Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Biomed Pharmacother ; 177: 117043, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38941896

ABSTRACT

This study investigated the chemical constituents, antioxidant potential, and in vitro and in silico antidiabetic activity of Gymnema sylvestre. Column chromatography and spectroscopic techniques identified twelve compounds from the methanol extract, including 4 sterols (1-4), 5 triterpenoids (5-9), and 3 flavonoids (10-12). The chemophenetic significance of all compounds was also investigated. The antioxidant capacity of the extract and compounds (1-4) was evaluated using FRAP and DPPH assays. The extract exhibited strong free radical scavenging activity (IC50 = 48.34 µg/mL), while compounds (1-4) displayed varying degrees of efficacy (IC50 = 98.30-286.13 µg/mL). The FRAP assay indicated significant reducing power for both extract and compounds (58.54, 47.61, 56.61, and 49.11 mg Eq.VitC/g for extract and compounds 1 & 2, 3, and 4, respectively). The antidiabetic potential was assessed through α-amylase and α-glucosidase enzyme inhibition assays. The crude extract demonstrated the most potent inhibition (IC50 = 218.46 and 57.42 µg/mL for α-glucosidase and α-amylase respectively) suggesting its potential for managing postprandial hyperglycaemia. In silico studies employed molecular docking and dynamics simulations to elucidate the interactions between identified compounds and α-amylase/α-glucosidase enzymes. The results revealed promising binding affinities between the compounds and target enzymes, with compound 6 demonstrating the highest predicted inhibitory activity with -10 kcal/mol and -9.1 kcal/mol for α-amylase and α-glucosidase, respectively. This study highlights the presence of diverse bioactive compounds in Gymnema sylvestre. The extract exhibits antioxidant properties and inhibits carbohydrate-digesting enzymes, suggesting its potential as a complementary therapeutic approach for managing hyperglycaemia associated with type 2 diabetes.

2.
Microb Pathog ; 192: 106670, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734323

ABSTRACT

The increasing need for pharmaceutical agents that possess attributes such as safety, cost-effectiveness, environmental sustainability, and absence of side effects has driven the advancement of nanomedicine research, which lies at the convergence of nanotechnology and medicine. AIMS AND OBJECTIVES: The study aimed to synthesize non-toxic selenium nanoparticles (SeNPs) using Gymnema sylvestre (G. sylvestre) and Cinnamon cassia (C. cassia) extracts. It also sought to develop and evaluate versatile nanomedicine formulations i.e. selenium nanoparticles of G. sylvestre and C. cassia (SeNPs), drug (lupeol) loaded SeNPs (DLSeNPs), drug-loaded and coated (PEG) SeNPs (DLCSeNPs) without side effects. METHODS: The SeNPs formulations were hydrothermally synthesized, loaded with lupeol to improve efficacy, coated with polyethylene glycol (PEG) for targeted delivery, and characterized using UV-Vis spectrophotometry, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), zeta potential analysis, size distribution analysis, and X-ray diffraction (XRD). Hemolytic cytotoxicity, 2,2-Diphenyl-1-picrylhydzayl (DPPH), total Reducing power, and total antioxidant capacity (TAC) antioxidant assays, carrageenan-induced paw edema, and histological studies were used to estimate the acute anti-inflammatory activity of the synthesized SeNPs. RESULTS: The final form of PEGylated and drug (lupeol)-loaded selenium nanoparticles (DLCSeNPs) exhibited an average particle size ranging from 100 to 500 nm as evidenced by SEM, and Zeta potential results. These nanoparticles demonstrated no cytotoxic effects and displayed remarkable antioxidant (IC50 values 19.29) and anti-inflammatory capabilities. These results were fed into Graph-pad Prism 5 software and analyzed by one-way ANOVA, followed by Tukey's post hoc test (p < 0.001). All nano-formulations exhibited significant overall antioxidant activity, with IC50 values ≤ 386 (p < 0.05) as analyzed by ANOVA. The study's results suggest that G. sylvestre outperformed C. cassia in terms of reducing 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical, potassium ferricyanide, and ammonium molybdate in respective antioxidant assays. As far as anti-inflammatory activities are concerned drug (lupeol)-loaded and PEG-coated G. sylvestre SeNPs exhibited the highest anti-inflammatory potential from all other nano-formulations including drug (lupeol)-loaded and PEG-coated C. cassia SeNPs, as exhibited to reduce the release of pro-inflammatory signals i.e. cytokines and NF-kB, making them innovative anti-inflammatory nanomedicine. CONCLUSION: The study synthesized lupeol-loaded and PEG-coated SeNPs, showcasing the potential for biocompatible, cost-effective anti-inflammatory nanomedicines. G. Sylvester's superior antioxidant and anti-inflammatory performance than Cinnamon cassia emphasizes medicinal plant versatility.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Gymnema sylvestre , Nanoparticles , Plant Extracts , Selenium , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Selenium/chemistry , Selenium/pharmacology , Animals , Nanoparticles/chemistry , Gymnema sylvestre/chemistry , Rats , Nanomedicine , Edema/drug therapy , Edema/chemically induced , Humans , Cinnamomum zeylanicum/chemistry , Spectroscopy, Fourier Transform Infrared , Particle Size , Male , X-Ray Diffraction , Cell Survival/drug effects
3.
Article in English | MEDLINE | ID: mdl-38819452

ABSTRACT

The increasing incidence of breast cancer and bacterial biofilm in medical devices significantly heightens global mortality and morbidity, challenging synthetic drugs. Consequently, greener-synthesized nanomaterials have emerged as a versatile alternative for various biomedical applications, offering new therapeutic avenues. This study explores the synthesis of biocompatible zinc oxide (ZnONPs) nanoparticles using Gymnema sylvestre and its antibacterial, antibiofilm, and cytotoxic properties. Characterization of ZnONPs inferred that UV-Vis spectra exhibited a sharp peak at 370 nm. Fourier transform infrared spectroscopical analysis revealed the presence of active functional groups such as aldehyde, alkyne, cyclic alkene, sulfate, alkyl aryl ether, and Zn-O bonds. X-ray diffraction analysis results confirmed the crystalline nature of the nanoparticle. Scanning electron microscope analysis evidenced hexagonal morphology, and energy-dispersive X-ray analysis confirmed zinc content. High-resolution transmission electron microscope analysis showed hexagonal and rod-shaped ZnONPs with a size of 5 nm. Zeta potential results affirmed the stability of nanoparticles. The ZnONPs effectively inhibited gram-positive (18-20 mm) than gram-negative (12-18 mm) bacterial pathogens with lower bacteriostatic and higher bactericidal values. Biofilm inhibitory property inferred ZnONPs were more effective against gram-positive (38-94%) than gram-negative bacteria (27-86%). The concentration of ZnONPs to exert 50% biofilm-inhibitory is lower against gram-positive bacteria (179.26-203.95 µg/mL) than gram-negative bacteria (201.46-236.19 µg/mL). Microscopic visualization inferred that at 250 µg/mL, ZnONPs strongly disrupted biofilm formation, as evidenced by decreased biofilm density and altered architecture. The cytotoxicity of ZnONPs against breast cancer cells showed a dose-dependent reduction in cell viability with an IC50 value of 19.4 µg/mL. AO/EB staining indicated early and late apoptotic cell death of breast cancer cells under fluorescence microscopy. The results of hemolytic activity validated the biocompatibility of the ZnONPs. Thus, the unique properties of the green-synthesized ZnONPs suggest their potential as effective drug carriers for targeted delivery in cancer therapy and the treatment of biofilm-related infections.

4.
J Genet Eng Biotechnol ; 22(1): 100344, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38494263

ABSTRACT

BACKGROUND: Gymnema sylvestre R.Br. is famous medicinal plant among diabetics for its gymnemic acid content. It also contains flavonoids, which are an essential component in various other products. Though some molecular information on the biosynthesis of gymnemic acid, polyoxypregnane, micro RNAs and photosynthetic efficiency is available, there is no gene level information available on the biosynthesis of flavonoids in this plant. RNA was extracted from winter-collected Gymnema sylvestre leaves and cDNA libraries were prepared and used for next generation sequencing. De novo transcriptome assembly were prepared and Coding DNA Sequences (CDS) of 13 major genes involved in flavonoids biosynthesis were identified from transcriptome data. Phenylalanine ammonia lyase gene containing full-length CDS was employed for in silico protein modelling and subsequent quality assessment. These models were then compared against publicly available databases. To confirm the identification of these genes, a similarity search was conducted using the NCBI BLAST tool. RESULTS: Therefore, in the present study, an effort has been made to provide molecular insights into flavonoid biosynthesis pathway by examining the expressed transcripts in G.sylvestre. Gene sequences of total thirteen major genes viz., phenylalanine ammonia lyase, 4-coumarate CoA ligase, cinnamic acid 4-hydroxylase, shikimate O-hydroxycinnamoyl transferase, coumaroyl quinate (coumaroyl shikimate) 3'-monooxygenase, caffeoyl-CoA O-methyltransferase, chalcone synthase, chalcone isomerase, naringenin 3-dioxygenase, flavanol synthase, flavonoid 3'-monooxygenase, Flavanone 7-O-glucoside 2″-O-beta-L-rhyamnosyltransferase and leucoanthocyanidin dioxygenase were identified and a putative pathway of flavonoids biosynthesis has been illustrated based on transcriptome data. CONCLUSIONS: This transcriptome study has contributed gene-level insights into the biosynthesis of flavonoids in plants as a whole and represents the first report within a non-model plant, Gymnema sylvestre perticullarly.

5.
Heliyon ; 10(1): e23648, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38187271

ABSTRACT

The cotton mealybug, Phenacoccus solenopsis Tinsley and papaya mealybug, Paracoccus marginatus Williams and Granara de Willink (Hemiptera: Pseudococcidae) are becoming major threats to the production of Gymnema sylvestre R. Br. (Asclepiadaceae) in India. Management mainly depends on chemical insecticides which cause a serious problem of pesticide residue and insecticide resistance. The use of biorational insecticides such as biopesticides, botanicals, insect growth regulators, and microbial insecticides is important components of an Integrated Pest Management (IPM) program for successful management. We evaluated the bio-efficacy of twelve biorational insecticides, including entomopathogenic fungi (EPF), using the leaf spray method in laboratory conditions at 25 ± 1 °C, 70 % ± 5 % RH. The results revealed that the highest percent mortality was recorded by acetamiprid 20 % SP (100.00 %), followed by azadirachtin (98.27 %), Lecanicillium muscarium (2 × 109 spores/mL) (85.70 %) and Ocimum sanctum leaf extract (76.87 %) at 120 h after treatment (HAT) in P. solenopsis. In P. marginatus, 100.00 %, 96.39 % and 85.67 % and 74.90 % mortalities were achieved by acetamiprid 20 % SP, azadirachtin, L. muscarium (2 × 109 spores/mL) and O. sanctum leaf extract, respectively, at 120 HAT during the first spray. Various biorational insecticides showed a more or less similar trend of percent mortality in both species during the second spray. In both species, the lowest percent mortality was recorded by Andrographis paniculata leaf extract (46.29, 44.54) and (41.03, 46.39) at 120 Hours after treatment in the first and second spray, respectively. It was concluded that all the prescribed treatments are more effective than the control. Overall, azadirachtin recorded the highest percent mortality after acetamiprid and had the shortest LT50 (12.52 h) and (13.87 h) values in P. solenopsis and P. marginatus, respectively. Our study emphasizes that biopesticides like Azadirachtin 1 % EC (10000 ppm), L. muscarium (2 × 109 spores/mL) (5 mL/L) and O. sanctum leaf extract (5 %) may be recommended as alternatives to synthetic insecticides. Botanicals and EPF would be the most effective approach for sustainable integrated management of P. solenopsis and P. marginatus in the G. sylvestre ecosystem.

6.
Front Pharmacol ; 14: 1325227, 2023.
Article in English | MEDLINE | ID: mdl-38094882

ABSTRACT

Tuberculosis (TB), an infectious disease caused by multi-drug resistant Mycobacterium tuberculosis (Mtb), has been a global health concern. Mtb affects over a third of the world's population, causing two million deaths annually due to its dormancy and propensity to spread infection during this period. Resuscitation-promoting factor B (RpfB) plays a pivotal role in the growth of Mtb during dormant periods, making it a critical target for eliminating Mtb and curing TB. Gymnema sylvestre is a famous medicinal plant with several medicinal properties, including antimicrobial activity; however, the therapeutic potential of the various reported metabolites of this plant against Mtb has not yet been explored. The aim of this study was to explore the reported natural products of G. sylvestre against the RpfB of the Mtb. A total of 131 reported secondary metabolites of this plant were collected and virtually screened against the RpfB. We particularly targeted the Glu292 residue of RpfB as it is crucial for the catalysis of this protein. From our in-house library, 114 compounds showed a binding affinity higher than the standard drug. The binding stability of the top three lead compounds was further confirmed through MD simulation analysis. Drug likeness analyses indicated that the ten hits had zero violations of the Lipinski rule of five. In addition, analyses of pharmacokinetics, toxicity, and target prediction revealed that the top compounds are devoid of toxicity and do not affect human proteins. Additionally, they reflect multifaceted approach as anti-TB agents. Our selected hits not only exhibit molecular properties favoring physiological compatibility but also exhibit properties enhancing their potential efficacy as therapeutic candidates. The compounds investigated here are worthy of experimental validation for the discovery of novel treatments against TB. Further, this study also provides a promising avenue for research on the pharmacological potential of G. sylvestre.

7.
Food Sci Nutr ; 11(12): 7664-7672, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38107140

ABSTRACT

The current study aimed to explore the anti-diabetic effect of aqueous extracts of Gymnema sylvestre, Trigonella foenum-graecum and mixture of both the plants in alloxan-induced diabetic rabbits. A total of 30 rabbits were grouped into six equal groups as: normal control, diabetic control, diabetic treated with 300 mg/kg body weight (bw) G. sylvestre, diabetic treated with 300 mg/kg bw T. foenum-graecum, diabetic treated with 300 mg/kg bw mixture of both the plants and diabetic treated with 500 mg/kg bw metformin for 4 weeks. Diabetes was induced to all the study group animals except normal control by intravenous administration of alloxan monohydrate (80 mg/kg bw). Blood glucose was measured by glucometer and other biochemical parameters were determined through various kit methods. Serum insulin was measured through ELISA kit method. Results showed that both the plants and metformin significantly (p < .05) decreased the fasting blood glucose. Hypoglycemic activity of aqueous extract of G. sylvestre and metformin was found slightly higher than aqueous extract of T. foenum-graecum and the mixture of both the plants. However, a significant (p < .05) rise in insulin secretion was observed in studied plants extract treated rabbits. Serum urea, creatinine, and liver enzymes were found reduced significantly (p < .05) in treated rabbits whereas packed cell volume was also returned to normal in treated animals as compared to control group. The study concluded that G. sylvestre and T. foenum-graecum extracts have comparable effects with metformin in normalizing the blood glucose level and have more pronounced effect than metformin in restoring the serum biochemical parameters to normal levels. Hence, these plants may be the good alternative medicine in managing the diabetes mellitus.

8.
J Clin Med ; 12(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38137721

ABSTRACT

Type 2 diabetes mellitus (T2DM) is characterized by high blood glucose levels and lipid alterations. Besides pharmacological treatment, lifestyle modifications and nutraceuticals can be used to manage glucose and lipid profiles, which is crucial for preventing, or avoiding, serious consequences associated with the condition. This randomized controlled clinical trial on 75 patients with T2DM evaluated the effects of a combination of myo-inositol and d-chiro-inositol (40:1), α-lactalbumin, Gymnema sylvestre, and zinc on glucose and lipid profile. The intention-to-treat analysis displayed no significant differences in glucose parameters between the groups; however, the study group displayed reduced levels of total cholesterol (p = 0.01) and LDL (p = 0.03) after 3 months of supplementation. A subgroup analysis involving patients who did not modify their antidiabetic therapy, after 6 months displayed improved levels of total cholesterol (p = 0.03) and LDL (p = 0.04) in the study group versus placebo, along with a greater body weight reduction (p = 0.03) after 3 months. Furthermore, within the study group, levels of HDL (p = 0.03) and triglycerides (p = 0.04) improved after 3 months. These findings support supplementation with myo-inositol and d-chiro-inositol (40:1), α-lactalbumin, Gymnema sylvestre, and zinc as an adjuvant and safe strategy to manage the lipid profiles of patients with T2DM.

9.
Heliyon ; 9(10): e20511, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37860570

ABSTRACT

This article, the second in a two-part series, continues the discussion on the nature of the relationship between the level of sweet taste suppression and eating behaviour, but in animal rather human subjects. In particular, the aim was to review the scientific literature on the impact that bioactive compounds that decrease oral sweet sensations have on intake, preference and physiological status in preclinical studies. This review was registered in the International Prospective Register of Systematic Reviews and conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and the Scottish Intercollegiate Guidelines Network and covered original papers included in Web of Science, PubMed, Scopus, Food Science Source and Food Science and technology abstracts. We identified 28 peer-reviewed English-language studies that fit the topic and met the inclusion criteria. We identified three plant species, Gymnema sylvestre, Hovenia dulcis, and Ziziphus jujuba, that possess acute sweetness-inhibitory properties. When administered orally, these plants reduced neural responses to sweet stimuli and decreased consumption. However, studies on the longer-term effects of antisweet activity remain to be conducted. Translating the valuable insights into the mechanisms underlying the relationship between sweet taste impairment and eating behaviour into practical clinical applications are discussed.

10.
Heliyon ; 9(10): e19733, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37817998

ABSTRACT

The taste of food plays a crucial role in determining what and how much we eat. Thus, interventions that temporarily block sweet taste receptors offer a promising approach to addressing unhealthy behaviours associated with sugary foods. However, the relationship between reduced sweet taste response and food consumption remains unclear, with contradictory findings. Certain studies suggest that a diminished perception of sweetness leads to a sense of fullness and results in reduced food intake, while others suggest the opposite effect. To shed some light, our systematic review looked into the relationship between diminished sweet taste response and food consumption by examining the effects of bioactive compounds that experimentally inhibit sweetness in healthy individuals. This review was registered in the International Prospective Register of Systematic Reviews and conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and the Scottish Intercollegiate Guidelines Network, and covered original papers included in Web of Science, PubMed, Scopus, Food Science Source and Food Science and technology abstracts. We identified 33 peer-reviewed English-language studies that fit the topic and met the inclusion criteria. The current literature predominantly focuses on the immediate impact of oral gymnemic acids, failing to provide preliminary evidence in support of the specific threshold hypothesis, above which food consumption decreases and below which the opposite effect occurs. Additionally, there was inconsistency in the findings regarding the short-term desire to eat following sweetness inhibition. Considering the downstream effects on energy intake and their clinical applications, further research is needed to clarify both the acute within-session effects (i.e., not wanting any more now) and the longer-term effects (i.e., deciding not to start eating) linked to oral sweet-taste-suppressing compounds.

11.
Nutrients ; 15(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37513560

ABSTRACT

The primary control of dysmetabolic patients is extremely challenging worldwide, with inadequate dietary habits and sporadic physical activity among the key risk factors for metabolic syndrome onset. Nowadays, there is no exclusive treatment for this condition, and considering that preventive measures usually fail, new therapeutic approaches need to be proposed and investigated. This present pilot study compared the effects of diet alone and in association with a combination of myo-inositol and d-chiro-inositol in their 40:1 ratio, α-lactalbumin, and Gymnema sylvestre on different metabolic parameters in obese dysmetabolic patients. To this purpose, 37 patients with BMI between 30 and 40 and fasting blood glucose between 100 and 125 mg/dL were divided into two groups: (i) the control group followed a hypocaloric Mediterranean diet, (ii) while the study group was also supplemented with a daily dosage of two sachets, each one containing 1950 mg myo-inositol, 50 mg d-chiro-inositol, 50 mg α-lactalbumin, and 250 mg Gymnema Sylvestre. After a 6-month treatment, all parameters improved in both groups. Nevertheless, the treated group experienced a greater improvement, especially concerning the variation from the baseline of HOMA index, triglycerides, BMI, body weight, and waist circumference. These findings support the supplementation with myo-inositol and d-chiro-inositol in the 40:1 ratio, α-lactalbumin, and Gymnema sylvestre as a therapeutical strategy to potentiate the beneficial effects induced via dietary programs in dysmetabolic patients.


Subject(s)
Gymnema sylvestre , Polycystic Ovary Syndrome , Humans , Female , Lactalbumin/metabolism , Inositol/therapeutic use , Pilot Projects , Diet , Obesity/complications , Obesity/drug therapy , Body Weight , Metabolome
12.
Appl Microbiol Biotechnol ; 107(14): 4459-4469, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37266583

ABSTRACT

Diabetes is a chronic disease that affects several organs and can be treated using phytochemicals found in medicinal plants. Gymnema sylvestre (Asclepiadaceae) is one such medicinal plant rich in anti-diabetic properties. The plant is commonly known as madhunashini in Sanskrit because of its ability to cure diabetes (sugar). Gymnemic acid (GA) is a phytochemical (a triterpenoid saponin) responsible for the herb's main pharmacological activity. This secondary metabolite has a lot of potential as a phytochemical with pharmacological properties including nephroprotection, hypoglycemia, antioxidant, antimicrobial, and anti-inflammatory. Gymnema has acquired a lot of popularity in recent years due to its low side effects and high efficacy in healing diabetes, which has led to overexploitation by pharmaceutical enterprises for its biomass in the wild for the purification of gymnemic acid. Modern biotechnological techniques involving the establishment of cell and organ cultures from G. sylvestre will assist us in fulfilling the need for gymnemic acid production. The present review provides insights on the establishment of cell and organ cultures for the production of a potent antidiabetic molecule gymnemic acid. Further, the review also delves into the intricacies of the different strategies for improved production of gymnemic acid using various elicitors. There is huge potential for sustainable production of gymnemic acid which could be met by establishment of bioreactor scale production. Understanding and engineering the biosynthetic pathway could also lead to improved GA production. KEY POINTS: • Gymnemic acid is one of the potential anti-diabetic molecules from madhunashini • Cell and organ culture offers potential approach for gymnemic acid production • Elicitation strategies have improved the gymnemic acid production.


Subject(s)
Diabetes Mellitus , Gymnema sylvestre , Plants, Medicinal , Saponins , Triterpenes , Gymnema sylvestre/chemistry , Gymnema sylvestre/metabolism , Plants, Medicinal/chemistry , Plant Extracts/pharmacology , Saponins/metabolism , Diabetes Mellitus/drug therapy
13.
Metabolites ; 13(4)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37110174

ABSTRACT

Gymnema sylvestre is traditionally used as an herbal remedy for diabetes. The effect of Gymnema sylvestre supplementation on beta cell and hepatic activity was explored in an alloxan-induced hyperglycemic adult rat. Animals were made hyperglycemic via a single inj. (i.p) of Alloxan. Gymnema sylvestre was supplemented in diet @250 mg/kg and 500 mg/kg b.w. Animals were sacrificed, and blood and tissues (pancreas and liver) were collected for biochemical, expression, and histological analysis. Gymnema sylvestre significantly reduced blood glucose levels with a subsequent increase in plasma insulin levels in a dosage-dependent manner. Total oxidant status (TOS), malondialdehyde, LDL, VLDL, ALT, AST, triglyceride, total cholesterol, and total protein levels were reduced significantly. Significantly raised paraoxonase, arylesterase, albumin, and HDL levels were also observed in Gymnema sylvestre treated hyperglycemic rats. Increased mRNA expression of Ins-1, Ins-2, Gck, Pdx1, Mafa, and Pax6 was observed, while decreased expression of Cat, Sod1, Nrf2, and NF-kB was observed in the pancreas. However, increased mRNA expression of Gck, Irs1, SREBP1c, and Foxk1 and decreased expression of Irs2, ChREBP, Foxo1, and FoxA2 were observed in the liver. The current study indicates the potent effect of Gymnema sylvestre on the transcription modulation of the insulin gene in the alloxan-induced hyperglycemic rat model. Enhanced plasma insulin levels further help to improve hyperglycemia-induced dyslipidemia through transcriptional modulation of hepatocytes.

14.
J Genet Eng Biotechnol ; 21(1): 42, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37022506

ABSTRACT

BACKGROUND: Gymnema sylvestre (Retz.) R. Br. ex Schult. is a well-known medicinal plant against diabetes in India. There is as such no organized cultivation in India, and the plant is still being collected from the wild for their therapeutic uses. It is, therefore, important to estimate the genetic diversity and population genetic structure of G. sylvestre to ascertain the genetically diverse germplasm. The present study, therefore, was undertaken to analyze the genetic variability in 118 accessions belonging to 11 wild populations of G. sylvestre using directed amplification of minisatellite-region DNA (DAMD) and inter simple sequence repeats (ISSR). RESULTS: The present genetic analyses of 11 populations with 25 markers (8 DAMD and 17 ISSR) revealed significant genetic diversity (H = 0.26, I = 0.40, PPL = 80.89%) at a species level, while the average genetic diversity at the population level was low. Among the 11 populations studied, PCH and UTK populations showed maximum genetic diversity, followed by KNR and AMB, while TEL population revealed the lowest genetic diversity. AMOVA and Gst values (0.18) revealed that most of the genetic variations are found within populations and very less among populations, and higher gene flow (Nm = 2.29) was found to be responsible for the genetic homogenization of the populations. The clustering pattern resulting from the UPGMA dendrogram was in congruence with STRUCTURE and PCoA, segregating all the 11 populations into two main genetic clusters: cluster I (populations of North and Central India) and cluster II (populations of South India). The clustering patterns obtained from all three statistical methods indicate that the genetic structure in G. sylvestre populations corresponds to the geographical diversity of the populations and represents a strong genetic structure. CONCLUSION: The genetically diverse populations identified during the present study could be a potential genetic resource for further prospecting and conserving this important plant resource.

15.
Bioprocess Biosyst Eng ; 46(6): 803-811, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36977929

ABSTRACT

This study showed that bio-functional silver nanoparticles (AgNPs) and zinc oxide nanoparticles (ZnONPs) were synthesized in aqueous extracts of Gymnema sylvestre leaves and tested for toxicity assessment against triple-negative breast cancer cells (TNBC). Biofunctional nanoparticle (NPs) samples were characterized using UV-Vis spectroscopy, FT-IR, XRD, SEM, and TEM. The results showed that the phytofabrication of AgNPs resulted in a dark brown, UV-vis maximum absorbance peak at 413 nm. The AgNPs were crystalline and spherical, with sizes ranging from 20 to 60 nm, as confirmed by the XRD pattern and TEM images. Another phytofabrication of ZnONPs exhibited a white precipitate corresponding to a UV-Vis maximum absorption peak at 377 nm and a fine micro flower morphology with a particle-sized tribution between 100 and 200 nm. In addition, FT-IR spectra showed that bioorganic compounds are associated with NPs that respond to reduced Ag+ ions and AgNPs tabilizers. Invitro cytotoxicity studies revealed the potent anti-cancer effects of phytofabricated AgNPs and ZnONPs on TNBC cells. Furthermore, the AO/EB double staining assay results proved that apoptotic cells are distinguished by greenish-yellow fluorescence of the cell nuclei with IC50 concentrations of 44 ± 0.8 µg/mL for AgNPs and 26.2 ± 0.5 µg/mL for ZnONPs, respectively. Based on our results, we expect that the anticancer function of the biofunctional NPs is due to the apoptotic activation of TNBC cells by increased ROS. Therefore, the presented study demonstrated that biofunctional AgNPs and ZnONPs have excellent prospects for the anti-cancer activity that can be used in pharmaceutical and medical fields.


Subject(s)
Metal Nanoparticles , Triple Negative Breast Neoplasms , Zinc Oxide , Humans , Triple Negative Breast Neoplasms/drug therapy , Metal Nanoparticles/chemistry , Cell Line, Tumor , MDA-MB-231 Cells , Spectroscopy, Fourier Transform Infrared , Silver/pharmacology , Silver/chemistry , Zinc Oxide/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents
16.
Biotechnol Genet Eng Rev ; : 1-23, 2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36641593

ABSTRACT

Prolonged insulin resistance is considered one of the reasons for Type 2 Diabetes Mellitus. Upregulation of Protein tyrosine phosphatase 1B (PTP1B), a negative regulator of insulin signalling, has been well studied as a key regulator in prognosis to insulin resistance. It has been widely studied as a desirable molecular therapeutic target. The study aimed to evaluate the efficacy of leaf extract of the medicinal plants Silybum marianum on the inhibition of PTP1B activity. It also explored the synergistic effect with extracts of Gymnema sylvestre (leaves), Momordica charantia (seeds), and Trigonella foenum graecum (seeds). The S. marianum leaves showed dose-dependent inhibition of PTP1B ranging from 9.48-47.95% (25-1000 µg mL-1). Assay with individual plant extracts showed comparatively lesser inhibition of PTP1B as compared to metformin as a control (38% inhibition). However, a synergistic effect showed nearly 45% PTP1B inhibition (higher than metformin) after the assay was done with selected four plant extracts in combination. The effect of leaf extracts of S. marianum was studied for glucose uptake efficiency in yeast cell lines which was found to be increased by 23% as compared to the control (without extract). Metformin improves glucose upake by yeast cells by ~15-31%. GC-MS analysis revealed 23 phytochemicals, some of which possessed anti-diabetic properties. A dose-dependent increase in antioxidant activity of S. marianum leaves extracts was observed (40-53%). The findings of the study highlighted the presence of various phytochemicals in leaves extracts that are effective against PTP1B inhibition and may help in reinvigorating drug development.

17.
Antioxidants (Basel) ; 12(1)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36670996

ABSTRACT

Gymnema sylvestre (GS) is a perennial woody vine native to tropical Asia, China, the Arabian Peninsula, Africa and Australia. GS has been used as a medicinal plant with potential anti-microbial, anti-inflammatory and anti-oxidant properties. This study was conceptualized to evaluate the cytotoxicity potential of Gymnema sylvestre saponin rich fraction (GSSRF) on breast cancer cell lines (MCF-7 and MDA-MB-468) by SRB assay. The anti-tumor activity of GSSRF was assessed in tumor-bearing Elrich ascites carcinoma (EAC) and Dalton's lymphoma ascites (DLA) mouse models. The anti-oxidant potential of GSSRF was assessed by DPPH radical scavenging assay. The acute toxicity of GSSRF was carried out according to OECD guideline 425. The yield of GSSRF was around 1.4% and the presence of saponin content in GSSRF was confirmed by qualitative and Fourier transform infrared spectroscopic (FTIR) analysis. The in vitro cytotoxic effects of GSSRF on breast cancer cell lines were promising and found to be dose-dependent. An acute toxicity study of GSSRF was found to be safe at 2000 mg/kg body weight. GSSRF treatment has shown a significant increase in the body weight and the life span of EAC-bearing mice in a dose-dependent manner when compared with the control group. In the solid tumor model, the doses of 100 and 200 mg/kg body weight per day have shown about 46.70% and 60.80% reduction in tumor weight and controlled the tumor weight until the 30th day when compared with the control group. The activity of GSSRF in both models was similar to the cisplatin, a standard anticancer agent used in the study. Together, these results open the door for detailed investigations of anti-tumor potentials of GSSRF in specific tumor models, mechanistic studies and clinical trials leading to promising novel therapeutics for cancer therapy.

18.
Inflammopharmacology ; 31(2): 823-844, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36662401

ABSTRACT

Acute respiratory distress syndrome (ARDS) is one of the major causes of mortality in COVID-19 patients, due to limited therapeutic options. This prompted us to explore natural sources to mitigate this condition. Gymnema Sylvestre (GS) is an ancient medicinal plant known to have various therapeutic effects. This investigation examined the therapeutic effect of hydroalcoholic extract of Gymnema Sylvestre (HAEGS) against lipopolysaccharide (LPS)-induced lung injury and ARDS in in vitro and in vivo models. UHPLC-HRMS/GC-MS was employed for characterizing the HAEGS and identified several active derivatives including gymnemic acid, gymnemasaponins, gymnemoside, gymnemasin, quercetin, and long fatty acids. Gene expression by RT-qPCR and DCFDA analysis by flow cytometry revealed that several inflammatory cytokine/chemokine, cell injury markers, and reactive oxygen species (ROS) levels were highly upregulated in LPS control and were significantly reduced upon HAEGS treatment. Consistent with the in vitro studies, we found that in LPS-induced ARDS model, pre-treatment with HAEGS significantly suppressed the LPS-induced elevation of inflammatory cell infiltrations, cytokine/chemokine marker expression, ROS levels, and lung injury in a dose-dependent manner. Further mechanistic studies demonstrated that HAEGS suppressed oxidative stress by modulating the NRF2 pathway and ameliorated the ARDS through the NF-κB/MAPK signalling pathway. Additional fractionation results revealed that fraction 6 which has the exclusive composition of gymnemic acid derivatives showed better anti-inflammatory effects (inhibition of IL-6 and IL-1ß) at lower concentrations compared to HAEGS. Overall, HAEGS significantly mitigated LPS-induced lung injury and ARDS by targeting the NF-κB/MAPK signalling pathway. Thus, our work unravels the protective role of HAEGS for the first time in managing ARDS.


Subject(s)
COVID-19 , Gymnema sylvestre , Lung Injury , Respiratory Distress Syndrome , Rats , Animals , NF-kappa B/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Gymnema sylvestre/metabolism , Reactive Oxygen Species , Lung Injury/drug therapy , Lipopolysaccharides/pharmacology , Respiratory Distress Syndrome/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cytokines
19.
Phytother Res ; 37(3): 949-964, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36580574

ABSTRACT

There is a growing interest in the considerable health benefits of Gymnema Sylvestre (GS) supplementation, as some studies have reported that it may improve cardiometabolic risk factors. However, the widespread impact of GS supplementation on the parameters mentioned above is not fully resolved. Consequently, this study aimed to examine the effects of GS supplementation on lipid profile, glycemic control, blood pressure, and anthropometric indices in adults. Eligible randomized controlled trials (RCT), published up to November 2021, were identified through PubMed, Scopus, and ISI Web of Science databases. Six studies were included and analyzed using a random-effects model to calculate weighted mean differences (WMDs) with 95% confidence intervals (CI). All studies were conducted in adults that used a GC supplement (>1 week) and assessed our selected cardiovascular risk factors. Outcomes revealed that GS supplementation significantly decreased triglyceride (p < .001), total cholesterol (p < .001), low-density lipoprotein (p < .001), fasting blood sugar (p < .001), and diastolic blood pressure (p = .003). Some limitations, including notable heterogeneity, low quality of studies, and lack of diversity among research participants, should be considered when interpreting our results. Our outcomes suggest that GS supplementation may improve cardiovascular risk factors. Future large-high-quality RCTs with longer duration and various populations are needed to firmly establish the clinical efficacy of the plant.


Subject(s)
Gymnema sylvestre , Humans , Adult , Blood Pressure , Glycemic Control , Dietary Supplements , Triglycerides , Blood Glucose
20.
Front Cell Infect Microbiol ; 12: 1017545, 2022.
Article in English | MEDLINE | ID: mdl-36268224

ABSTRACT

Staphylococcus aureus (Sa) is an opportunistic pathogen capable of causing various infections ranging from superficial skin infections to life-threatening severe diseases including pneumonia and sepsis. Sa produces biofilms readily on biotic and abiotic surfaces. Biofilm cells are embedded in a protective polysaccharide matrix and show an innate resistance to antibiotics, disinfectants, and clearance by host defenses. Additionally, biofilms serve as a source for systemic dissemination. Moreover, infections associated with biofilms may result in longer hospitalizations, a need for surgery, and may even result in death. Agents that inhibit the formation of biofilms and virulence without affecting bacterial growth to avoid the development of drug resistance could be useful for therapeutic purposes. In this regard, we identified and purified a small cyclic peptide, gurmarin, from a plant source that inhibited the formation of Sa biofilm under in vitro growth conditions without affecting the viability of the bacterium. The purified peptide showed a predicted molecular size of ~4.2 kDa on SDS-PAGE. Transcriptomic analysis of Sa biofilm treated with peptide showed 161 differentially affected genes at a 2-fold change, and some of them include upregulation of genes involved in oxidoreductases and downregulation of genes involved in transferases and hydrolases. To determine the inhibitory effect of the peptide against Sa biofilm formation and virulence in vivo, we used a rat-implant biofilm model. Sa infected implants with or without peptide were placed under the neck skin of rats for seven days. Implants treated with peptide showed a reduction of CFU and lack of edema and sepsis when compared to that of control animals without peptide. Taken together, gurmarin peptide blocks Sa biofilm formation in vitro and in vivo and can be further developed for therapeutic use.


Subject(s)
Disinfectants , Sepsis , Staphylococcal Infections , Rats , Animals , Staphylococcus aureus , Peptides, Cyclic/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Biofilms , Anti-Bacterial Agents/pharmacology , Disinfectants/pharmacology , Transferases/pharmacology , Hydrolases , Oxidoreductases
SELECTION OF CITATIONS
SEARCH DETAIL
...