Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 14(11)2021 May 24.
Article in English | MEDLINE | ID: mdl-34074057

ABSTRACT

Wastewater treatment activities in the chemical industry have generated abundant gypsum waste, classified as scheduled waste (SW205) under the Environmental Quality Regulations 2005. The waste needs to be disposed into a secure landfill due to the high heavy metals content which is becoming a threat to the environment. Hence, an alternative disposal method was evaluated by recycling the waste into fired clay brick. The brick samples were incorporated with different percentages of gypsum waste (0% as control, 10, 20, 30, 40 and 50%) and were fired at 1050 °C using 1 °C per minute heating rate. Shrinkage, dry density, initial rate of suction (IRS) and compressive strength tests were conducted to determine the physical and mechanical properties of the brick, while the synthetic precipitation leaching procedure (SPLP) was performed to scrutinize the leachability of heavy metals from the crushed brick samples. The results showed that the properties would decrease through the incorporation of gypsum waste and indicated the best result at 10% of waste utilization with 47.5% of shrinkage, 1.37% of dry density, 22.87% of IRS and 28.3% of compressive strength. In addition, the leachability test highlighted that the concentrations of Fe and Al was significantly reduced up to 100% from 4884 to 3.13 ppm (Fe) and from 16,134 to 0.81 ppm (Al), respectively. The heavy metals content in the bricks were oxidized during the firing process, which signified the successful remediation of heavy metals in the samples. Based on the permissible incorporation of gypsum waste into fired clay brick, this study promised a more green disposing method for gypsum waste, and insight as a potential towards achieving a sustainable end product.

2.
J Hazard Mater ; 390: 120614, 2020 05 15.
Article in English | MEDLINE | ID: mdl-31378419

ABSTRACT

Heavy metal-containing gypsum is a widespread hazardous waste. In this work, H+ was found to be the most essential factor of the mineralizers in hydrothermal treatment to completely (≥99.8%) extract Cr(VI) from gypsum waste to the supernatant, where the significant growth (from several µm to several hundreds of µm) and perfection of the gypsum crystals were observed. Moreover, with increasing concentration of H+, the crystal growth (undergoing Ostwald ripening process) was accelerated and the phase transformation temperature of gypsum was decreased from 110℃ (at 0.2 mol/L of HCl) to 100℃ (at 0.3 mol/L of HCl), which are favorable to enhance Cr(VI) extraction efficiency. Pilot experiments further certified this method to be practicable even in ton-scale. This work proposes a practicable and universal method to completely extract Cr(VI) from gypsum waste, and would also inspire the recycle of gypsum waste containing other heavy metals, such as As, Pb, Cd, and Hg.

3.
J Hazard Mater ; 322(Pt B): 402-412, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27773439

ABSTRACT

In this work, a new innovative slag cleaning technique was presented to economically and environmentally friendly recover valuable metals from cobalt-bearing copper smelter slag. CaSO4-rich gypsum waste was used as sulfurizing agent to efficiently and selectively sulfurize and recover valuable metals lost in the slag at reductive atmosphere. Thermodynamic analysis and laboratory experiments were carried out to determine the feasibility and reliability of this new process. The optimum slag cleaning conditions were determined as follow: reductive agent coke dosage of 12%, 20% CaSO4 addition of smelter slag weight, smelting at 1350°C for 3h. Under the optimum conditions, 92.04% Cu and 95.62% Co were enriched and recovered in copper-cobalt matte. The contents of Cu and Co in cleaned slag dropped to levels lower than 0.2% and 0.045% respectively. Selectivity recovery ratio of Cu/Fe and Co/Fe can reach 6.00 and 6.24 respectively. Calcium-rich and iron-poor cleaned slag property was more beneficial for minimizing cobalt and copper losses in slag. The products were characterized by XRD and SEM-EDS techniques. The Cu-Co matte primarily comprised iron sulphide (FeS), geerite (Cu8S5), iron cobalt sulphide (Fe0.92Co0.08S), independent cobalt sulphide (CoS) and some metallic Cu, Co and Fe. Copper and cobalt in resultant matte attended to appear separately in different mineral phases. The cleaned slag mainly contained fayalite (Fe2SiO4), hedenbergite (CaFeSi2O6) and magnetite (Fe3O4).

4.
Waste Manag ; 46: 619-27, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26316100

ABSTRACT

We recently showed that the production of elemental sulphur and calcium carbonate (CaCO3) from gypsum waste by thermally reducing the waste into calcium sulphide (CaS) followed by its direct aqueous carbonation yielded low-grade carbonate products (i.e. <90 mass% as CaCO3). In this study, we used the insight gained from our previous work and developed an indirect aqueous CaS carbonation process for the production of high-grade CaCO3 (i.e. >99 mass% as CaCO3) or precipitated calcium carbonate (PCC). The process used an acid gas (H2S) to improve the aqueous dissolution of CaS, which is otherwise poorly soluble. The carbonate product was primarily calcite (99.5%) with traces of quartz (0.5%). Calcite was the only CaCO3 polymorph obtained; no vaterite or aragonite was detected. The product was made up of micron-size particles, which were further characterised by XRD, TGA, SEM, BET and true density. Results showed that about 0.37 ton of high-grade PCC can be produced from 1.0 ton of gypsum waste, and generates about 0.19 ton of residue, a reduction of 80% from original waste gypsum mass to mass of residue that needs to be discarded off. The use of gypsum waste as primary material in replacement of mined limestone for the production of PPC could alleviate waste disposal problems, along with converting significant volumes of waste materials into marketable commodities.


Subject(s)
Calcium Sulfate/chemistry , Construction Materials/analysis , Industrial Waste/analysis , Recycling , Sulfur/chemistry , Waste Management , Calcium Carbonate/analysis
5.
Waste Manag ; 34(11): 2373-81, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25128917

ABSTRACT

The production of elemental sulphur and calcium carbonate (CaCO3) from gypsum waste can be achieved by thermally reducing the waste into calcium sulphide (CaS), which is then subjected to a direct aqueous carbonation step for the generation of hydrogen sulphide (H2S) and CaCO3. H2S can subsequently be converted to elemental sulphur via the commercially available chemical catalytic Claus process. This study investigated the carbonation of CaS by examining both the solution chemistry of the process and the properties of the formed carbonated product. CaS was successfully converted into CaCO3; however, the reaction yielded low-grade carbonate products (i.e. <90 mass% as CaCO3) which comprised a mixture of two CaCO3 polymorphs (calcite and vaterite), as well as trace minerals originating from the starting material. These products could replace the Sappi Enstra CaCO3 (69 mass% CaCO3), a by-product from the paper industry which is used in many full-scale AMD neutralisation plants but is becoming insufficient. The insight gained is now also being used to develop and optimize an indirect aqueous CaS carbonation process for the production of high-grade CaCO3 (i.e. >99 mass% as CaCO3) or precipitated calcium carbonate (PCC).


Subject(s)
Calcium Carbonate/chemistry , Calcium Compounds/chemistry , Calcium Sulfate/chemistry , Industrial Waste/analysis , Sulfides/chemistry , Sulfur/chemistry , Waste Management , Manufacturing Industry
SELECTION OF CITATIONS
SEARCH DETAIL