Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Front Immunol ; 13: 861516, 2022.
Article in English | MEDLINE | ID: mdl-35711415

ABSTRACT

The hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is a rare autosomal recessive inborn error of the urea cycle caused by mutations in the SLC25A15 gene. Besides the well-known metabolic complications, patients often present intercurrent infections associated with acute hyperammonemia and metabolic decompensation. However, it is currently unknown whether intercurrent infections are associated with immunological alterations besides the known metabolic imbalances. Herein, we describe the case of a 3-years-old girl affected by the HHH syndrome caused by two novel SLC25A15 gene mutations associated with immune phenotypic and functional alterations. She was admitted to the hospital with an episode of recurrent otitis, somnolence, confusion, and lethargy. Laboratory tests revealed severe hyperammonemia, elevated serum levels of liver transaminases, hemostasis alterations, hyperglutaminemia and strikingly increased orotic aciduria. Noteworthy, serum protein electrophoresis showed a reduction in the gamma globulin fraction. Direct sequencing of the SLC25A15 gene revealed two heterozygous non-conservative substitutions in the exon 5: c.649G>A (p.Gly217Arg) and c.706A>G (p.Arg236Gly). In silico analysis indicated that both mutations significantly impair protein structure and function and are consistent with the patient clinical status confirming the diagnosis of HHH syndrome. In addition, the immune analysis revealed reduced levels of serum IgG and striking phenotypic and functional alterations in the T and B cell immune compartments. Our study has identified two non-previously described mutations in the SLC25A15 gene underlying the HHH syndrome. Moreover, we are reporting for the first time functional and phenotypic immunologic alterations in this rare inborn error of metabolism that would render the patient immunocompromised and might be related to the high frequency of intercurrent infections observed in patients bearing urea cycle disorders. Our results point out the importance of a comprehensive analysis to gain further insights into the underlying pathophysiology of the disease that would allow better patient care and quality of life.


Subject(s)
Hyperammonemia , Urea Cycle Disorders, Inborn , Amino Acid Transport Systems, Basic/genetics , Child, Preschool , Female , Humans , Hyperammonemia/complications , Hyperammonemia/diagnosis , Mitochondrial Membrane Transport Proteins , Ornithine/deficiency , Quality of Life , Urea Cycle Disorders, Inborn/complications , Urea Cycle Disorders, Inborn/diagnosis , Urea Cycle Disorders, Inborn/genetics
2.
Intern Med ; 61(4): 553-557, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34433721

ABSTRACT

A 49-year-old Japanese man had shown developmental delay, learning difficulties, epilepsy, and slowly progressive gait disturbance in elementary school. At 46 years old, he experienced repeated drowsiness with or without generalized convulsions, and hyperammonemia was detected. Brain magnetic resonance imaging detected multiple cerebral white matter lesions. An electroencephalogram showed diffuse slow basic activities with 2- to 3-Hz δ waves. Genetic tests confirmed a diagnosis of hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome. Leukoencephalopathy was resolved following the administration of L-arginine and lactulose with a decrease in plasma ammonia levels and glutamine-glutamate peak on magnetic resonance spectroscopy. Leukoencephalopathy in HHH syndrome may be reversible with the resolution of hyperammonemia-induced glutamine toxicity.


Subject(s)
Hyperammonemia , Leukoencephalopathies , Urea Cycle Disorders, Inborn , Ammonia , Child , Humans , Hyperammonemia/diagnosis , Hyperammonemia/genetics , Male , Middle Aged , Ornithine/deficiency , Urea Cycle Disorders, Inborn/complications , Urea Cycle Disorders, Inborn/diagnosis , Urea Cycle Disorders, Inborn/genetics
3.
Euroasian J Hepatogastroenterol ; 11(2): 100-102, 2021.
Article in English | MEDLINE | ID: mdl-34786365

ABSTRACT

BACKGROUND: Wilson's disease (WD) is a rare disorder of copper toxicosis. Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is even rarer. The coexistence of these two disorders and their clinical implications are not yet reported. We report on a child who succumbed to death due to liver disease caused by both disorders, documenting their disease-causing mutations and highlighting the lessons learnt out of this case. CASE DESCRIPTION: A child who was diagnosed to have WD soon after birth due to known parental heterozygosity was later found to have developmental delay, seizures, and hyperammonemia. Subsequent evaluation confirmed hyperornithinemia-hyperammonamia-homocitrullinuria (HHH) syndrome as a comorbidity. Though this child was commenced on medical treatment for both the metabolic diseases since early life, his liver disease was rapidly progressive requiring a liver transplant (LTx) at 6-years. He died in the posttransplant period possibly due to sepsis and hidden metabolic consequences. CONCLUSION: This case highlights that co-occurrence of WD and HHH syndrome would cause progressive liver disease despite medical treatment. Hence, the close clinical follow-up and early LTx would be warranted. HOW TO CITE THIS ARTICLE: Fernando M, Vijay S, Santra S, et al. Wilson's Disease and Hyperornithinemia-hyperammonemia-homocitrullinuria Syndrome in a Child: A Case Report with Lessons Learned! Euroasian J Hepato-Gastroenterol 2021;11(2):100-102.

4.
Orphanet J Rare Dis ; 14(1): 208, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31443672

ABSTRACT

BACKGROUND: Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is a rare disorder of urea cycle characterized by progressive pyramidal and cerebellar dysfunction, whose pathophysiology is not yet fully understood. Here we describe the spectrum of the long fibers involvement in HHH syndrome, attempting a correlation between clinical, electrophysiological and neuro-radiological data. METHODS: Nine HHH patients were longitudinally evaluated by clinical examination, neurophysiological assessment including motor (MEPs), somato-sensory evoked potentials (PESS) and nerve conduction velocity (NCV), brain and spinal cord MRI RESULTS: All patients had pyramidal dysfunction and 3/9 an overt spastic paraplegia. Mild to moderate cerebellar signs were found in 7/9, intellectual disability in 8/9. At lower limbs, MEPs resulted abnormal in 7/8 patients and PESS in 2/8; peripheral sensory-motor neuropathy was found in 1/9. MRI documented atrophic changes in supra-tentorial brain regions in 6/9 patients, cerebellum in 6/9, spinal cord in 3/7. CONCLUSIONS: A predominant corticospinal dysfunction is evident in HHH syndrome, along with milder cerebellar signs, intellectual disability of variable degree and rare peripheral neuropathy. Phenotypical similarities with other disorders affecting the urea cycle (argininemia and pyrroline-5-carboxylate synthetase deficiency) suggest possible common mechanisms contributing in the maintenance of the corticospinal tract integrity. HHH syndrome phenotype largely overlaps with complex Hereditary Spastic Paraplegias (HSPs), in the list of which it should be included, emphasizing the importance to screen all the unsolved cases of HSPs for metabolic biomarkers.


Subject(s)
Hyperammonemia/metabolism , Hyperammonemia/pathology , Ornithine/deficiency , Urea Cycle Disorders, Inborn/metabolism , Urea Cycle Disorders, Inborn/pathology , Adolescent , Adult , Brain/metabolism , Brain/physiology , Child , Female , Humans , Hyperammonemia/physiopathology , Magnetic Resonance Imaging , Male , Middle Aged , Mutation/genetics , Neural Conduction/physiology , Ornithine/metabolism , Spastic Paraplegia, Hereditary/metabolism , Spastic Paraplegia, Hereditary/pathology , Spastic Paraplegia, Hereditary/physiopathology , Spinal Cord/metabolism , Spinal Cord/physiology , Urea Cycle Disorders, Inborn/physiopathology , Young Adult
5.
JIMD Rep ; 46(1): 28-34, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31240152

ABSTRACT

Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is a rare metabolic autosomal recessive urea cycle disorder. Only about 100 patients have been reported in the literature. As the population survives into reproductive years, pregnancy management becomes a new challenge for this clinicians. To our knowledge, there are less than three patients with successful pregnancies and deliveries found in the literature with no specific consensus on management or recommendations for HHH syndrome. We reviewed the current literature regarding pregnancy outcomes, combine it with our experience managing a patient through two successful pregnancies and identify a new concern of fetal intrauterine growth restriction. From this, recommendations for pregnancy management are made, including a detailed protocol for clinicians to use for disease management at delivery and in the post-partum period.

6.
Front Neurol ; 10: 131, 2019.
Article in English | MEDLINE | ID: mdl-30853934

ABSTRACT

Hereditary Spastic Paraplegias (HSPs) are a clinically and genetically heterogeneous group of neurodegenerative disorders characterized by a progressive rigidity and weakness of the lower limbs, caused by pyramidal tract lesions. As of today, 80 different forms of HSP have been mapped, 64 genes have been cloned, and new forms are constantly being described. HSPs represent an intensively studied field, and the functional understanding of the biochemical and molecular pathogenetic pathways are starting to be elucidated. Recently, dominant and recessive mutations in the ALDH18A1 gene resulting in the deficiency of the encoded enzyme (delta-1-pyrroline-5-carboxylate synthase, P5CS) have been pathogenetically linked to HSP. P5CS is a critical enzyme in the conversion of glutamate to pyrroline-5-carboxylate, an intermediate that enters in the proline biosynthesis and that is connected with the urea cycle. Interestingly, two urea cycle disorders, Argininemia and Hyperornithinemia-Hyperammonemia-Homocitrullinuria syndrome, are clinically characterized by highly penetrant spastic paraplegia. These three diseases represent a peculiar group of HSPs caused by Inborn Errors of Metabolism. Here we comment on these forms, on the common features among them and on the hypotheses for possible shared pathogenetic mechanisms causing the HSP phenotype.

7.
JIMD Rep ; 44: 103-107, 2019.
Article in English | MEDLINE | ID: mdl-30187369

ABSTRACT

Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome (OMIM 238970) is an autosomal recessive disorder that is caused by a deficiency of mitochondrial ornithine transporter 1, resulting in dysfunction of the urea cycle. HHH is the rarest of the urea cycle disorders, reported in fewer than 100 patients. It is characterized by extreme phenotypic variability, including diverse ages of onset and severity of phenotype. We report the first confirmed instance of HHH syndrome in a premature infant (31 2/7 weeks) with severe hyperammonemia (1,300 µmol/L).This case highlights the importance of considering HHH in the differential diagnosis for neonatal hyperammonemia. Because HHH is not detected by newborn screening, and the characteristic biochemical triad may be subtle or even absent, it has the potential to be underdiagnosed; however, making the diagnosis has critical therapeutic implications as treatment is distinct from other urea cycle defects. For instance, lysine supplementation is a beneficial treatment unique to HHH. Therefore, we present here a review of previously reported cases in order to demonstrate the full spectrum of the disease and highlight potentially diagnostic features.

9.
Zhonghua Er Ke Za Zhi ; 55(6): 428-433, 2017 Jun 02.
Article in Chinese | MEDLINE | ID: mdl-28592010

ABSTRACT

Objective: To study the clinical characteristics, methods of diagnosis and treatment of hyperornithinemia-hyperammonemia- homocitrullinuria (HHH) syndrome. Method: From July 2011 to August 2016, 3 Chinese patients with HHH syndrome were enrolled in this study. The clinical course, biochemical features, brain MRI findings, and gene mutations were analyzed. Result: The three patients' age at onset of symptoms was 3 months to 7 years, and the age of diagonosis was 3 years and 10 months to 9 years and 10 months. All of them presented with intolerance to protein-rich foods from the infant period, development retardation and abnormal posture. Case 1 and 2 had moderate mental retardation. Serum ammonia 25-276 µmol/L (reference range<60 µmol/L), alanine aminotransferase (ALT) 20-139 IU/L (reference range 9-50 IU/L), ornithine 29.12-99.44 µmol/L(reference range 15-100 µmol/L), urinary orotic acid 1.49-29.75 mmol/mol Cr (reference range 0-7 mmol/mol Cr), uracil 6.09-103.97 mmol/mol Cr (reference range 0-1.5 mmol/mol Cr). The cranial MRI revealed lesions in the basal ganglia, abnormal white matter signal, progressive demyelination and cerebral atrophy. On their SLC25A15 gene, a novel homozygous missense mutation c. 416A>G (p.E139G) was identified in case 1, a known pathogenic homozygous nonsense mutation c. 535C>T was found in case 2 and 3. Liver transplantation had been performed when case 1 was 6 years old. Significant improvements were observed in dietary habit, mental and motor functions, and biochemical parameters. After the dietary intervention with the supplements of arginine, L-carnitine, case 2 was improved, spastic paraplegia of case 3 had no mitigation. Liver transplant was recommended. Conclusion: HHH syndrome has an aversion to protein-rich food, and the patients have recurrent vomiting and progressive neurological dysfunction. Clinical diagnosis of HHH syndrome is difficult and patients may present with incomplete biochemical phenotype. The genetic analysis is key for the diagnosis. Depending on their condition, individuals with HHH syndrome can be treated with a low-protein diet, drugs and liver transplantation.


Subject(s)
Diet, Protein-Restricted , Hyperammonemia/diagnosis , Mutation , Ornithine/deficiency , Phenotype , Urea Cycle Disorders, Inborn/diagnosis , Arginine , Asian People , Carnitine , Child , Child, Preschool , Genetic Testing , Homozygote , Humans , Infant , Ornithine/therapeutic use , Orotic Acid , Proteins
10.
Biomed Pharmacother ; 86: 185-194, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27978498

ABSTRACT

Ornithine is a non-essential amino acid produced as an intermediate molecule in urea cycle. It is a key substrate for the synthesis of proline, polyamines and citrulline. Ornithine also plays an important role in the regulation of several metabolic processes leading to diseases like hyperorithinemia, hyperammonemia, gyrate atrophy and cancer in humans. However, the mechanism of action behind the multi-faceted roles of ornithine is yet to be unraveled completely. Several types of cancers are also characterized by excessive polyamine synthesis from ornithine by different rate limiting enzymes. Hence, in this review we aim to provide extensive insights on potential roles of ornithine in many of the disease related cellular processes and also on the structural features of ornithine interacting proteins, enabling development of therapeutic modalities.


Subject(s)
Metabolic Diseases/metabolism , Ornithine/physiology , Animals , Humans , Ornithine/chemistry , Polyamines/chemistry , Polyamines/metabolism , Proline/chemistry , Proline/metabolism , Protein Binding/physiology , Protein Structure, Secondary
11.
Chinese Journal of Pediatrics ; (12): 428-433, 2017.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-808769

ABSTRACT

Objective@#To study the clinical characteristics, methods of diagnosis and treatment of hyperornithinemia-hyperammonemia- homocitrullinuria (HHH) syndrome.@*Method@#From July 2011 to August 2016, 3 Chinese patients with HHH syndrome were enrolled in this study. The clinical course, biochemical features, brain MRI findings, and gene mutations were analyzed.@*Result@#The three patients′ age at onset of symptoms was 3 months to 7 years, and the age of diagonosis was 3 years and 10 months to 9 years and 10 months. All of them presented with intolerance to protein-rich foods from the infant period, development retardation and abnormal posture. Case 1 and 2 had moderate mental retardation. Serum ammonia 25-276 μmol/L (reference range<60 μmol/L), alanine aminotransferase (ALT) 20-139 IU/L (reference range 9-50 IU/L), ornithine 29.12-99.44 μmol/L(reference range 15-100 μmol/L), urinary orotic acid 1.49-29.75 mmol/mol Cr (reference range 0-7 mmol/mol Cr), uracil 6.09-103.97 mmol/mol Cr (reference range 0-1.5 mmol/mol Cr). The cranial MRI revealed lesions in the basal ganglia, abnormal white matter signal, progressive demyelination and cerebral atrophy. On their SLC25A15 gene, a novel homozygous missense mutation c. 416A>G (p.E139G) was identified in case 1, a known pathogenic homozygous nonsense mutation c. 535C>T was found in case 2 and 3. Liver transplantation had been performed when case 1 was 6 years old. Significant improvements were observed in dietary habit, mental and motor functions, and biochemical parameters. After the dietary intervention with the supplements of arginine, L-carnitine, case 2 was improved, spastic paraplegia of case 3 had no mitigation. Liver transplant was recommended.@*Conclusion@#HHH syndrome has an aversion to protein-rich food, and the patients have recurrent vomiting and progressive neurological dysfunction. Clinical diagnosis of HHH syndrome is difficult and patients may present with incomplete biochemical phenotype. The genetic analysis is key for the diagnosis. Depending on their condition, individuals with HHH syndrome can be treated with a low-protein diet, drugs and liver transplantation.

12.
Article in English | WPRIM (Western Pacific) | ID: wpr-79072

ABSTRACT

Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome (HHH syndrome) is a neurometabolic disorder with highly variable clinical severity ranging from mild learning disability to severe encephalopathy. Diagnosis of HHH syndrome can easily be delayed or misdiagnosed due to insidious symptoms and incomplete biochemical findings, in that case, genetic testing should be considered to confirm the diagnosis. HHH syndrome is caused by biallelic mutations of SLC25A15, which is involved in the urea cycle and the ornithine transport into mitochondria. Here we report a boy with spastic paraplegia and asymptomatic younger sister who have compound heterozygous mutations of c.535C>T (p.R179*) and c.116C>A (p.T39K) in the SLC25A15 gene. We identified that p.T39K mutation is a novel pathogenic mutation causing HHH syndrome and that p.R179*, which is prevalent in Japanese and Middle Eastern heritage, is also found in the Korean population.


Subject(s)
Humans , Male , Asian People , Brain Diseases , Diagnosis , Genetic Testing , Genetics , Learning Disabilities , Mitochondria , Ornithine , Paraplegia , Siblings , Urea , Urea Cycle Disorders, Inborn
13.
Neurochem Res ; 41(9): 2190-8, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27161368

ABSTRACT

Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is caused by deficiency of ornithine translocase leading to predominant tissue accumulation and high urinary excretion of ornithine (Orn), homocitrulline (Hcit) and ammonia. Although affected patients commonly present neurological dysfunction manifested by cognitive deficit, spastic paraplegia, pyramidal and extrapyramidal signs, stroke-like episodes, hypotonia and ataxia, its pathogenesis is still poorly known. Although astrocytes are necessary for neuronal protection. Therefore, in the present study we investigated the effects of Orn and Hcit on cell viability (propidium iodide incorporation), mitochondrial function (thiazolyl blue tetrazolium bromide-MTT-reduction and mitochondrial membrane potential-ΔΨm), antioxidant defenses (GSH) and pro-inflammatory response (NFkB, IL-1ß, IL-6 and TNF-α) in unstimulated and menadione-stressed cortical astrocytes that were previously shown to be susceptible to damage by neurotoxins. We first observed that Orn decreased MTT reduction, whereas both amino acids decreased GSH levels, without altering cell viability and the pro-inflammatory factors in unstimulated astrocytes. Furthermore, Orn and Hcit decreased cell viability and ΔΨm in menadione-treated astrocytes. The present data indicate that the major compounds accumulating in HHH syndrome impair mitochondrial function and reduce cell viability and the antioxidant defenses in cultured astrocytes especially when stressed by menadione. It is presumed that these mechanisms may be involved in the neuropathology of this disease.


Subject(s)
Astrocytes/drug effects , Citrulline/analogs & derivatives , Mitochondria/drug effects , Ornithine/pharmacology , Amino Acid Transport Systems, Basic/drug effects , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Astrocytes/metabolism , Cell Death/drug effects , Citrulline/pharmacology , Hyperammonemia/drug therapy , Hyperammonemia/metabolism , Male , Mitochondria/metabolism , Ornithine/deficiency , Ornithine/metabolism , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism , Urea Cycle Disorders, Inborn/drug therapy , Urea Cycle Disorders, Inborn/metabolism
14.
Mol Genet Metab ; 115(1): 27-32, 2015 May.
Article in English | MEDLINE | ID: mdl-25818551

ABSTRACT

HHH syndrome is an autosomal recessive urea cycle disorder caused by alterations in the SLC25A15 gene encoding the mitochondrial ornithine carrier 1, which catalyzes the transport of cytosolic ornithine into the mitochondria in exchange for intramitochondrial citrulline. In this study the functional effects of several SLC25A15 missense mutations p.G27R, p.M37R, p.N74A, p.F188L, p.F188Y, p.S200K, p.R275Q and p.R275K have been tested by transport assays in reconstituted liposomes and complementation of Saccharomyces cerevisiae ORT1 null mutant in arginine-less synthetic complete medium. The HHH syndrome-causing mutations p.G27R, p.M37R, p.F188L and p.R275Q had impaired transport and did not complement ORT1∆ cells (except p.M37R slightly after 5 days in solid medium). The experimentally produced mutations p.N74A, p.S200K and p.R275K exhibited normal or considerable transport activity and complemented ORT1∆ cells after 3 days (p.N74A, p.S200K) or 5 days (p.R275K) incubation. Furthermore, the experimentally produced p.F188Y mutation displayed a substantial transport activity but did not complement the ORT1∆ cells in both liquid and solid media. In view of the disagreement in the results obtained between the two methods, it is recommended that the method of complementing the S. cerevisiae ORT1 knockout strain is used complimentary with the measurement of the catalytic activity, in order to distinguish HHH syndrome-causing mutations from isomorphisms.


Subject(s)
Amino Acid Transport Systems, Basic/genetics , Amino Acid Transport Systems, Basic/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Arginine , Biological Transport , Culture Media , Escherichia coli/genetics , Genetic Complementation Test , Humans , Hyperammonemia/genetics , Liposomes/metabolism , Mutation, Missense , Ornithine/deficiency , Ornithine/genetics , Recombinant Proteins , Saccharomyces cerevisiae/growth & development , Urea Cycle Disorders, Inborn/genetics
15.
Mol Genet Metab ; 112(1): 25-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24721342

ABSTRACT

The hyperornithinemia-hyperammonemia-homocitrullinuria syndrome is a rare autosomal recessive disorder caused by the functional deficiency of the mitochondrial ornithine transporter 1 (ORC1). ORC1 is encoded by the SLC25A15 gene and catalyzes the transport of cytosolic ornithine into mitochondria in exchange for citrulline. Although the age of onset and the severity of the symptoms vary widely, the disease usually manifests in early infancy. The typical clinical features include protein intolerance, lethargy, episodic confusion, cerebellar ataxia, seizures and mental retardation. In this study, we identified a novel p.Ala15Val (c.44C>T) mutation by genomic DNA sequencing in a Turkish child presenting severe tantrum, confusion, gait disturbances and loss of speech abilities in addition to hyperornithinemia, hyperammonemia and homocitrullinuria. One hundred Turkish control chromosomes did not possess this variant. The functional effect of the novel mutation was assessed by both complementation of the yeast ORT1 null mutant and transport assays. Our study demonstrates that the A15V mutation dramatically interferes with the transport properties of ORC1 since it was shown to inhibit ornithine transport nearly completely.


Subject(s)
Amino Acid Transport Systems, Basic/genetics , Amino Acid Transport Systems, Basic/metabolism , Urea Cycle Disorders, Inborn/complications , Urea Cycle Disorders, Inborn/genetics , Child , DNA Mutational Analysis , Humans , Male , Mitochondria/physiology , Mitochondrial Membrane Transport Proteins , Point Mutation , Sequence Alignment , Urea Cycle Disorders, Inborn/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...