Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters











Publication year range
1.
Diagnostics (Basel) ; 14(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39202210

ABSTRACT

Inflammatory bowel disease (IBD) is associated with an increased risk of cardiovascular disease (CVD). Cardiovascular pathology in people with IBD has not been well studied to date, and a direct link between cardiovascular events and IBD has not been established. The mechanisms underlying this association include the parallel and dynamic interaction of inflammation, modulation of the composition of the gut microbiota, endothelial dysfunction, thrombogenicity, and increased endothelial and epithelial permeability. Endothelial dysfunction is a common aspect of the pathogenesis of IBD and atherosclerotic CVD and can be considered one of the most important factors leading to the development and progression of cardiovascular pathology in patients with IBD. The purpose of this literature review is to describe the mechanisms underlying the development of endothelial dysfunction and disorders of the structure and function of the gut-vascular barrier in the pathogenesis of the cardiovascular manifestation of IBD.

2.
J Autoimmun ; 148: 103292, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39067313

ABSTRACT

Disruption of gut barrier function and intestinal immune cell homeostasis are increasingly considered critical players in pathogenesis of extra-intestinal inflammatory diseases, including multiple sclerosis (MS) and its prototypical animal model, the experimental autoimmune encephalomyelitis (EAE). Breakdown of epithelial barriers increases intestinal permeability and systemic dissemination of microbiota-derived molecules. However, whether the gut-vascular barrier (GVB) is altered during EAE has not been reported. Here, we demonstrate that endothelial cell proliferation and vessel permeability increase before EAE clinical onset, leading to vascular remodeling and expansion of intestinal villi capillary bed during disease symptomatic phase in an antigen-independent manner. Concomitant to onset of angiogenesis observed prior to neurological symptoms, we identify an increase of intestinal perivascular immune cells characterized by the surface marker lymphatic vessel endothelial hyaluronic acid receptor 1 (LYVE-1). LYVE-1+ is expressed more frequently on B cells that show high levels of CD73 and have proangiogenic properties. B cell depletion was sufficient to mitigate enteric blood endothelial cell proliferation following immunization for EAE. In conclusion, we propose that altered intestinal vasculature driven by a specialized LYVE-1+ B cell subset promotes angiogenesis and that loss of GVB function is implicated in EAE development and autoimmunity.


Subject(s)
B-Lymphocytes , Encephalomyelitis, Autoimmune, Experimental , Animals , Mice , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Brain-Gut Axis/immunology , Neovascularization, Pathologic/immunology , Endothelial Cells/immunology , Endothelial Cells/metabolism , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism , Disease Models, Animal , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Intestines/immunology , Intestines/blood supply , Intestines/pathology , Mice, Inbred C57BL , Cell Proliferation , Female , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Multiple Sclerosis/metabolism , Angiogenesis
3.
Gastroenterology ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004156

ABSTRACT

BACKGROUND & AIMS: The pathophysiology of irritable bowel syndrome (IBS) is multifactorial and includes epithelial barrier dysfunction, a key element at the interface between the gut lumen and the deeper intestinal layers. Beneath the epithelial barrier there is the vascular one representing the last barrier to avoid luminal antigen dissemination The aims of this study were to correlate morpho-functional aspects of epithelial and vascular barriers with symptom perception in IBS. METHODS: Seventy-eight healthy subjects (controls) and 223 patients with IBS were enrolled in the study and phenotyped according to validated questionnaires. Sugar test was used to evaluate in vivo permeability. Immunohistochemistry, western blot, and electron microscopy were used to characterize the vascular barrier. Vascular permeability was evaluated by assessing the mucosal expression of plasmalemma vesicle-associated protein-1 and vascular endothelial cadherin. Caco-2 or human umbilical vein endothelial cell monolayers were incubated with soluble mediators released by mucosal biopsies to highlight the mechanisms involved in permeability alteration. Correlation analyses have been performed among experimental and clinical data. RESULTS: The intestinal epithelial barrier was compromised in patients with IBS throughout the gastrointestinal tract. IBS-soluble mediators increased Caco-2 permeability via a downregulation of tight junction gene expression. Blood vessel density and vascular permeability were increased in the IBS colonic mucosa. IBS mucosal mediators increased permeability in human umbilical vein endothelial cell monolayers through the activation of protease-activated receptor-2 and histone deacetylase 11, resulting in vascular endothelial cadherin downregulation. Permeability changes correlated with intestinal and behavioral symptoms and health-related quality of life of patients with IBS. CONCLUSIONS: Epithelial and vascular barriers are compromised in patients with IBS and contribute to clinical manifestations.

4.
JHEP Rep ; 6(5): 101056, 2024 May.
Article in English | MEDLINE | ID: mdl-38681863

ABSTRACT

Background & Aims: Emerging evidence suggests that maternal obesity negatively impacts the health of offspring. Additionally, obesity is a risk factor for hepatocellular carcinoma (HCC). Our study aims to investigate the impact of maternal obesity on the risk for HCC development in offspring and elucidate the underlying transmission mechanisms. Methods: Female mice were fed either a high-fat diet (HFD) or a normal diet (ND). All offspring received a ND after weaning. We studied liver histology and tumor load in a N-diethylnitrosamine (DEN)-induced HCC mouse model. Results: Maternal obesity induced a distinguishable shift in gut microbial composition. At 40 weeks, female offspring of HFD-fed mothers (HFD offspring) were more likely to develop steatosis (9.43% vs. 3.09%, p = 0.0023) and fibrosis (3.75% vs. 2.70%, p = 0.039), as well as exhibiting an increased number of inflammatory infiltrates (4.8 vs. 1.0, p = 0.018) and higher expression of genes involved in fibrosis and inflammation, compared to offspring of ND-fed mothers (ND offspring). A higher proportion of HFD offspring developed liver tumors after DEN induction (79.8% vs. 37.5%, p = 0.0084) with a higher mean tumor volume (234 vs. 3 µm3, p = 0.0041). HFD offspring had a significantly less diverse microbiota than ND offspring (Shannon index 2.56 vs. 2.92, p = 0.0089), which was rescued through co-housing. In the principal component analysis, the microbiota profile of co-housed animals clustered together, regardless of maternal diet. Co-housing of HFD offspring with ND offspring normalized their tumor load. Conclusions: Maternal obesity increases female offspring's susceptibility to HCC. The transmission of an altered gut microbiome plays an important role in this predisposition. Impact and implications: The worldwide incidence of obesity is constantly rising, with more and more children born to obese mothers. In this study, we investigate the impact of maternal diet on gut microbiome composition and its role in liver cancer development in offspring. We found that mice born to mothers with a high-fat diet inherited a less diverse gut microbiome, presented chronic liver injury and an increased risk of developing liver cancer. Co-housing offspring from normal diet- and high-fat diet-fed mothers restored the gut microbiome and, remarkably, normalized the risk of developing liver cancer. The implementation of microbial screening and restoration of microbial diversity holds promise in helping to identify and treat individuals at risk to prevent harm for future generations.

5.
Liver Int ; 44(3): 776-790, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38225740

ABSTRACT

BACKGROUND & AIMS: Gut-vascular barrier (GVB) dysfunction has been shown to be a prerequisite for nonalcoholic fatty liver disease (NAFLD) development. However, the causes of GVB disruption and the underlying mechanisms are still elusive. Here, we explored whether and how Escherichia coli (E. coli) NF73-1, a pathogenic E. coli strain isolated from nonalcoholic steatohepatitis patients, contributes to NAFLD by modulating the GVB. METHODS: C57BL/6J mice were fed with high-fat diet (HFD) or normal diet in the presence or absence of E. coli NF73-1 for the indicated time periods. Intestinal barrier function and infiltration of immune cells were evaluated in these mice. Endothelial cells were exposed to E. coli NF73-1 for barrier integrity analysis. RESULTS: HFD-induced GVB disruption preceded the damage of intestinal epithelial barrier (IEB) as well as intestinal and hepatic inflammatory changes and can be reversed by vascular endothelial growth factor A blockade. Antibiotic treatment prevented mice from HFD-induced liver steatosis by restoration of the GVB. Notably, E. coli NF73-1 caused a more conspicuous damage of GVB than that of the IEB and contributed to NAFLD development. Mechanistically, E. coli NF73-1 dismantled the GVB by inhibiting the Wnt/ß-catenin signalling pathway. Activation of Wnt/ß-catenin improved the GVB and impeded the translocation of E. coli NF73-1 into the liver in vitro and in vivo. CONCLUSIONS: E. coli NF73-1 disrupts GVB and aggravates NAFLD via inhibiting the Wnt/ß-catenin signalling pathway. Targeting E. coli NF73-1 or selectively enhancing the GVB may act as potential avenues for the prevention and treatment of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/pathology , Vascular Endothelial Growth Factor A , beta Catenin/metabolism , Diet, High-Fat/adverse effects , Escherichia coli , Endothelial Cells/metabolism , Mice, Inbred C57BL , Liver/pathology
6.
Intern Emerg Med ; 18(6): 1635-1646, 2023 09.
Article in English | MEDLINE | ID: mdl-37402104

ABSTRACT

The intestinal mucosa represents the most extensive human barrier having a defense function against microbial and food antigens. This barrier is represented externally by a mucus layer, consisting mainly of mucins, antimicrobial peptides, and secretory immunoglobulin A (sIgA), which serves as the first interaction with the intestinal microbiota. Below is placed the epithelial monolayer, comprising enterocytes and specialized cells, such as goblet cells, Paneth cells, enterochromaffin cells, and others, each with a specific protective, endocrine, or immune function. This layer interacts with both the luminal environment and the underlying lamina propria, where mucosal immunity processes primarily take place. Specifically, the interaction between the microbiota and an intact mucosal barrier results in the activation of tolerogenic processes, mainly mediated by FOXP3+ regulatory T cells, underlying intestinal homeostasis. Conversely, the impairment of the mucosal barrier function, the alteration of the normal luminal microbiota composition (dysbiosis), or the imbalance between pro- and anti-inflammatory mucosal factors may result in inflammation and disease. Another crucial component of the intestinal barrier is the gut-vascular barrier, formed by endothelial cells, pericytes, and glial cells, which regulates the passage of molecules into the bloodstream. The aim of this review is to examine the various components of the intestinal barrier, assessing their interaction with the mucosal immune system, and focus on the immunological processes underlying homeostasis or inflammation.


Subject(s)
Endothelial Cells , Immunity, Mucosal , Humans , Immunity, Mucosal/physiology , Intestinal Mucosa , Inflammation , Homeostasis
7.
Clin Immunol ; 253: 109683, 2023 08.
Article in English | MEDLINE | ID: mdl-37406981

ABSTRACT

The gut vascular barrier (GVB) is the deepest layer of the gut barrier. It mainly comprised gut vascular endothelial cells, enteric glial cells, and pericytes. The GVB facilitates nutrient absorption and blocks bacterial translocation through its size-restricted permeability. Accumulating evidence suggests that dysfunction of this barrier correlates with several clinical pathologies including Crohn's disease (CD). Significant progress has been made to elucidate the mechanism of GVB dysfunction and to confirm the participation of disrupted GVB in the course of CD. However, further analyses are required to pinpoint the specific roles of GVB in CD pathogenesis. Many preclinical models and clinical trials have demonstrated that various agents are effective in protecting the GVB integrity and thus providing a potential CD treatment strategy. Through this review, we established a systemic understanding of the role of GVB in CD pathogenesis and provided novel insights for GVB-targeting strategies in CD treatment.


Subject(s)
Crohn Disease , Humans , Crohn Disease/drug therapy , Crohn Disease/microbiology , Endothelial Cells , Intestinal Mucosa/microbiology
8.
Microvasc Res ; 148: 104544, 2023 07.
Article in English | MEDLINE | ID: mdl-37127063

ABSTRACT

Alleviating vascular barrier injury improves colitis. Angiotensin converting enzyme 2/angiotensin 1-7/Mas receptor (ACE2/Ang1-7/MasR) axis-related drugs have various biological properties, such as inhibition of inflammation and fibrosis, but their role in improving the gut-vascular barrier (GVB) has rarely been reported. This study aims to investigate the effects of diminazene aceturate (DIZE), an ACE2 activator, on vascular barrier damage in colitis. Mice were randomly divided into three groups: control, dextran sulfate sodium salt (DSS), and DIZE+DSS. Mice in the DSS group drank DSS for 8 days starting on day 4. Mice in the DIZE+DSS group were pregavaged with DIZE for 3 days and then drank DSS for 8 days while continuing to be gavaged with DIZE for 4 days. Mice were euthanized and samples were collected on the last day. Injury to colonic structure and colonic microvasculature was assessed by visual observation and appropriate staining. DSS-induced colonic and microvascular pathological damage in mice was substantially reversed by DIZE treatment. Molecular pathways were investigated by Western blot, quantitative real-time polymerase chain reaction (qRT-PCR), and enzyme linked immunosorbent assay (ELISA). DSS treatment upregulated angiotensin converting enzyme (ACE), angiotensin type 1 receptor (AT1R) protein, pro-inflammatory cytokines and inhibited tight junction-related protein expression. DIZE treatment activated ACE2/MasR protein expression and reversed epithelial barrier damage and inflammatory infiltration during DSS injury. In addition, DIZE treatment inhibited vascular endothelial growth factor A/vascular endothelial growth factor receptor 2/proto-oncogene tyrosine-protein kinase Src (VEGFA/VEGFR2/Src) pathway activation and restored vascular adhesion-linker protein vascular endothelial cadherin (VE-cadherin) expression during DSS injury. In conclusion, DIZE treatment ameliorated colitis, which was associated with balancing the two axes of the renin-angiotensin system (RAS) and repairing the GVB injury.


Subject(s)
Angiotensin-Converting Enzyme 2 , Colitis , Animals , Mice , Angiotensin-Converting Enzyme 2/metabolism , Renin-Angiotensin System/physiology , Vascular Endothelial Growth Factor A/metabolism
9.
Front Microbiol ; 14: 1157164, 2023.
Article in English | MEDLINE | ID: mdl-37020718

ABSTRACT

The maintenance of intestinal barrier function is essential for preventing different pathologies, such as the leaky gut syndrome (LGS), which is characterized by the passage of harmful agents, like bacteria, toxins, and viruses, into the bloodstream. Intestinal barrier integrity is controlled by several players, including the gut microbiota. Various molecules, called postbiotics, are released during the natural metabolic activity of the microbiota. Postbiotics can regulate host-microbe interactions, epithelial homeostasis, and have overall benefits for our health. In this work, we used in vitro and in vivo systems to demonstrate the role of Lactobacillus paracasei CNCM I-5220-derived postbiotic (LP-PBF) in preserving intestinal barrier integrity. We demonstrated in vitro that LP-PBF restored the morphology of tight junctions (TJs) that were altered upon Salmonella typhimurium exposure. In vivo, LP-PBF protected the gut vascular barrier and blocked S. typhimurium dissemination into the bloodstream. Interestingly, we found that LP-PBF interacts not only with the host cells, but also directly with S. typhimurium blocking its biofilm formation, partially due to the presence of biosurfactants. This study highlights that LP-PBF is beneficial in maintaining gut homeostasis due to the synergistic effect of its different components. These results suggest that LP-PBF could be utilized in managing several pathologies displaying an impaired intestinal barrier function.

10.
Int J Mol Sci ; 24(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36982601

ABSTRACT

Inflammatory bowel diseases (IBDs) consist of a group of chronic inflammatory disorders with a complex etiology, which represent a clinical challenge due to their often therapy-refractory nature. In IBD, inflammation of the intestinal mucosa is characterized by strong and sustained leukocyte infiltration, resulting in the loss of epithelial barrier function and subsequent tissue destruction. This is accompanied by the activation and the massive remodeling of mucosal micro-vessels. The role of the gut vasculature in the induction and perpetuation of mucosal inflammation is receiving increasing recognition. While the vascular barrier is considered to offer protection against bacterial translocation and sepsis after the breakdown of the epithelial barrier, endothelium activation and angiogenesis are thought to promote inflammation. The present review examines the respective pathological contributions of the different phenotypical changes observed in the microvascular endothelium during IBD, and provides an overview of potential vessel-specific targeted therapy options for the treatment of IBD.


Subject(s)
Inflammatory Bowel Diseases , Mucositis , Humans , Inflammatory Bowel Diseases/pathology , Inflammation/metabolism , Intestinal Mucosa/metabolism , Mucositis/pathology , Leukocytes/metabolism
11.
Int J Mol Sci ; 24(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36674986

ABSTRACT

The intestinal barrier, with its multiple layers, is the first line of defense between the outside world and the intestine. Its disruption, resulting in increased intestinal permeability, is a recognized pathogenic factor of intestinal and extra-intestinal diseases. The identification of a gut-vascular barrier (GVB), consisting of a structured endothelium below the epithelial layer, has led to new evidence on the etiology and management of diseases of the gut-liver axis and the gut-brain axis, with recent implications in oncology as well. The gut-brain axis is involved in several neuroinflammatory processes. In particular, the recent description of a choroid plexus vascular barrier regulating brain permeability under conditions of gut inflammation identifies the endothelium as a key regulator in maintaining tissue homeostasis and health.


Subject(s)
Inflammation , Liver , Humans , Inflammation/pathology , Liver/pathology , Brain/pathology , Homeostasis , Brain-Gut Axis , Intestinal Mucosa/pathology
12.
J Adv Res ; 52: 3-18, 2023 10.
Article in English | MEDLINE | ID: mdl-36334886

ABSTRACT

INTRODUCTION: Microplastic pollution seriously threatens the health and safety of humans and wildlife. Avian is one of the main species endangered by microplastics. However, the damage mechanism of microplastics to the digestive system of avian is not clear. OBJECTIVES: The gut-liver axis is a bidirectional channel that regulates the exchange of information between the gut and the liver and is also a key target for tissue damage caused by pollutants. This study aimed to elucidate the digestive toxicity of microplastics in avian and the key role of the gut-liver axis in it. METHODS: We constructed an exposure model for microplastics in environmental concentrations and toxicological concentrations in chickens and reveal the digestive toxicity of polystyrene microplastics (PS-MPs) in avian by 16S rRNA, transcriptomics and metabolomics. RESULTS: PS-MPs changed the death mode from apoptosis to necrosis and pyroptosis by upregulating Caspase 8, disrupting the intestinal vascular barrier, disturbing the intestinal flora and promoting the accumulation of lipopolysaccharide. Harmful flora and metabolites were translocated to the liver through the liver-gut axis, eliciting hepatic immune responses and promoting hepatic lipid metabolism disorders and apoptosis. Liver injury involves multiple molecular effects of mitochondrial dynamics disturbance, oxidative stress, endoplasmic reticulum stress, and cell cycle disturbance. Furthermore, metabolomics suggested that caffeine and melanin metabolites may be potential natural resistance substances for microplastics. CONCLUSION: Taken together, our data demonstrate the digestive damage of PS-MPs in avian, revealing a critical role of the liver-gut axis in it. This will provide a reference for protecting the safety of avian populations.


Subject(s)
Microplastics , Polystyrenes , Humans , Animals , Polystyrenes/toxicity , Microplastics/toxicity , Plastics/toxicity , Chickens , Multiomics , RNA, Ribosomal, 16S/genetics , Liver
13.
Cancer Pathog Ther ; 1(2): 98-110, 2023 Apr.
Article in English | MEDLINE | ID: mdl-38328407

ABSTRACT

Background: Colorectal cancer (CRC) is the third most common malignancy and the second deadliest cancer worldwide. Metastasis to the liver, the most common metastatic site in CRC, is the leading cause of death in patients with CRC. Hyperlipidemia, which is common in patients with CRC, promotes CRC progression and metastasis. Hyperlipidemia is commonly observed in obese patients and is often induced by hypernutrition. The underlying mechanism of hypernutrition-induced hyperlipidemia in promoting CRC liver metastasis remains unclear, and there is an unmet need for effective and low-cost treatments for patients with CRC. Methods: A mouse cecum orthotopic CRC model combined with high-fat diet (HFD) feeding, was established to mimic liver metastasis in CRC in obese patients. The effects of Dachaihu decoction (DCHD), a traditional herbal medicine used to treat inflammation and nonalcoholic fatty liver disease, and of the conventional prescription medicine obeticholic acid (OCA) were evaluated. HFD-induced obesity, hyperlipidemia, and CRC liver metastasis were assessed, along with the histology and pathology of the liver and intestine and the expression of metabolic genes in these tissues. The effects of DCHD and OCA on HFD-induced outcomes were evaluated, and human umbilical vein endothelial cells (HUVECs) treated with bile acids (BAs) and DCHD were used to study the underlying mechanisms in vitro. Results: HFD-mediated obesity and hyperlipidemia promoted CRC metastasis, accompanied by disruption of the gut vascular barrier (GVB) and altered bile acid (BA) metabolism. DCHD decreased HFD-induced hyperlipidemia and liver metastasis in CRC, improving overall survival. Those effects of DCHD were equivalent to or better than those of OCA. DCHD regulated the expression of genes of BA metabolism and tight junctions (TJ) to prevent HFD-induced disruption of the GVB. In HUVECs, DCHD prevented the increases in intracellular Ca2+ and accumulation of reactive oxygen species induced by primary conjugated BAs, assisting in the maintenance of redox homeostasis and preventing the downregulation of TJ proteins, thereby maintaining the integrity of the endothelial barrier. Conclusions: The data provide a link between hypernutrition and GVB disruption, which contributes to high liver metastasis in patients with CRC. DCHD may represent a novel therapy in CRC, and targeting abnormal lipid metabolism could be a promising therapeutic strategy for avoiding hypernutrition-associated CRC metastasis.

14.
Front Pharmacol ; 13: 1019109, 2022.
Article in English | MEDLINE | ID: mdl-36278213

ABSTRACT

Gut-vascular barrier (GVB) serves as the last barrier to limit the migration of intestinal toxins into the blood circulation. The efficacy of terlipressin (a vasopressin V1 receptor agonist) in reducing GVB and multiple organ damage in gut-derived sepsis is unknown. In this study, we hypothesized that, besides other intestinal barriers, GVB play a key role in gut-derived sepsis and terlipressin improve GVB damage and then reduce bacterial translocation and organ injuries. In vivo, a cecal ligation and puncture mouse model was established. The mice were subjected to examine the damage of GVB determined by intestinal plasmalemma vesicle-associated protein-1(PV-1) and vascular endothelial-cadherin. And the intestinal permeability was assessed by translocation of intestinal bacteria and macromolecules. In vitro, transendothelial electrical resistance (TER) during interleukin (IL)-1ß stimulation was measured on endothelial cells with or without small interfering RNA targeting ß-catenin (si ß-catenin). Terlipressin significantly improved GVB damage and reduced translocation of intestinal macromolecules and bacteria by activating PI3K signaling. Of note, intestinal PV-1 expression was significantly correlated with translocation of macromolecules, and dramatic increase of macromolecules was observed in intestinal tissues whereas fewer macromolecules and bacteria were observed in blood, liver and lung following terlipressin treatment. In vitro, terlipressin restored TER during IL-1ß stimulation and si ß-catenin transfection blocked the changes delivered by terlipressin. Collectively, terlipressin alleviated GVB damage and subsequent bacterial translocation via blood vessels after sepsis challenge, resulting in reduced distant organ injuries and the responsible mechanisms may involve the activation of PI3K/ß-catenin pathway.

15.
Semin Immunopathol ; 44(6): 869-882, 2022 11.
Article in English | MEDLINE | ID: mdl-35861857

ABSTRACT

The vasculature plays an essential role in the development and maintenance of blood-tissue interface homeostasis. Knowledge on the morphological and functional nature of the blood vessels in every single tissue is, however, very poor, but it is becoming clear that each organ is characterized by the presence of endothelial barriers with different properties fundamental for the maintenance of tissue resident immune homeostasis and for the recruitment of blood-trafficking immune cells. The tissue specificity of the vascular unit is dependent on the presence of differentiated endothelial cells that form continues, fenestrated, or sinusoidal vessels with different grades of permeability and different immune receptors, according to how that particular tissue needs to be protected. The gut-brain axis highlights the prominent role that the vasculature plays in allowing a direct and prompt exchange of molecules between the gut, across the gut vascular barrier (GVB), and the brain. Recently, we identified a new choroid plexus vascular barrier (PVB) which receives and integrates information coming from the gut and is fundamental in the modulation of the gut-brain axis. Several pathologies are linked to functional dysregulation of either the gut or the choroid plexus vascular barriers. In this review, we unveil the structural and functional analogies between the GVB and PVB, comparing their peculiar features and highlighting the functional role of pitcher and catcher of the gut-brain axis, including their role in the establishment of immune homeostasis and response upon systemic stimuli. We propose that when the gut vascular barrier-the main protecting system of the body from the external world-is compromised, the choroid plexus gatekeeper becomes a second barrier that protects the central nervous system from systemic inflammation.


Subject(s)
Choroid Plexus , Endothelial Cells , Humans , Choroid Plexus/blood supply , Choroid Plexus/pathology , Choroid Plexus/physiology , Brain-Gut Axis , Brain , Homeostasis , Blood-Brain Barrier/physiology
16.
J Ethnopharmacol ; 296: 115457, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35753609

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Poria cocos polysaccharides (PCP) are abundant in Poria cocos (Schw.) Wolf (Poria). This is a common traditional Chinese medicine used to treat gastrointestinal and liver diseases. Poria cocos dispel dampness and enhance gastrointestinal functions, strongly affecting the treatment of non-alcoholic fatty liver disease. Still, the mechanism is not yet clear. AIM OF THE STUDY: The latest research found that protecting the integrity of the intestinal barrier can slow down the progression of non-alcoholic fatty liver disease (NAFLD). Hence, our research ought to explore the protective mechanism of PCP on the intestinal barrier under a high-fat diet and to clarify the relationship between intestinal barrier damage and steatohepatitis. MATERIALS AND METHODS: H&E staining was done to evaluate pathological damage, whereas Nile red and oil red O staining was conducted to evaluate hepatic fat infiltration. Immunofluorescence staining and immunohistochemical staining were used to detect protein expression and locations. Bone marrow-derived macrophages were isolated for in vitro experiments. ONOO- and ROS fluorescent probes and MDA, SOD, and GSH kits assessed the levels of nitrogen and oxidative stress. LPS levels were detected with a Limulus Amebocyte Lysate assay. The Western blot analysis and reverse transcription-quantitative PCR detected the expression of related proteins and genes. The Elisa kit detected the level of the inflammatory factors in the cell supernatant. For the vivo NAFLD experiments, in briefly, mice were randomly chosen to receive either a High-fat diet or control diet for 12 weeks. Drug treatments started after 4 weeks of feeding. Zebrafish larvae were raised separately in fish water or 7 mM thioacetamide as the control or model group for approximately 72 h. In the therapy groups, different concentrations of PCP were added to the culture environment at the same time. RESULTS: In zebrafish, we determined the safe concentration of PCP and found that PCP could effectively reduce the pathological damage in the liver and intestines induced by the NAFLD model. In mice, PCP could slow down weight gain, hyperlipidemia, and liver steatosis caused by a high-fat diet. More importantly, PCP could reduce the destruction of the gut-vascular barrier and the translocation of endotoxins caused by a high-fat diet. Further, we found that PCP could inhibit intestinal pyroptosis by regulating PARP-1. Pyroptosis inhibitors, such as MCC950, could effectively protect the intestinal and liver damage induced by a high-fat diet. We also found that pyroptosis mainly occurred in intestinal macrophages. PCP could effectively improve the survival rate of bone marrow-derived macrophages in a high-fat environment and inhibit pyroptosis. CONCLUSIONS: These results indicated that PCP inhibited the pyroptosis of small intestinal macrophages to protect the intestinal barrier integrity under a high-fat diet. This resulted in decreased endotoxin translocation and progression of steatohepatitis.


Subject(s)
Non-alcoholic Fatty Liver Disease , Wolfiporia , Animals , Diet, High-Fat , Liver , Mice , Non-alcoholic Fatty Liver Disease/pathology , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Pyroptosis , Zebrafish
17.
Dig Liver Dis ; 54(8): 1084-1093, 2022 08.
Article in English | MEDLINE | ID: mdl-34903499

ABSTRACT

BACKGROUND: The incidence of non-alcoholic fatty liver disease (NAFLD) and its more severe and progressive form, non-alcoholic steatohepatitis (NASH) is increasing worldwide. Gut inflammation seems to concur to the pathogenesis of NASH. No drugs are currently approved for NASH treatment. AIMS: To investigate if inflamed gut directly contributes to the progression of NASH through gut epithelial and vascular barrier impairment and to evaluate the efficacy of dipotassium glycyrrhizate (DPG) to improve the liver disease. METHODS: A NASH model was set up by feeding mice, for 8 and 13 weeks, with high fat diet with high fructose and glucose (HFD-FG) supplemented periodically with dextran sulfate sodium (DSS) in drinking water. A group was also treated with DPG by gavage. Histological, immunohistochemical and molecular analysis were performed. RESULTS: DSS-induced colitis increased steatosis, inflammatory (IL-6, TNFα, NLRP3, MCP-1) as well as fibrotic (TGF-ß, α-SMA) mediator expression in HFD-FG mice. Beneficial effect of DPG was associated with restoration of intestinal epithelial and vascular barriers, evaluated respectively by ZO-1 and PV-1 expression, that are known to limit bacterial translocation. CONCLUSION: Colonic inflammation strongly contributes to the progression of NASH, likely by favouring bacterial translocation. DPG treatment could represent a novel strategy to reduce liver injury.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Diet, High-Fat , Disease Models, Animal , Inflammation/complications , Liver/pathology , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology
18.
Article in English | MEDLINE | ID: mdl-34886561

ABSTRACT

The intestinal mucosa provides a selective permeable barrier for nutrient absorption and protection from external factors. It consists of epithelial cells, immune cells and their secretions. The gut microbiota participates in regulating the integrity and function of the intestinal barrier in a homeostatic balance. Pathogens, xenobiotics and food can disrupt the intestinal barrier, promoting systemic inflammation and tissue damage. Genetic and immune factors predispose individuals to gut barrier dysfunction, and changes in the composition and function of the gut microbiota are central to this process. The progressive identification of these changes has led to the development of the concept of 'leaky gut syndrome' and 'gut dysbiosis', which underlie the relationship between intestinal barrier impairment, metabolic diseases and autoimmunity. Understanding the mechanisms underlying this process is an intriguing subject of research for the diagnosis and treatment of various intestinal and extraintestinal diseases.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Autoimmunity , Humans , Inflammation , Intestinal Mucosa
19.
Trends Mol Med ; 27(9): 844-855, 2021 09.
Article in English | MEDLINE | ID: mdl-34229973

ABSTRACT

The intestinal barrier protects our body from external insults through specialized cells organized in a multilayered structure that evolved in symbiosis with the resident microbiota. A breach in the outer mucus and epithelium can be transmitted to the inner gut vascular barrier (GVB), leading to systemic dissemination of microbes or microbe-derived molecules. Several extraintestinal pathologies have been linked to gut microbiota dysbiosis that causes GVB leakage in their early phases. The consequent spreading of inflammatory stimuli to distant organs could be driven by later vascular barrier disruption at different sites, suggesting an interplay between anatomical barriers across the body. Thus, targeting the intestinal barrier holds promise for the prevention and/or therapy of several intestinal, metabolic, and neurological disorders.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Brain , Humans , Intestinal Mucosa , Liver
20.
Tissue Cell ; 72: 101573, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34116500

ABSTRACT

Intestinal microvascular endothelial cell (IMVEC) is a fundamental and essential component of gut-vascular barrier which is closely associated with intestinal disorders However, there is still a lack of established intestinal microvascular endothelial cell line. In the present study, a newly established rat intestinal microvascular endothelial cell line termed RIMVEC-11 was described and characterized which has been stably cultured for more than 90 passages so far. RIMVEC-11 was characterized by endothelial features with the cobblestone morphology under light microscopy, the Weibel-Palade body and rich vesicles in the cytoplasm on the ultrastructural level, and positive endothelial specific markers CD31 and von Willebrand factor by immunocytochemistry analysis. Meanwhile, RIMVEC-11 maintained the fundamental physiological function of the microvascular endothelial cells. Tube formation assay confirmed that RIMVEC-11 retained the potential for capillaries formation. Scratch assay confirmed the endothelial cell migration potential of RIMVEC-11. Thus, a novel IMVEC cell line RIMVEC-11 was established, which could be used as a promising model for the gut-vascular barrier research.


Subject(s)
Cell Culture Techniques/methods , Endothelial Cells/cytology , Intestines/blood supply , Microvessels/cytology , Animals , Biomarkers/metabolism , Cell Line , Cell Movement , Cell Proliferation , Cell Shape , Endothelial Cells/ultrastructure , Mycoplasma/isolation & purification , Neovascularization, Physiologic , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL