTRACT

PURPOSE: To determine the association of gut microbiome diversity and sight-threatening diabetic retinopathy (STDR) amongst patients with pre-existing diabetes. METHODS: A cross-sectional study was performed, wherein 54 participants selected in total were placed into cases cohort if diagnosed with STDR and those without STDR but had a diagnosis of diabetes mellitus of at least 10-year duration were taken as controls. Statistical analysis comparing the gut microbial alpha diversity between cases and control groups as well as patients differentiated based on previously hypothesized Bacteroidetes/Firmicutes(B/F) ratio with an optimal cut-off 1.05 to identify patients with STDR were performed. RESULTS: Comparing gut microbial alpha diversity did not show any difference between cases and control groups. However, statistically significant difference was noted amongst patients with B/F ratio ≥1.05 when compared to B/F ratio < 1.05; ACE index [Cut-off < 1.05:773.83 ± 362.73; Cut-off > 1.05:728.03 ± 227.37; p-0.016]; Chao1index [Cut-off < 1.05:773.63 ± 361.88; Cut-off > 1.05:728.13 ± 227.58; p-0.016]; Simpson index [Cut-off < 1.05:0.998 ± 0.001; Cut-off > 1.05:0.997 ± 0.001; p-0.006]; Shannon index [Cut-off < 1.05:6.37 ± 0.49; Cut-off > 1.05:6.10 ± 0.43; p-0.003]. Sub-group analysis showed that cases with B/F ratio ≥ 1.05, divided into proliferative diabetic retinopathy (PDR) and clinically significant macular edema (CSME), showed decreased diversity compared to controls (B/F ratio < 1.05). For PDR, all four diversity indices significantly decreased (p < 0.05). However, for CSME, only Shannon and Simpson indices showed significant decrease in diversity (p < 0.05). CONCLUSIONS: Based on clinical diagnosis, decreasing gut microbial diversity was observed among patients with STDR, although not statistically significant. When utilizing B/F ratio, the decreasing gut microbial diversity in STDR patients seems to be associated due to species richness and evenness in PDR when compared to decreasing species richness in CSME.


Subject(s)
Diabetic Retinopathy , Gastrointestinal Microbiome , Humans , Diabetic Retinopathy/microbiology , Male , Female , Cross-Sectional Studies , Middle Aged , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Adult , Bacteroidetes/isolation & purification , Bacteroidetes/genetics , Bacteroidetes/classification , Aged , Case-Control Studies , Biodiversity , Firmicutes/isolation & purification , Firmicutes/classification , Firmicutes/genetics
6.
J Neuroinflammation ; 21(1): 224, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39277768

ABSTRACT

BACKGROUND: Gut microbiota dysbiosis is closely associated with psychiatric disorders such as depression and anxiety (DA). In our preliminary study, fecal microbiota transplantation from volunteers with psychological stress and subclinical symptoms of depression (Vsd) induced DA-like behaviors in mice. Escherichia fergusonii (Esf) was found to be more abundant in the feces of Vsd compared to healthy volunteers. Therefore, we investigated the effect of Esf on DA-like behavior and neuroinflammation in mice with and without celiac vagotomy. METHODS AND RESULTS: Orally gavaged Esf increased DA-like behaviors, tumor necrosis factor (TNF)-α, and toll-like receptor-4 (TLR4) expression, and NF-κB+Iba1+ and lipopolysaccharide (LPS)+Iba1+ cell populations, while decreasing serotonin, 5-HT1A receptor, and brain-derived neurotrophic factor (BDNF) expression in the hippocampus and prefrontal cortex. However, celiac vagotomy attenuated Esf-induced DA-like behavior and neuroinflammation. Orally gavaged extracellular vesicle (EV) from Vsd feces (vfEV) or Esf culture (esEV) induced DA-like behavior and inflammation in hippocampus, prefrontal cortex and colon. However, celiac vagotomy attenuated vfEV- or esEV-induced DA-like behaviors and inflammation in the brain alone, while vfEV- or esEV-induced blood LPS and TNF-α levels, colonic TNF-α expression and NF-κB-positive cell number, and fecal LPS level were not. Although orally gavaged fluorescence isothiocyanate-labeled esEV was translocated into the blood and hippocampus, celiac vagotomy decreased its translocation into the hippocampus alone. CONCLUSIONS: esEVs may be translocated into the brain via the vagus nerve and bloodstream, subsequently inducing TNF-α expression and suppressing serotonin, its receptor, and BDNF expression through the activation of TLR4-mediated NF-κB signaling, thereby contributing to DA pathogenesis.


Subject(s)
Depression , Extracellular Vesicles , Neuroinflammatory Diseases , Vagus Nerve , Animals , Mice , Vagus Nerve/metabolism , Extracellular Vesicles/metabolism , Humans , Male , Neuroinflammatory Diseases/metabolism , Depression/metabolism , Depression/etiology , Mice, Inbred C57BL , Vagotomy
7.
J Am Heart Assoc ; 13(18): e034538, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39248279

ABSTRACT

BACKGROUND: The process underlying Fontan pathophysiology is multifactorial and may include gut dysbiosis (GD). We investigated the presence of GD and elucidated its correlation with Fontan pathophysiology. METHODS AND RESULTS: Gut microbiomes of 155 consecutive patients with Fontan pathophysiology and 44 healthy individuals were analyzed using 16S rRNA sequencing of bacterial DNA extracted from fecal samples. GD was evaluated on the basis of α and ß diversities of the gut microbiome and was compared with natural log-transformed C-reactive protein, hemodynamics, von Willebrand factor antigen (a bacterial translocation marker), Mac-2 binding protein glycosylation isomer (a liver fibrosis indicator), peak oxygen uptake, and heart failure hospitalization. Patients with Fontan exhibited GD in terms of α and ß diversities as compared with controls (P<0.01). Reduced α diversity was associated with a failed hemodynamic phenotype, hypoxia, high natural log-transformed C-reactive protein levels, and elevated von Willebrand factor antigen and Mac-2 binding protein glycosylation isomer levels (P<0.05-0.01). In addition to elevated von Willebrand factor antigen and hypoxia, decreased α diversity was independently correlated with a high natural log-transformed C-reactive protein level (P<0.05), which was associated with liver imaging abnormalities and a heightened risk of heart failure hospitalization (P<0.01 for both). CONCLUSIONS: Patients with Fontan pathophysiology exhibited GD compared with healthy individuals, and GD was linked to failed hemodynamics and systemic inflammation with a poor prognosis. Therefore, GD may play a pivotal role in a failing Fontan status, including Fontan-associated liver disease, through GD-associated systemic inflammation.


Subject(s)
Dysbiosis , Fontan Procedure , Gastrointestinal Microbiome , Humans , Male , Fontan Procedure/adverse effects , Female , Gastrointestinal Microbiome/physiology , Adolescent , Child , Heart Defects, Congenital/surgery , Case-Control Studies , Young Adult , Feces/microbiology , Hemodynamics , Biomarkers/blood , Biomarkers/metabolism , Adult
8.
Cureus ; 16(8): e66875, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39280360

ABSTRACT

Chronic obstructive pulmonary disease (COPD) represents a significant global health burden, characterized by progressive airflow limitation and exacerbations that significantly impact patient morbidity and mortality. Recent research has investigated the interplay between the gut and the lungs, known as the gut-lung axis, highlighting the role of the gut microbiome in COPD pathogenesis. Dysbiosis, characterized by microbial imbalance, has implications for COPD, influencing disease progression and susceptibility to exacerbations. This comprehensive review integrates current scientific literature on gut microbiota modulation as a therapeutic avenue for COPD management. Through a thorough discussion of studies investigating probiotics, prebiotics, synbiotics, antibiotics, dietary fiber, and fecal microbiota transplantation, this review summarizes the influence of these interventions on COPD via the gut-lung axis through the modulation of systemic inflammation, mucosal immunity, and metabolic processes. The interventions highlighted here show potential in preventing COPD exacerbations, preserving lung function, and improving patient quality of life. By compiling the latest scientific evidence, this review provides a comprehensive framework for physicians and researchers to deduce the effectiveness of gut microbiome modulation as an adjunctive therapeutic strategy in COPD management.

9.
Ageing Res Rev ; 101: 102504, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39284418

ABSTRACT

Recent research has illuminated the profound bidirectional communication between the gastrointestinal tract and the brain, furthering our understanding of neurological ailments facilitating possible therapeutic strategies. Technological advancements in high-throughput sequencing and multi-omics have unveiled significant alterations in gut microbiota and their metabolites in various neurological disorders. This review provides a thorough analysis of the role of microbiome-gut-brain axis in neurodegenerative disease pathology, linking it to reduced age-associated proteostasis. We discuss evidences that substantiate the existence of a gut-brain cross talk ranging from early clinical accounts of James Parkinson to Braak's hypothesis. In addition to understanding of microbes, the review particularly entails specific metabolites which are altered in neurodegenerative diseases. The regulatory effects of microbial metabolites on protein clearance mechanisms, proposing their potential therapeutic implications, are also discussed. By integrating this information, we advocate for a combinatory therapeutic strategy that targets early intervention, aiming to restore proteostasis and ameliorate disease progression. This approach not only provides a new perspective on the pathogenesis of neurodegenerative diseases but also highlights innovative strategies to combat the increasing burden of these age-related disorders.

10.
Exp Physiol ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264256

ABSTRACT

Hyperglycaemia, hyperlipidaemia, hypertension and obesity are the main risk factors affecting the development and prognosis of ischaemic heart disease, which is still an important cause of death today. In our study, male Sprague-Dawley rats were fed either a standard diet (SD) or a high fat and high carbohydrate diet (HF-HCD) for 8 weeks and streptozotocin (STZ) was injected at the seventh week of the feeding period. In one set of rats, a mixture of a prebiotic and probiotics (synbiotic, SYN) was administered by gavage starting from the beginning of the feeding period. Experimental myocardial ischaemia-reperfusion (30 min/60 min) was induced at the end of 8 weeks. Hyperglycaemia, hypertension and increased serum low-density lipoprotein levels occurred in SD- and HF-HCD-fed and STZ-treated rats followed for 8 weeks. Increased density of the Proteobacteria phylum was observed in rats with increased blood glucose levels, indicating intestinal dysbiosis. The severity of cardiac damage was highest in the dysbiotic HF-HCD-fed hyperglycaemic rats, which was evident with increased serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), tumour necrosis factor-α, and interleukin-6 levels, along with a decrease in ST-segment resolution index. SYN supplementation to either a normal or a high-fat high-carbohydrate diet improved gut dysbiosis, reduced anxiety, decreased CK-MB and cTnI levels, and alleviated myocardial ischaemia-reperfusion injury in hyperglycaemic rats.

11.
Behav Brain Res ; 476: 115246, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39255901

ABSTRACT

Post-traumatic stress disorder (PTSD) is a mental disorder resulting from traumatic events which are characterized primarily by anxiety and depressive disorder. In this study, we determine the role of gut bacteria in PTSD. PTSD-like symptoms were produced by single prolonged stress (SPS). SPS animals showed increased levels of anxiety as measured by the elevated plus maze test, while depressive behaviour was confirmed using sucrose preference, force swim, and tail suspension tests. Gut dysbiosis was confirmed in PTSD animals by next-generation sequencing of 16 s RNA of faecal samples, while these animals also showed increased intestinal permeability and altered intestinal ultrastructure. Probiotic treatment increases beneficial microbiota, improves intestinal health and reduces PTSD-associated anxiety and depression. We also found a decrease in cortical BDNF levels in PTSD animals, which was reversed after probiotic administration. Here, we establish the link between gut dysbiosis and PTSD and show that probiotic treatment may improve the outcome of PTSD like symptoms in mice.

12.
Front Microbiol ; 15: 1443182, 2024.
Article in English | MEDLINE | ID: mdl-39234546

ABSTRACT

Background: Numerous studies have confirmed that gut microbiota plays a crucial role in the progression of cirrhosis. However, the contribution of gut fungi in cirrhosis is often overlooked due to the relatively low abundance. Methods: We employed 16S ribosomal RNA sequencing, internal transcribed spacer sequencing, and untargeted metabolomics techniques to investigate the composition and interaction of gut bacteria, fungi, and metabolites in cirrhotic patients. Results: Cirrhotic patients exhibited significant differences in the diversity and composition of gut microbiota and their metabolites in cirrhotic patients compared to healthy individuals. Increase in pathogenic microbial genera and a decrease in beneficial microbial genera including bacteria and fungi were observed. Various clinical indexes were closely connected with these increased metabolites, bacteria, fungi. Additionally, endoscopic treatment was found to impact the gut microbiota and metabolites in cirrhotic patients, although it did not significantly alter the gut ecology. Finally, we constructed a cirrhosis diagnostic model based on different features (bacteria, fungi, metabolites, clinical indexes) with an AUC of 0.938. Conclusion: Our findings revealed the characteristics of gut microbial composition and their intricate internal crosstalk in cirrhotic patients, providing cutting-edge explorations of potential roles of gut microbes in cirrhosis.

13.
Clin Exp Med ; 24(1): 232, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39340718

ABSTRACT

Nowadays, a pathological increase in the permeability of the intestinal barrier (the so-called leaky gut) is increasingly being diagnosed. This condition can be caused by various factors, mainly from the external environment. Damage to the intestinal barrier entails a number of adverse phenomena: dysbiosis, translocation of microorganisms deep into the intestinal tissue, immune response, development of chronic inflammation. These phenomena can ultimately lead to a vicious cycle that promotes the development of inflammation and further damage to the barrier. Activated immune cells in mucosal tissues with broken barriers can migrate to other organs and negatively affect their functioning. Damaged intestinal barrier can facilitate the development of local diseases such as irritable bowel disease, inflammatory bowel disease or celiac disease, but also the development of systemic inflammatory diseases such as rheumatoid arthritis, ankylosing spondylitis, hepatitis, and lupus erythematosus, neurodegenerative or psychiatric conditions, or metabolic diseases such as diabetes or obesity. However, it must be emphasized that the causal links between a leaky gut barrier and the onset of certain diseases often remain unclear and require in-depth research. In light of recent research, it becomes crucial to prevent damage to the intestinal barrier, as well as to develop therapies for the barrier when it is damaged. This paper presents the current state of knowledge on the causes, health consequences and attempts to treat excessive permeability of the intestinal barrier.


Subject(s)
Permeability , Humans , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Dysbiosis , Intestinal Diseases/therapy , Intestinal Barrier Function
14.
Urol Clin North Am ; 51(4): 525-536, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39349020

ABSTRACT

Although antibiotics remain the mainstay of urinary tract infection treatment, many affected women can be caught in a vicious cycle in which antibiotics given to eradicate one infection predispose them to develop another. This effect is primarily mediated by disturbances in the gut microbiome that both directly enrich for uropathogenic overgrowth and induce systemic alterations in inflammation, tissue permeability, and metabolism that also decrease host resistance to infection recurrences. Here, we discuss nonantibiotic approaches to manipulating the gut microbiome to reverse the systemic consequences of antibiotics, including cranberry supplementation and other dietary approaches, probiotic administration, and fecal microbiota transplantation.


Subject(s)
Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Probiotics , Urinary Tract Infections , Humans , Urinary Tract Infections/microbiology , Urinary Tract Infections/therapy , Gastrointestinal Microbiome/physiology , Probiotics/therapeutic use , Female , Anti-Bacterial Agents/therapeutic use , Vaccinium macrocarpon
15.
Brain Imaging Behav ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39349780

ABSTRACT

This study explored potential associations of bacterial overgrowth in the small intestine, as detected based on levels of hydrogen and methane in breath after lactulose consumption, with cortical thickness and resting-state functional connectivity in different brain regions. Prospective comparison of 35 patients with Parkinson's disease (PD) involving mild cognitive impairment, 35 patients with PD with normal cognitive function and 17 healthy controls showed the largest level of hydrogen alone and the largest combined level of hydrogen and methane in patients with mild cognitive impairment. The comparison also revealed a significant negative correlation between those levels and thickness of the right insular cortex. Mild cognitive patients showed different functional connectivity between the right insula and cognition-related brain networks from normal cognitive patients. Our results suggest that bacterial overgrowth in the small intestine may contribute to cortical thinning and alterations in resting-state functional connectivity in PD involving mild cognitive impairment. These insights support and deepen previous observations implicating the gut-brain axis in the neurological disorder.

16.
Nutrients ; 16(18)2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39339815

ABSTRACT

Rheumatoid arthritis (RA) is a chronic and progressive autoimmune disease. The pathogenesis of RA is complex and involves interactions between articular cells, such as fibroblast-like synoviocytes, and immune cells. These cells secrete pro-inflammatory cytokines, chemokines, metalloproteinases and other molecules that together participate in joint degradation. The current evidence suggests the important immunoregulatory role of the gut microbiome, which can affect susceptibility to diseases and infections. An altered microbiome, a phenomenon known as gut dysbiosis, is associated with the development of inflammatory diseases. Importantly, the profile of the gut microbiome depends on dietary habits. Therefore, dietary elements and interventions can indirectly impact the progression of diseases. This review summarises the evidence on the involvement of gut dysbiosis and diet in the pathogenesis of RA.


Subject(s)
Arthritis, Rheumatoid , Dysbiosis , Gastrointestinal Microbiome , Humans , Arthritis, Rheumatoid/diet therapy , Arthritis, Rheumatoid/microbiology , Gastrointestinal Microbiome/physiology , Diet , Probiotics/administration & dosage
17.
Gut Microbes ; 16(1): 2396494, 2024.
Article in English | MEDLINE | ID: mdl-39340209

ABSTRACT

Bacterial extracellular vesicles (BEVs) are nano-sized lipid-shielded structures released by bacteria and that play an important role in intercellular communication. Their broad taxonomic origins and varying cargo compositions suggest their active participation in significant biological mechanisms. Specifically, they are involved in directly modulating microbial ecosystems, competing with other organisms, contributing to pathogenicity, and influencing the immunity of their hosts. This review examines the mechanisms that underlie the modulatory effects of BEVs on gut dynamics and immunity. Understanding how BEVs modulate microbiota composition and functional imbalances is crucial, as gut dysbiosis is implicated not only in the pathogenesis of various gastrointestinal, metabolic, and neurological diseases, but also in reducing resistance to colonization by enteric pathogens, which is particularly concerning given the current antimicrobial resistance crisis. This review summarizes recent advancements in the field of BEVs to encourage further research into these enigmatic entities. This will facilitate a better understanding of intra- and interkingdom communication phenomena and reveal promising therapeutic approaches.


Subject(s)
Bacteria , Dysbiosis , Extracellular Vesicles , Gastrointestinal Microbiome , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Humans , Bacteria/immunology , Bacteria/metabolism , Bacteria/classification , Animals , Dysbiosis/microbiology , Dysbiosis/immunology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/immunology
18.
Indian J Microbiol ; 64(3): 810-820, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39282182

ABSTRACT

Gut dysbiosis and liver cirrhosis are two corelated complications that highly disturbs the metabolism of a normal human body. Liver cirrhosis is scarring of the hepatic tissue and gut dysbiosis is the imbalance in the microbiome of the gut. Gut dysbiosis in cirrhosis occurs due to increased permeability of the intestinal membrane which might induce immune responses and damage the normal functioning of the body. Dysbiosis can cause liver damage from cirrhosis and can further lead to liver failure by hepatocellular carcinoma. In this review we discuss if eubiosis can revert the poorly functioning cirrhotic liver to normal functioning state? A normal microbiome converts various liver products into usable forms that regulates the overgrowth of microbiome in the gut. The imbalance caused by dysbiosis retards the normal functioning of liver and increases the complications. To correct this dysbiosis, measures like use of antibiotics with probiotics and prebiotics are used. This correction of the gut microbiome serves as a ray of hope to recover from this chronic illness. In case of alcohol induced liver cirrhosis, intervention of microbes can possibly be helpful in modulating the addiction as well as associated complications like depression as microbes are known to produce and consume neurotransmitters that are involved in alcohol addiction. Hence a correction of gut liver brain axis using microbiome can be a milestone achieved not only for treatment of liver cirrhosis but also for helping alcohol addicts quit and live a healthy or at least a near healthy life.

19.
J Agric Food Chem ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39302074

ABSTRACT

Glyphosate, the most popular herbicide globally, has long been considered safe for mammals. However, whether glyphosate can disturb gut microbiota via inhibiting aromatic amino acid (AAA) synthesis has been under debate recently. Here, we evaluated the impacts of chronic exposure to Roundup on gut health with the addition of AAA and explored the mechanism behind Roundup-induced gut dysfunction by performing fecal microbiota transplantation. 500 mg/kg·bw of Roundup, independent of AAA deficiency, caused severe damage to gut function, as characterized by gut microbial dysbiosis, oxidative stress damage, intestinal inflammation, and histopathological injury, particularly in female rats. Notably, similar to Roundup, Roundup-shaped gut microbiome evidently damaged serum, cecum, and colon profiling of oxidative stress biomarkers (malonaldehyde (MDA), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), glutathione (GSH), and H2O2). Moreover, it induced 0.65-, 3.29-, and 2.36-fold increases in colonic IL-1ß, IL-6, and TNF-α levels, and 0.34-fold decreases in the IL-10 level. Upon transplanting healthy fecal microbiota to Roundup-treated rats, they exhibited a healthier gut microenvironment with mitigated inflammation, oxidative damage, and intestinal injury. Overall, our findings provide new insights into the safety of Roundup, highlight the crucial role of gut microbiota in Roundup-induced gut dysfunction, and pave the way for developing gut-microbiota-based strategies to address Roundup-related safety issues.

20.
Arch Intern Med Res ; 7(3): 200-218, 2024.
Article in English | MEDLINE | ID: mdl-39328924

ABSTRACT

Diabetes mellitus and inflammatory bowel disease are chronic conditions with significant overlap in their pathophysiology, primarily driven by chronic inflammation. Both diseases are characterized by an aberrant immune response and disrupted homeostasis in various tissues. However, it remains unclear which disease develops first, and which one contributes to the other. Diabetes mellitus increases the risk of inflammatory bowel disease and inflammatory bowel disease may increase the risk of developing diabetes. This review focuses on comprehensively discussing the factors commonly contributing to the pathogenesis of diabetes mellitus and inflammatory bowel disease to draw a relationship between them and the possibility of targeting common factors to attenuate the incidence of one if the other is present. A key player in the intersection of diabetes mellitus and inflammatory bowel disease is the NLRP3 inflammasome, which regulates the production of pro-inflammatory cytokines leading to prolonged inflammation and tissue damage. Additionally, toll-like receptors via sensing microbial components contribute to diabetes mellitus and inflammatory bowel disease by initiating inflammatory responses. Gut dysbiosis, a common link in both diseases, further intensifies inflammation and metabolic dysfunction. Alterations in gut microbiota composition affect intestinal permeability and immune modulation, perpetuating a vicious cycle of inflammation and disease progression by changing protein expression. The overlap in the underlying inflammatory mechanisms has led to the potential of targeting mediators of chronic inflammation using anti-inflammatory drugs and biologics that benefit both conditions or attenuate the incidence of one in the presence of the other.

SELECTION OF CITATIONS
SEARCH DETAIL