Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Mol Neurobiol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833128

ABSTRACT

The pathogenesis of ferroptosis in traumatic brain injury (TBI) is unclear; therefore, we aimed to identify key molecules associated with ferroptosis in TBI using bioinformatics analysis to determine its underlying mechanisms. GSE128543 dataset was downloaded from the Gene Expression Omnibus (GEO) database, and TBI-associated modules were obtained by weighted gene co-expression network analysis (WGCNA). We identified 60 differentially expressed genes (DEGs) by intersecting the modules with ferroptosis and glycolysis/gluconeogenesis gene libraries. The hypoxia-inducible factor-1 (HIF-1) signaling pathway was identified to be critical for ferroptosis post-TBI, and protein-protein interaction (PPI) network identified 20 hub genes, including phosphoglycerate kinase 1 (PGK1), ribosomal protein (RP) family, pyruvate kinase M1/2 (PKM), hypoxia-inducible factor 1α subunit (HIF-1α), and MYC genes. In this study, we further explored the role of PGK1, a gene involved in HIF-1 signaling pathway; however, its role and mechanism in TBI are still unclear. Moreover, we constructed a TBI mouse model and examined PGK1 and HIF-1α expression levels, and the results revealed their expressions increased after cortical injury in mice and they co-localized in the same cells. Furthermore, we examined the expressions of PGK1 in the cerebrospinal fluid of 20 clinical patients with different degrees of brain injuries within 48 h of surgery and examined the cognitive function of patients according to the Glasgow Coma Scale (GCS). The results revealed that PGK1 expression level was negatively correlated with the severity of the brain injury. These findings suggest that PGK1 may become a potential hub gene for ferroptosis via the HIF-1 signaling pathway, second to neurological injury after TBI, thereby affecting patient prognosis.

2.
J Ethnopharmacol ; : 118390, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823661

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: According to the theory and practice of traditional Chinese medicine (TCM), chronic obstructive pulmonary disease (COPD) can be classified as "cough," "dyspnea," or "lung distention disease." Bufei Nashen pill (BFNSP) is a classic Chinese herbal formula with certain activity against the above syndromes. FNSP has previously been shown to improve clinical symptoms (cough, lumbar and knee weakness, tinnitus) in patients with occupationally related interstitial lung disease. AIM OF THE STUDY: There is a lack of convincing evidence supporting the use of BFNSP for the treatment of COPD. This study aimed to investigate the effect of BFNSP on COPD and explore its underlying mechanisms. MATERIALS AND METHODS: Liquid chromatography-mass spectrometry (LC/MS) was used to analyze the main components of BFNSP and BFNSP-containing serum. A COPD rat model was generated, and the rats were treated with different doses of BFNSP. Lung function indices were analyzed by a pulmonary function testing system, and lung histopathology was assessed by HE staining and scanning electron microscopy. The levels of TGF-ß1, IL-6, IL-8, IL-1ß, MMP3, MMP-9, and TIMP1 in BALF and the levels of MMP3, MMP-9, TIMP1, and HA in serum were detected by ELISA. Immunohistochemical staining was performed to determine the expression of Col-I, Col-III, and LN in lung tissues. RT‒qPCR was performed to detect the mRNA expression of PI3K, Akt, HIF-1α, MMP-9, TGF-ß1, TIMP1, and ERK1/2 in lung tissue, and Western blotting was performed to detect the protein expression of PI3K, p-PI3K, Akt, p-Akt, HIF-1α, MMP-9, TGF-ß1, TIMP1, and p-ERK1/2 in lung tissue. In addition, in vitro cellular assays were performed for validation. RESULTS: The results showed that BFNSP effectively improved the functional status of pulmonary ventilation, attenuated pathological damage in lung tissue, inhibited the release of inflammatory factors, reduced extracellular matrix deposition, and inhibited the activation of the PI3K/AKT/HIF-1 signaling pathway in lung tissue in COPD rats (P<0.05) and may alleviate COPD progression by inhibiting the PI3K/AKT/HIF-1 signaling pathway. CONCLUSION: BFNSP inhibits the PI3K/AKT/HIF-1 signaling pathway to regulate extracellular matrix deposition and improve COPD progression.

3.
Curr Pharm Des ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38835124

ABSTRACT

BACKGROUND: Psoriasis is a common chronic inflammatory skin disorder. Qingxiong ointment (QX) is a natural medicinal combination frequently employed in clinical treatment of psoriasis. However, the active ingredients of QX and its precise mechanisms of improving psoriasis remain unclear. This study elucidated the effects of QX on an Imiquimod (IMQ)-induced mouse model of psoriasis while also exploring the regulation of the active ingredient of QX, shikonin, on the HIF-1 signaling pathway in HaCaT cells. METHODS: A mouse model of psoriasis was established through topical application of IMQ, and the local therapeutic effect of QX was evaluated using dorsal skin tissue with mouse psoriatic lesion and Psoriasis Area Severity Index (PASI) scores, hematoxylin-eosin (HE) staining, and immunohistochemical staining. Elisa and qPCR were employed to identify changes in the expression of inflammation-related factors in the mouse dorsal skin. Immunofluorescence was used to assess changes in the expression of T cell subsets before and after treatment with various doses of QX. HPLC was used to analyze the content of shikonin, and network pharmacology was employed to analyze the main targets of shikonin. Immunofluorescence was used to identify the effects of shikonin on the HIF-1 signaling pathway in IL6-induced psoriasis HaCaT cells. Finally, qPCR was used to identify the differential expression of the HIF-1 signaling pathway in skin tissues. RESULTS: QX significantly reduces PASI scores on the backs of IMQ-induced psoriasis mice. HE staining reveals alleviated epidermal thickness in the QX group. Immunohistochemical analysis shows a significant reduction in ICAM, KI67, and IL17 expression levels in the QX group. Immunofluorescence results indicate that QX can notably decrease the proportions of CD4+ T cells, γδ T cells, and CD8+ T cells while increasing the proportion of Treg cells. Network pharmacology analysis demonstrates that the main targets of shikonin are concentrated in the HIF-1 signaling pathway. Molecular docking results show favorable binding affinity between shikonin and key genes of the HIF-1 signaling pathway. Immunofluorescence results reveal that shikonin significantly reduces p-STAT3, SLC2A1, HIF1α, and NOS2 expression levels. qPCR results show significant downregulation of the HIF-1 signaling pathway at cellular and tissue levels. CONCLUSION: Our study revealed that QX can significantly reduce the dorsal inflammatory response in the IMQ-induced psoriasis mouse model. Furthermore, we discovered that its main component, shikonin, exerts its therapeutic effect by diminishing the HIF-1 signaling pathway in HaCaT cells.

4.
Front Oncol ; 14: 1333822, 2024.
Article in English | MEDLINE | ID: mdl-38746670

ABSTRACT

The core of tumor cell metabolism is the management of energy metabolism due to the extremely high energy requirements of tumor cells. The purine nucleotide synthesis pathway in cells uses the purinosomes as an essential spatial structural complex. In addition to serving a crucial regulatory role in the emergence and growth of tumors, it contributes to the synthesis and metabolism of purine nucleotides. The significance of purine metabolism in tumor cells is initially addressed in this current article. The role of purinosomes as prospective therapeutic targets is then reviewed, along with a list of the signaling pathways that play in the regulation of tumor metabolism. A thorough comprehension of the function of purinosomes in the control of tumor metabolism can generate fresh suggestions for the creation of innovative cancer treatment methods.

5.
Chin Med ; 19(1): 62, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600597

ABSTRACT

BACKGROUND: Shenma Jingfu Granule, a traditional Chinese medicine formula, has been used clinically for the treatment of cerebral circulation insufficiency. However, the mechanism involved in alleviating cerebral ischemia has not yet been fully elucidated. METHODS: An integrated approach involving network pharmacology and transcriptomics was utilized to clarify the potential mechanisms of SMJF Granule. Molecular docking and surface plasmon resonance (SPR) were employed to identify potential targets and ingredients of SMJF Granule. The anti-CI effect of SMJF Granule was determined on the middle cerebral artery occlusion (MCAO) model by using hematoxylin-eosin (H&E) and Nissl's staining, as well as triphenyl tetrazolium chloride (TTC) staining, and the potential targets involved in the mechanisms were validated by RT-qPCR and western blotting. RESULTS: Integrated analysis revealed the mechanism of SMJF Granule intervening in CI injury might be related to the HIF-1 signaling pathway and angiogenesis. Molecular docking and SPR assays demonstrated robust binding interactions between key compounds like salvianolic acid A and naringenin with the core target HIF-1α protein. The experiment confirmed that SMJF Granule lowered neurological scores, diminished infarct volume, and alleviated histopathological changes in vivo. The possible mechanism of SMJF Granule was due to regulating HIF-1 pathway, which contributed to up-regulating expression of VEGF and vWF in the penumbral region, showing a significant promotion of angiogenesis. CONCLUSION: SMJF Granule promoted angiogenesis through HIF-1α pathway, thereby alleviating cerebral ischemia injury. In addition, our findings provide some evidence that SMJF Granule is a candidate compound for further investigation in treating CI in the clinical.

6.
Article in English | MEDLINE | ID: mdl-38676511

ABSTRACT

OBJECTIVE: Alzheimer's Disease (AD) is a progressive neurodegenerative disorder with limited options for reversing its middle-to-late stages. Early intervention is crucial to slow down disease progression. This study aimed to investigate the potential of the NeuroProtect (NP) formula, a combination of geniposide and Panax notoginseng saponins, in preventing AD. We evaluated the effects of the NP formula on amyloid plaque accumulation, neuronal degeneration, and molecular signaling pathways using in vivo and in vitro models. METHODS: To predict functional pathways and potential downstream targets of NP intervention, we employed network pharmacology. The preventative impact of the NP formula was assessed using APP/PS1 mice. We conducted HE staining, ELISA assay, Golgi staining, and immunohistochemistry to detect the protective effect of NP. Additionally, cell experiments were performed to assess cell activity and target protein expression. RESULTS: Network pharmacology analysis revealed 145 drug-disease interactions and identified 5 core active targets associated with AD. Molecular docking results demonstrated strong binding affinity between the components of the NP formula (GP, GN-Rb1, GN-Rg1, NS-R1) and target proteins (STAT3, HIF1A, TLR4, mTOR, VEGFA). Notably, the binding energy between NS-R1 and mTOR was -11.4kcal/mol. Among the top 10 enriched KEGG pathways, the HIF-1 and PI3K-AKT signaling pathways were highlighted. In vivo experiments demonstrated that the NP formula significantly ameliorated pathological changes, decreased the Aß42/Aß40 ratio in the hippocampus and cortex, and increased dendritic spine density in the CA1 region during the early stage of AD. In vitro experiments further illustrated the NP formula's ability to reverse the inhibitory effects of Aß25-35 on cell viability and regulate the expression of Tlr4, Mtor, Hif1a, Stat3, and Vegfa. CONCLUSION: Our findings suggest that NP exhibits neuroprotective effects during the early stages of AD, positioning it as a potential candidate for AD prevention. The NP formula may exert its preventive effects through the HIF-1/PI3K-AKT signaling pathway, with mTOR identified as a key target.

7.
Environ Sci Pollut Res Int ; 31(9): 13965-13980, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38265591

ABSTRACT

Di (2-ethyl-hexyl) phthalate (DEHP) mainly enters the human body through the digestive tract, respiratory tract, and skin. At the same time, it has reproductive and developmental toxicity, neurotoxicity, and so on, which can cause the decrease of sperm motility. Asthenospermia is also known as low sperm motility, and the semen quality of men in some areas of China is declining year by year. Interestingly, previous studies have shown that sleep disorders can also lead to asthenospermia. However, the relationship between sleep, DEHP, and asthenospermia is still unclear. Analysis of the National Health and Nutrition Examination Survey (NHANES) population database showed that DEHP was associated with sleep disorders, and subsequent experiments in mice and Drosophila indicated that DEHP exposure had certain effects on sleep and asthenospermia. Furthermore, we analyzed the Comparative Toxicogenomics Database (CTD) to find out the common signaling pathway among the three: hypoxia-inducible factor 1(HIF-1). Then Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) was used to screen out the proteins that DEHP affected the HIF-1 pathway: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), serine/threonine-protein kinase (AKT1), epidermal growth factor receptor (EGFR), and finally Western blot analysis was used to detect the expression levels of the three proteins. Compared with the control group, DEHP decreased the protein expression levels of GAPDH and AKT1 in the HIF-1 pathway, and caused sleep disorders and decreased sperm motility. This study provides preliminary evidence for exploring the mechanism among DEHP, sleep disorders, and asthenospermia.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Sleep Wake Disorders , Humans , Male , Animals , Mice , Diethylhexyl Phthalate/toxicity , Semen Analysis , Nutrition Surveys , Sperm Motility , Sleep
8.
Heliyon ; 9(12): e23161, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38144314

ABSTRACT

Background: Colorectal cancer (CRC) is characterized by its aggressiveness and high fatality rate. Long noncoding RNAs (lncRNAs) as molecular scaffolding in CRC have received little attention. Methods: The TCGA database was used to find putative anti-oncogenic lncRNAs in CRC. The effect of FENDRR on CRC was evaluated using the colony formation assay, transwell assays, and wound healing assays, and FENDRR expression was validated by qRT-PCR. The location of the FENDRR binding proteins was determined by an RNA pull-down experiment, and the retrieved proteins were recognized by mass spectrometry. RNA immunoprecipitation (RIP) studies were used to demonstrate the interaction of GSTP1, FBX8, and FENDRR. Co-IP and immunofluorescence were utilized to confirm the connection between GSTP1 and FBX8. To determine the precise signaling pathways implicated in the action of FENDRR in CRC, we performed next-generation sequencing (NGS) on CRC cells transfected with a vector overexpressing FENDRR. Results: The expression of FENDRR was significantly downregulated in CRC tissue and cells. The results of the function experiments showed that overexpression of FENDRR reduced CRC cells' ability to proliferation, invasion, migration and tube formation. In terms of mechanism, FENDRR could bind both GSTP1 and FBX8, act as a molecular scaffold, and utilize FBX8 to regulate the stability of GSTP1's protein. Additionally, the outcomes of NGS and qRT-PCR demonstrated that the expression of genes linked to the HIF-1 pathway was down-regulated following FENDRR overexpression. Lastly, rescue tests demonstrated that overexpression of GSTP1 in CRC cells could completely restore the inhibition induced by FENDRR. Conclusion: In this study, we found that the molecular scaffolding protein FENDRR regulates the ubiquitination of GSTP1 and the suppression of the HIF-1 signaling pathway in the development of CRC. Our research provides more evidence of FENDRR's crucial role in the emergence of CRC and identifies it as a potential therapeutic target for CRC patients.

9.
Chin J Nat Med ; 21(10): 775-788, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37879795

ABSTRACT

Influenza is an acute viral respiratory infection that has caused high morbidity and mortality worldwide. Influenza A virus (IAV) has been found to activate multiple programmed cell death pathways, including ferroptosis. Ferroptosis is a novel form of programmed cell death in which the accumulation of intracellular iron promotes lipid peroxidation, leading to cell death. However, little is known about how influenza viruses induce ferroptosis in the host cells. In this study, based on network pharmacology, we predicted the mechanism of action of Maxing Shigan decoction (MXSGD) in IAV-induced ferroptosis, and found that this process was related to biological processes, cellular components, molecular function and multiple signaling pathways, where the hypoxia inducible factor-1(HIF-1) signaling pathway plays a significant role. Subsequently, we constructed the mouse lung epithelial (MLE-12) cell model by IAV-infected in vitro cell experiments, and revealed that IAV infection induced cellular ferroptosis that was characterized by mitochondrial damage, increased reactive oxygen species (ROS) release, increased total iron and iron ion contents, decreased expression of ferroptosis marker gene recombinant glutathione peroxidase 4 (GPX4), increased expression of acyl-CoA synthetase long chain family member 4 (ACSL4), and enhanced activation of hypoxia inducible factor-1α (HIF-1α), induced nitric oxide synthase (iNOS) and vascular endothelial growth factor (VEGF) in the HIF-1 signaling pathway. Treatment with MXSGD effectively reduced intracellular viral load, while reducing ROS, total iron and ferrous ion contents, repairing mitochondrial results and inhibiting the expression of cellular ferroptosis and the HIF-1 signaling pathway. Finally, based on animal experiments, it was found that MXSGD effectively alleviated pulmonary congestion, edema and inflammation in IAV-infected mice, and inhibited the expression of ferroptosis-related protein and the HIF-1 signaling pathway in lung tissues.


Subject(s)
Ferroptosis , Influenza A virus , Animals , Mice , Network Pharmacology , Reactive Oxygen Species , Vascular Endothelial Growth Factor A , Iron , Hypoxia
10.
Life (Basel) ; 13(8)2023 Aug 13.
Article in English | MEDLINE | ID: mdl-37629598

ABSTRACT

Uterine fibroids (UF) are common benign tumors in women. The course of UF is associated with troubling symptoms and the development of infertility and pregnancy pathology. Surgical treatment even implies hysterectomy, while pharmacological interventions are modestly effective. Classically, hypoxic metabolism is considered a hallmark of malignant tumor. However, the role of hypoxia-induced factor (HIF) is significant in benign tumors as well. Herein, we briefly review the basic biology of HIF-family proteins, outlining their possible roles in UF. Apart from theoretical justifications, we summarized 15 studies reporting increased expression of HIFs and downstream factors in UF samples. Altogether, data suggest that increased expression of the HIF-protein and altered expression of its dependent genes are presumed to be the factors leading to UF development. Thus, even without being a malignant tumor, UF is characterized by the strong involvement of HIF. This novel insight may give rise to further research in the direction of finding new prognostic markers and effective medicines against UF.

11.
Life (Basel) ; 13(4)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37109422

ABSTRACT

Wolfiporia extensa (WE) is a medicinal mushroom and an excellent source of naturally occurring anti-inflammatory substances. However, the particular bioactive compound(s) and mechanism(s) of action against inflammation have yet to be determined. Here, we studied anti-inflammatory bioactive compounds and their molecular mechanisms through network pharmacology. Methanol (ME) extract of WE (MEWE) was used for GC-MS analysis to identify the bioactives, which were screened by following Lipinski's rules. Public databases were used to extract selected bioactives and inflammation-related targets, and Venn diagrams exposed the common targets. Then, STRING and Cytoscape tools were used to construct protein-protein (PPI) network and mushroom-bioactives-target (M-C-T) networks. Gene Ontology and KEGG pathway analysis were performed by accessing the DAVID database and molecular docking was conducted to validate the findings. The chemical reactivity of key compounds and standard drugs was explored by the computational quantum mechanical modelling method (DFT study). Results from GC-MS revealed 27 bioactives, and all obeyed Lipinski's rules. The public databases uncovered 284 compound-related targets and 7283 inflammation targets. A Venn diagram pointed to 42 common targets which were manifested in the PPI and M-C-T networks. KEGG analysis pointed to the HIF-1 signaling pathway and, hence, the suggested strategy for preventing the onset of inflammatory response was inhibition of downstream NFKB, MAPK, mTOR, and PI3K-Akt signaling cascades. Molecular docking revealed the strongest binding affinity for "N-(3-chlorophenyl) naphthyl carboxamide" on five target proteins associated with the HIF-1 signaling pathway. Compared to the standard drug utilized in the DFT (Density Functional Theory) analysis, the proposed bioactive showed a good electron donor component and a reduced chemical hardness energy. Our research pinpoints the therapeutic efficiency of MEWE and this work suggests a key bioactive compound and its action mechanism against inflammation.

12.
Placenta ; 136: 8-17, 2023 05.
Article in English | MEDLINE | ID: mdl-37001424

ABSTRACT

This study aimed to identify the expression profile of mRNAs and analyze the associated pathways in hypoxia-induced trophoblast cells to understand the effect of hypoxia on the pathophysiology of preeclampsia (PE). We downloaded two gene expression datasets (GSE47187 and GSE60432) from the Gene Expression Omnibus (GEO) datasets to identify altered transcriptomes. GEO2R, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) networks were used to reveal the functional roles and regulatory networks of the differentially expressed genes (DEGs). In total, 224 DEGs (91 upregulated and 133 downregulated) were identified, and the "HIF-1 signaling pathway" was activated in placentas from patients with PE. We validated the expression levels of five proteins in the plasma of NP and PE patients during early or late pregnancy using western blotting. In primary trophoblast cells cultured under hypoxic conditions, 754 DEGs were identified, including 362 upregulated and 392 downregulated genes. These DEGs were associated with the "HIF-1signaling pathway," "response to hypoxia," and several glucose metabolism pathways. In addition, a PPI network was constructed, and an important module, including 18 hub genes, was identified. Finally, we validated 18 hub genes using qRT-PCR. Furthermore, we performed microarray profiling of hypoxia-treated HTR8/SVneo cells (immortalized human first-trimester extravillous trophoblast cells) to validate the DEGs and pathways identified in hypoxia-induced primary trophoblast cells. Our results stress the differential expression profiles of mRNAs in hypoxia-induced trophoblast cells, which provide potential pathophysiological mechanisms for preeclampsia.


Subject(s)
Pre-Eclampsia , Female , Humans , Pregnancy , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Trophoblasts/metabolism , Transcriptome , Gene Expression Profiling/methods , Hypoxia/genetics , Hypoxia/metabolism , Gene Regulatory Networks , Computational Biology/methods
13.
Brain Res Bull ; 192: 192-202, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36414158

ABSTRACT

BACKGROUND: Spinal cord injury (SCI) is a crushing disease without a effective and specific therapeutic strategy. Therefore, it is crucial to uncover underlying mechanism in order to identify potential treatments for SCI. Current studies show ferroptosis might pay important role in SCI. METHODS: In this study, we aimed to identify the key ferroptosis-related genes providing therapeutic targets for SCI. GSE45006, GSE19890 and GSE156999 from Gene Expression Omnibus (GEO) database were analyzed. RESULTS: A total of 61 ferroptosis-related DEGs were identified, followed by bioinformatics enrichment analyses and PPI network construction. Ten key ferroptosis-related genes were identified by Cytoscape (Cytohubba), most of which were enriched in the HIF-1 signaling pathway. Then we constructed a clip SCI rat model and qPCR was performed to assess the expressions of five genes enriched in HIF-1 signaling pathway (Stat3, Tlr4, Hmox1, Hif1a and Cybb). Finally, a ceRNA network, Stat3, Tlr4, Hmox1/miR127, miR383, miR485/rno-Mut_0003, rno-Pwwp2a_0002 was constructed and expression of mentioned molecules were validated by chip data. CONCLUSIONS: Five hub genes from HIF-1 signaling pathway were identified and might play a central role in SCI, which indicated that ferroptosis was correlated with HIF-1 signaling pathway. These results can provide a new insight into molecular mechanisms and identify potential therapeutic targets for SCI.


Subject(s)
Gene Regulatory Networks , Spinal Cord Injuries , Rats , Animals , Gene Expression Profiling/methods , Computational Biology/methods , Spinal Cord Injuries/genetics , Spinal Cord Injuries/metabolism , Signal Transduction/genetics , NADPH Oxidase 2/metabolism
14.
Article in English | WPRIM (Western Pacific) | ID: wpr-1010989

ABSTRACT

Influenza is an acute viral respiratory infection that has caused high morbidity and mortality worldwide. Influenza A virus (IAV) has been found to activate multiple programmed cell death pathways, including ferroptosis. Ferroptosis is a novel form of programmed cell death in which the accumulation of intracellular iron promotes lipid peroxidation, leading to cell death. However, little is known about how influenza viruses induce ferroptosis in the host cells. In this study, based on network pharmacology, we predicted the mechanism of action of Maxing Shigan decoction (MXSGD) in IAV-induced ferroptosis, and found that this process was related to biological processes, cellular components, molecular function and multiple signaling pathways, where the hypoxia inducible factor-1(HIF-1) signaling pathway plays a significant role. Subsequently, we constructed the mouse lung epithelial (MLE-12) cell model by IAV-infected in vitro cell experiments, and revealed that IAV infection induced cellular ferroptosis that was characterized by mitochondrial damage, increased reactive oxygen species (ROS) release, increased total iron and iron ion contents, decreased expression of ferroptosis marker gene recombinant glutathione peroxidase 4 (GPX4), increased expression of acyl-CoA synthetase long chain family member 4 (ACSL4), and enhanced activation of hypoxia inducible factor-1α (HIF-1α), induced nitric oxide synthase (iNOS) and vascular endothelial growth factor (VEGF) in the HIF-1 signaling pathway. Treatment with MXSGD effectively reduced intracellular viral load, while reducing ROS, total iron and ferrous ion contents, repairing mitochondrial results and inhibiting the expression of cellular ferroptosis and the HIF-1 signaling pathway. Finally, based on animal experiments, it was found that MXSGD effectively alleviated pulmonary congestion, edema and inflammation in IAV-infected mice, and inhibited the expression of ferroptosis-related protein and the HIF-1 signaling pathway in lung tissues.


Subject(s)
Animals , Mice , Ferroptosis , Network Pharmacology , Reactive Oxygen Species , Vascular Endothelial Growth Factor A , Influenza A virus , Iron , Hypoxia
15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-998160

ABSTRACT

ObjectiveTo investigate the analgesic effect and mechanism of Osteoking (OK) on nerve compression in lumbar disc herniation. MethodThe rat model of chronic compression of dorsal root ganglion (CCD) was established to simulate clinical lumbar disc herniation. The CCD rats were randomly divided into model group, low, medium, and high dose OK groups (1.31, 2.63, 5.25 mL·kg-1·d-1), and pregabalin group (5 mg·kg-1), with eight rats in each group. Another eight SD rats were taken as the blank group, and the same volume of normal saline was given by gavage. Behavioral tests, side effect evaluation, network analysis, Western blot, immunofluorescence, and antagonist application were used to explore the effect. ResultCompared with the blank group, the mechanical hyperalgesia threshold, thermal hyperalgesia threshold, and the expression of inflammatory factors in the spinal dorsal horn of the model group are significantly increased (P<0.01), and the related indicators of the affected foot footprints are significantly down-regulated (P<0.01). The expression of signal transducer and activator of transcription 3 (STAT3), vascular endothelial growth factor A (VEGFA), and phosphorylated extracellular regulated protein kinase (p-ERK) in microglia in the spinal dorsal horn is significantly increased in the model group (P<0.01). Compared with the model group, low, medium, and high dose OK groups can increase the mechanical hyperalgesia and thermal hyperalgesia thresholds of CCD rats (P<0.05, P<0.01) in a dose-dependent manner, improve the gait of CCD rats (P<0.05, P<0.01), and reduce the expression of inflammatory factors in the spinal dorsal horn (P<0.05, P<0.01). The expression of STAT3, VEGFA, and p-ERK in the spinal dorsal horn microglia of CCD rats is significantly decreased (P<0.05, P<0.01), and the acetic acid-induced nociceptive response in rats is effectively reduced (P<0.05, P<0.01). In addition, there is no tolerance. The results of the body mass test, organ index, forced swimming, and rotation show that OK has no obvious toxic or side effects. Further antagonist experiments show that MRS1523 and RS127445 can reverse the transient analgesic effect of OK compared with the high dose OK group (P<0.01). ConclusionOK has a good analgesic effect on the CCD model without obvious toxic side effects, and its mechanism may be related to the activation of ADORA3 and HTR2B and the inhibition of STAT3, VEGFA, p-ERK, and other elements in microglia.

16.
Front Pharmacol ; 13: 940260, 2022.
Article in English | MEDLINE | ID: mdl-36506580

ABSTRACT

Ischemic stroke (IS) is a neurological condition associated with high mortality and disability rates. Although the molecular mechanisms underlying IS remain unclear, ferroptosis was shown to play an important role in its pathogenesis. Hence, we applied bioinformatics analysis to identify ferroptosis-related therapeutic targets in IS. IS-related microarray data from the GSE61616 dataset were downloaded from the Gene Expression Omnibus (GEO) database and intersected with the FerrDb database. In total, 33 differentially expressed genes (DEGs) were obtained and subjected to functional enrichment and protein-protein interaction (PPI) network analyses. Four candidate genes enriched in the HIF-1 signaling pathway (HMOX1, STAT3, CYBB, and TLR4) were selected based on the hierarchical clustering of the PPI dataset. We also downloaded the IR-related GSE35338 dataset and GSE58294 dataset from the GEO database to verify the expression levels of these four genes. ROC monofactor analysis demonstrated a good performance of HMOX1, STAT3, CYBB, and TLR4 in the diagnosis of ischemic stroke. Transcriptional levels of the above four genes, and translational level of GPX4, the central regulator of ferroptosis, were verified in a mouse model of middle cerebral artery occlusion (MCAO)-induced IS by qRT-PCR and western blotting. Considering the regulation of the HIF-1 signaling pathway, dexmedetomidine was applied to the MCAO mice. We found that expression of these four genes and GPX4 in MCAO mice were significantly reduced, while dexmedetomidine reversed these changes. In addition, dexmedetomidine significantly reduced MCAO-induced cell death, improved neurobehavioral deficits, and reduced the serum and brain levels of inflammatory factors (TNF-α and IL-6) and oxidative stress mediators (MDA and GSSG). Further, we constructed an mRNA-miRNA-lncRNA network based on the four candidate genes and predicted possible transcription factors. In conclusion, we identified four ferroptosis-related candidate genes in IS and proposed, for the first time, a possible mechanism for dexmedetomidine-mediated inhibition of ferroptosis during IS. These findings may help design novel therapeutic strategies for the treatment of IS.

17.
Front Physiol ; 13: 1049776, 2022.
Article in English | MEDLINE | ID: mdl-36406980

ABSTRACT

Hypoxia is a critical problem in intensive Epinephelus coioides aquaculture systems. In the present study, the physiological responses of E. coioides muscle to acute hypoxic stress (DO = 0.6 ± 0.1 mg/L) and reoxygenation (DO = 6.0 ± 0.1 mg/L) were analyzed by transcriptome sequencing (RNA-seq) and quantitative real-time PCR (qRT-PCR). RNA-seq was conducted on the muscle tissues of E. coioides in the hypoxia-tolerant (EMS), hypoxia-sensitive (EMW), and normoxic (CM) groups. Among the three groups, a total of 277 differentially expressed genes (DEGs) were identified. KEGG analysis revealed that the pathways significantly enriched after hypoxic stress are involved in the immune response, glycolysis/gluconeogenesis, energy metabolism, vasodilation and proliferation, cell proliferation, and apoptosis. qRT‒PCR verified that the differentially expressed genes FIH-1, PHD-2, PPARα, BCL-XL, LDH-A, and Flt-1 were significantly upregulated after hypoxic stress and returned to normal levels after reoxygenation, suggesting that these DEGs play important roles in responding to hypoxia treatment. In addition, the HIF-1 signaling pathway was also activated under hypoxic stress, and qRT‒PCR confirmed that the expression level of HIF-1α was significantly elevated under acute hypoxic stress, indicating that the HIF-1 signaling pathway is the central pathway in the E. coioides hypoxic response mechanism and activates other related pathways to adapt to hypoxic stress. These pathways jointly regulate energy metabolism, substance synthesis, blood vessel proliferation, cell proliferation, and differentiation and prolong survival time. These results provide ideas for understanding physiological regulation after hypoxic stress and reoxygenation and provide basic insights for the future breeding of hypoxia-tolerant E. coioides.

18.
Front Pharmacol ; 13: 918975, 2022.
Article in English | MEDLINE | ID: mdl-35935838

ABSTRACT

Background: Smilax glabra Roxb. (SGR) is a widely used traditional Chinese medicine, which has known effects of enhancing immunity. However, its anti-tumor effects and mechanism of action are still unclear. Methods: We selected MMTV-PyMT mice to determine the anti-tumor efficacy of SGR ethyl acetate (SGR-EA). First, flow cytometry was used to detect the number of immune cells in the mice tumor microenvironment. Furthermore, M2 polarization of macrophages was stimulated in vitro, and the expressions of macrophage M1/M2 surface markers and mRNA were as determined. Finally, we carried out a network pharmacology analysis on the active components of SGR-EA and in vitro experiments to verify that SGR-EA regulated the hypoxia-inducible factor (HIF)-1 signaling pathway to modulate the anti-tumor immune response by resetting M2 macrophages toward the M1 phenotype which inhibited tumor growth and lung metastasis in the mice. Result: SGR-EA inhibited tumor growth and lung metastasis in the mice. Tumor-associated macrophages switched from M2 to the tumor-killing M1 phenotype and promoted the recruitment of CD4+ and CD8+ T cells in the tumor microenvironment. In vitro, SGR-EA significantly inhibited the polarization of macrophages into M2 macrophages and increased the number of M1 macrophages. In addition, following an intervention with SGR-EA, the expression of the HIF-1 signaling pathway-related proteins stimulated by interleukin-4 in macrophages was significantly inhibited. Conclusion: SGR-EA played an anti-tumor role by inhibiting the activation of the HIF-1 signaling pathway and response by resetting tumor-associated macrophages toward the M1 phenotype.

19.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35890106

ABSTRACT

The full understanding of the complex nature of cancer still faces many challenges, as cancers arise not as a result of a single target disruption but rather involving successive genetic and epigenetic alterations leading to multiple altered metabolic pathways. In this light, the need for a multitargeted, safe and effective therapy becomes essential. Substantial experimental evidence upholds the potential of plant-derived compounds to interfere in several important pathways, such as tumor glycolysis and the upstream regulating mechanisms of hypoxia. Herein, we present a comprehensive overview of the natural compounds which demonstrated, in vitro studies, an effective anticancer activity by affecting key regulators of the glycolytic pathway such as glucose transporters, hexokinases, phosphofructokinase, pyruvate kinase or lactate dehydrogenase. Moreover, we assessed how phytochemicals could interfere in HIF-1 synthesis, stabilization, accumulation, and transactivation, emphasizing PI3K/Akt/mTOR and MAPK/ERK pathways as important signaling cascades in HIF-1 activation. Special consideration was given to cell culture-based metabolomics as one of the most sensitive, accurate, and comprising approaches for understanding the response of cancer cell metabolome to phytochemicals.

20.
Article in English | MEDLINE | ID: mdl-35653833

ABSTRACT

Hypoxia is a common stressor for aquatic animals, including Epinephelus coioides, with a considerable impact on sustainable aquaculture. E. coioides is a widely consumed fish in China owing to its high nutritious value and taste. However, water hypoxia caused by high density culture process has become a great threat to E. coioides culture, and its response to hypoxia stress has not been discussed before. Therefore, the aim of this study was to examine the response of E. coioides to acute hypoxia using transcriptomic techniques. To this end, RNA sequencing was performed on the liver tissues of fish exposed to normoxic and hypoxic conditions for 1 h. The results presented 503 differentially expressed genes (DEGs) in the liver tissue of fish exposed to hypoxic condition compared with those in the normoxic group. Enrichment analysis using the Gene Ontology database showed that the DEGs were mainly enriched for functions related to cell apoptosis signaling pathways, insulin resistance, antioxidant enzymes, and glycolysis/gluconeogenesis signaling pathways. KEGG enrichment analysis showed that HIF-1, PI3K-AKT, IL-17, NF-kappa B, and MAPK signaling pathways were significantly enriched by the DEGs. The DEGs were mainly involved in immune response, inflammatory response, cell apoptosis regulation, energy metabolism, and substance metabolism. Additionally, the hypoxia response in E. coioides was mainly regulated via the PI3K-AKT-HIF-1 signaling axis. Overall, the findings of this study contribute to the understanding of hypoxia stress response in E. coioides, and provides target genes for breeding hypoxia-tolerant Epinephelus spp.


Subject(s)
Bass , Transcriptome , Animals , Bass/genetics , Gene Expression Profiling , Hypoxia/genetics , Liver , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...