Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 345
Filter
1.
Int J Mol Sci ; 25(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39273322

ABSTRACT

IL-15 is a homeostatic cytokine for human T and NK cells. However, whether other cytokines influence the effect of IL-15 is not known. We studied the impact that IL-10, TGF-ß, IL-17A, and IFN-γ have on the IL-15-induced proliferation of human T cells and the expression of HLA class I (HLA-I) molecules. Peripheral blood lymphocytes (PBLs) were labeled with CFSE and stimulated for 12 days with IL-15 in the absence or presence of the other cytokines. The proportion of proliferating T cells and the expression of cell surface HLA-I molecules were analyzed using flow cytometry. The IL-15-induced proliferation of T cells was paralleled by an increase in the expression of HC-10-reactive HLA-I molecules, namely on T cells that underwent ≥5-6 cycles of cell division. It is noteworthy that the IL-15-induced proliferation of T cells was potentiated by IL-10 and TGF-ß but not by IL-17 or IFN-γ and was associated with a decrease in the expression of HC-10-reactive molecules. The cytokines IL-10 and TGF-ß potentiate the proliferative capacity that IL-15 has on human T cells in vitro, an effect that is associated with a reduction in the amount of HC-10 reactive HLA class I molecules induced by IL-15.


Subject(s)
Cell Proliferation , Histocompatibility Antigens Class I , Interferon-gamma , Interleukin-10 , Interleukin-15 , Interleukin-17 , T-Lymphocytes , Transforming Growth Factor beta , Humans , Cell Proliferation/drug effects , Interferon-gamma/pharmacology , Interferon-gamma/metabolism , Interleukin-17/pharmacology , Interleukin-17/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Interleukin-10/metabolism , Interleukin-15/pharmacology , Interleukin-15/metabolism , Histocompatibility Antigens Class I/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/cytology , Cells, Cultured , Lymphocyte Activation/drug effects
2.
Article in English | MEDLINE | ID: mdl-39306605

ABSTRACT

PURPOSE: Female carriers of germline BRCA1 mutations almost invariably develop breast cancer (BC); however, the age at onset is a subject of variation. We hypothesized that the age-related penetrance of BRCA1 mutations may depend on inherited variability in the host immune system. METHODS: Next-generation sequencing was utilized for genotyping of HLA class I/II genes (HLA-A, HLA-B, HLA-C, HLA-DPB1, HLA-DQB1, and HLA-DRB1/3/4/5) in patients with BRCA1-associated BC with early (< / = 38 years, n = 215) and late (> / = 58 years, n = 108) age at onset. RESULTS: HLA-DQB1*06:03P prevalence was higher in the late-onset group due to the excess of allele carriers [25/108 (23.1%) vs. 22/215 (10.2%); OR 2.96, p < 0.001]. For all HLA-I loci, there was a trend toward an increase in the number of homozygotes in the early-onset group. This trend reached statistical significance for the HLA-A [14.4% vs. 6.5%, p = 0.037; OR 2.4, p = 0.042]. The frequencies of HLA-DPB1, HLA-DQB1, and HLA-DRB1/3/4/5 homozygous genotypes did not differ between young-onset and late-onset patients. The maximum degree of homozygosity detected in this study was 6 out of 7 HLA class I/II loci; all six carriers of these genotypes were diagnosed with BC at the age < / = 38 years [OR 6.97, p = 0.187]. CONCLUSION: HLA polymorphism may play a role in modifying the penetrance of BRCA1 pathogenic variants. Certain HLA alleles or HLA homozygosity may modify the risk of BC in BRCA1 carriers.

3.
Cancer Immunol Immunother ; 73(11): 228, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39249578

ABSTRACT

BACKGROUND: The antigen processing machinery (APM) plays a critical role in generating tumor-specific antigens that can be recognized and targeted by the immune system. Proper functioning of APM components is essential for presenting these antigens on the surface of tumor cells, enabling immune detection and destruction. In many cancers, defects in APM can lead to immune evasion, contributing to tumor progression and poor clinical outcomes. However, the status of the APM in sarcomas is not well characterized, limiting the development of effective immunotherapeutic strategies for these patients. METHODS: We investigated 126 patients with 8 types of bone and soft tissue sarcoma operated between 2001-2021. Tissue microarrays mapped 11 specific areas in each case. The presence/absence of APM protein was determined through immunohistochemistry. Bayesian networks were used. RESULTS: All investigated sarcomas had some defects in APM. The least damaged component was HLA Class I subunit ß2-microglobulin and HLA Class II. The proteasome LMP10 subunit was defective in leiomyosarcoma (LMS), myxoid liposarcoma (MLPS), and dedifferentiated liposarcoma (DDLPS), while MHC I transporting unit TAP2 was altered in undifferentiated pleomorphic sarcoma (UPS), gastrointestinal stromal tumor (GIST), and chordoma (CH). Among different neoplastic areas, high-grade areas showed different patterns of expression compared to high lymphocytic infiltrate areas. Heterogeneity at the patient level was also observed. Loss of any APM component was prognostic of distant metastasis (DM) for LMS and DDLPS and of overall survival (OS) for LMS. CONCLUSION: Sarcomas exhibit a high degree of defects in APM components, with differences among histotypes and tumoral areas. The most commonly altered APM components were HLA Class I subunit ß2-microglobulin, HLA Class I subunit α (HC10), and MHC I transporting unit TAP2. The loss of APM components was prognostic of DM and OS and clinically relevant for LMS and DDLPS. This study explores sarcoma molecular mechanisms, enriching personalized therapeutic approaches.


Subject(s)
Antigen Presentation , Sarcoma , Humans , Sarcoma/immunology , Sarcoma/pathology , Antigen Presentation/immunology , Male , Female , Middle Aged , Aged , Adult , Antigens, Neoplasm/immunology , Antigens, Neoplasm/metabolism , Proteasome Endopeptidase Complex/metabolism , beta 2-Microglobulin/metabolism , Prognosis , ATP Binding Cassette Transporter, Subfamily B, Member 3
5.
Hum Immunol ; 85(5): 111083, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39111186

ABSTRACT

The Punjabi population, constituting over 45 % of the country's total population, holds the highest prevalence in Pakistan. To understand their HLA genetics, we genotyped 389 Punjabi subjects for major Class-I loci using the PCR-SSO Luminex® method. Our study identified a total of 162 alleles, including 41 different HLA-A, 72 HLA-B, and 49 HLA-C alleles. The most common alleles included A*11:01 (14.6 %), A*01:01 (11.8 %), A*24:02 (11.3 %); B*40:06 (13.3 %), B*08:01 (10.9 %), B*51:01 (8.7 %); C*15:02 (15.5 %), C*07:02 (15.3 %), and C*04:01 (10.8 %). However, only locus B showed a significant deviation from HWE. The dominant Class I haplotype was A*24:02-B*40:06-C*15:02, followed by A*11:01-B*40:06-C*15:02, while significant LD was observed between all pairs of HLA loci. A distinct genetic makeup was observed in the Pakistani Punjabis as compared to Indian Punjabis, emphasizing the impact of the Indo-Pak partition and religious choices for marriage. In comparison to country's other ethnic groups, the Pakistani population exhibited 76 different alleles at a low field-resolution, with the Punjabi population having highest polymorphism. Phylogenetic analysis revealed that the Punjabi population is most closely related to the Sindhi population, while both populations sharing ancient connections with the Burusho population. These findings have significant implications for transplantation procedures, personalized medicine, disease susceptibility, and evolutionary studies.


Subject(s)
Ethnicity , Gene Frequency , Haplotypes , Polymorphism, Genetic , Humans , Pakistan/ethnology , Ethnicity/genetics , Alleles , Genotype , Linkage Disequilibrium , Male , Female , Genetics, Population , Histocompatibility Antigens Class I/genetics
6.
Anticancer Res ; 44(9): 4039-4047, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39197900

ABSTRACT

BACKGROUND/AIM: Various biomarkers are utilized in the field of breast cancer. Human lymphocyte antigen (HLA) class I molecules have a critical role in cancer immune surveillance. Therefore, this study aimed to assess the HLA class I expression and analyze the correlation with clinicopathologic factors in breast cancer. PATIENTS AND METHODS: We investigated the clinical pathology archives of 150 consecutive patients with breast cancer who underwent a curative operation at the Sapporo Medical University, Japan, from January 2012 to December 2014. Immunohistochemical staining was used to evaluate HLA class I expression and CD8-positive T cell infiltration. The Pearson χ2 test was used to assess HLA class I expression level and clinicopathological parameters. The Kaplan-Meier method was used to evaluate survival and the log-rank test to analyze the differences between survival curves. RESULTS: Patients with dull/negative HLA class I had significantly poor disease-free survival (DFS) compared with those with positive HLA class I (p=0.0073). Univariate analyses revealed that pT, pN, positive lymphatic invasion, and dull/negative HLA class I were significantly associated with DFS. Multivariate analyses revealed dull/negative HLA class I as an independent poor prognostic factor (hazard ratio=2.75, 95% confidence interval=1.30-5.80, p=0.008). CONCLUSION: HLA class I expression level may have a very sensitive prognostic effect on patients with breast cancer.


Subject(s)
Breast Neoplasms , Histocompatibility Antigens Class I , Humans , Female , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/mortality , Breast Neoplasms/metabolism , Middle Aged , Histocompatibility Antigens Class I/metabolism , Prognosis , Aged , Adult , Biomarkers, Tumor/metabolism , Disease-Free Survival , Kaplan-Meier Estimate , Aged, 80 and over , Lymphocytes, Tumor-Infiltrating/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Immunohistochemistry
7.
Best Pract Res Clin Haematol ; 37(2): 101562, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39098800

ABSTRACT

The importance of the HLA gene system in haematopoietic cell transplant outcomes was established early on and advances in both fields have led to ever increasing success of this clinical therapy. In large part, improvements in the understanding of HLA have been driven by the advancement in typing technologies. Each iteration of typing technology has improved the resolution of HLA typing, and often enabled the identification of polymorphism within the HLA loci. The discovery of the enormous amount of variation in the HLA genes, and the need to be able to characterise this for clinical HLA typing, has often resulted in a move away from one typing method to another more suited to typing of this complexity. Today, the gold standard for HLA typing are methods that can produce definitive HLA typing results.


Subject(s)
HLA Antigens , Hematopoietic Stem Cell Transplantation , Histocompatibility Testing , Humans , Histocompatibility Testing/methods , HLA Antigens/genetics , HLA Antigens/immunology , Polymorphism, Genetic
8.
Methods Mol Biol ; 2837: 219-226, 2024.
Article in English | MEDLINE | ID: mdl-39044088

ABSTRACT

HBV-specific CD8+ T cells are only present at the low frequency during chronic infection. Thus, they are often undetectable by conventional ex vivo staining methods using peptide-loaded HLA class I tetramers. Detection sensitivity can be increased by magnetic bead-based enrichment strategies following staining with peptide-loaded HLA class I tetramers. Additionally, some downstream applications like e.g., single cell RNA sequencing of virus-specific CD8+ T cells may also require a pre-enrichment step to increase the frequency of the cells of interest. For this, peptide-loaded HLA class I tetramers-associated magnetic bead-based enrichment is also a suitable method.


Subject(s)
CD8-Positive T-Lymphocytes , Hepatitis B virus , Histocompatibility Antigens Class I , Peptides , CD8-Positive T-Lymphocytes/immunology , Humans , Hepatitis B virus/immunology , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Peptides/chemistry , Peptides/immunology , Immunomagnetic Separation/methods , Epitopes, T-Lymphocyte/immunology , Hepatitis B/immunology , Hepatitis B/virology
9.
Best Pract Res Clin Rheumatol ; 38(2): 101977, 2024 05.
Article in English | MEDLINE | ID: mdl-39085016

ABSTRACT

Human leukocyte antigen (HLA) class I association is a well-established feature of common and uncommon inflammatory diseases, but it is unknown whether it impacts the pathogenesis of these disorders. The "arthritogenic peptide" hypothesis proposed initially for HLA-B27-associated ankylosing spondylitis (AS) seems the most intuitive to serve as a model for other HLA class I-associated diseases, but evidence supporting it has been scarce. Recent technological advances and the discovery of epistatic relationships between disease-associated HLA class I and endoplasmic reticulum aminopeptidase (ERAP) coding variants have led to the generation of new data and conceptual approaches to the problem requiring its re-examination. Continued success in these endeavors holds promise to resolve a Gordian Knot in human immunobiology. It may ultimately benefit patients by enabling the development of new therapies and precision tools for assessing disease risk and predicting treatment responses.


Subject(s)
Aminopeptidases , HLA-B27 Antigen , Spondylitis, Ankylosing , Humans , Spondylitis, Ankylosing/immunology , Spondylitis, Ankylosing/genetics , HLA-B27 Antigen/genetics , HLA-B27 Antigen/immunology , Aminopeptidases/genetics , Aminopeptidases/immunology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Genetic Predisposition to Disease , Inflammation/immunology , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/immunology , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/genetics
10.
J Virol ; 98(8): e0028124, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39046263

ABSTRACT

HLA class I variation has the strongest effect genome-wide on outcome after HIV infection, and as such, an understanding of the impact of HLA polymorphism on response to HIV vaccination may inform vaccine design. We sought HLA associations with HIV-directed immunogenicity in the phase 1/2a APPROACH vaccine trial, which tested vaccine regimens containing mosaic inserts in Ad26 and MVA vectors, with or without a trimeric gp140 protein. While there were no HLA allelic associations with the overall cellular immune response to the vaccine assessed by ELISpot (Gag, Pol, and Env combined), significant associations with differential response to Gag compared to Env antigens were observed. Notably, HLA class I alleles known to associate with disease susceptibility in HIV natural history cohorts are associated with stronger Env-directed responses, whereas protective alleles are associated with stronger Gag-directed responses. Mean viral loads determined for each HLA allele in untreated individuals correlated negatively with the strength of the Gag response minus the Env response in Black vaccinees based on both ELISpot and CD8+ T cell ICS responses. As the association of T cell responses to conserved Gag epitopes with lower viral load in untreated individuals is well established, our data raise the possibility that the Ad26.Mos.HIV vaccine may induce more effective cellular responses in those with HLA alleles that confer improved virologic control in untreated HIV infection.IMPORTANCENo vaccine tested to date has shown sufficient efficacy against HIV infection. A vaccine that induces robust responses in one individual may fail to do so in another individual due to variation in HLA class I genes, loci central to the immune response. Extensive data have shown the strong effect of HLA variation on outcome after HIV infection, but very little is known about the effect of such variation on HIV vaccine success. Here, we identify a link between the effect of HLA variation on HIV disease outcome and immune responses to an HIV vaccine. HLA variants associated with better HIV control after infection also induce stronger responses against the HIV Gag protein relative to the Env protein after vaccination. Given the virologic control conferred by responses to Gag in natural history of HIV infection, these data suggest that HLA alleles conferring protection after HIV infection may also support a more effective cellular response to HIV vaccination.


Subject(s)
AIDS Vaccines , Alleles , HIV Infections , HIV-1 , env Gene Products, Human Immunodeficiency Virus , gag Gene Products, Human Immunodeficiency Virus , Humans , AIDS Vaccines/immunology , AIDS Vaccines/administration & dosage , HIV-1/immunology , HIV-1/genetics , HIV Infections/immunology , HIV Infections/virology , HIV Infections/genetics , HIV Infections/prevention & control , gag Gene Products, Human Immunodeficiency Virus/immunology , gag Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/genetics , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Male , Viral Load , Adult , Female , CD8-Positive T-Lymphocytes/immunology
11.
J Virol ; 98(7): e0079124, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38940584

ABSTRACT

Fibrocytes were reported to be host cells for HIV-1, but the immunological recognition of HIV-1-infected fibrocytes has not been studied. Here, we investigated the recognition of HIV-1-infected fibrocytes by HIV-1-specific CD8+ T cells. CD8+ T cells specific for five HIV-1 epitopes (HLA-A*24:02-restricted, HLA-B*52:01-restricted, and HLA-C*12:02-restricted epitopes) produced IFN-γ and expressed CD107a after coculture with HIV-1-infected fibrocytes. HIV-1-infected fibrocytes were effectively killed by HIV-1-specific CD8+ T cells. Although it is well known that HIV-1 Nef-mediated downregulation of HLA-A and HLA-B critically affects the T cell recognition of HIV-1-infected CD4+ T cells and HIV-1-infected macrophages, Nef downregulated HLA-A, but not HLA-B, in HIV-1-infected fibrocytes. These findings suggested that HIV-1-specific CD8+ T cells could recognize HIV-1-infected fibrocytes more strongly than HIV-1-infected CD4+ T cells or HIV-1-infected macrophages. HIV-1-infected fibrocytes were also recognized by HIV-1-specific HLA-DR-restricted T cells, indicating that HIV-1-infected fibrocytes can present HIV-1 epitopes to helper T cells. Collectively, these findings suggest that fibrocytes have an important role as antigen-presenting cells during HIV-1 infection. The present study demonstrates effective recognition of HIV-1-infected fibrocytes by HIV-1-specific T cells and suggests possible roles of fibrocytes in the induction and maintenance of HIV-1-specific T cells. IMPORTANCE: Fibrocytes were identified as unique hematopoietic cells with the features of both macrophages and fibroblasts and were demonstrated to be host cells for HIV-1. However, T cell recognition of HIV-1-infected fibrocytes has not been studied. We investigated the recognition of HIV-1-infected fibrocytes by HIV-1-specific T cells. HIV-1-infected fibrocytes were effectively recognized and killed by CD8+ T cells specific for HIV-1 epitopes presented by HLA-A, HLA-B, or HLA-C and were recognized by HIV-1-specific HLA-DR-restricted CD4+ T cells. HIV-1 Nef-mediated downregulation of HLA-A and HLA-B was found in HIV-1-infected CD4+ T cells, whereas Nef did not downregulate HLA-B in HIV-1-infected fibrocytes. These results suggest that HIV-1-specific CD8+ T cells recognize HIV-1-infected fibrocytes more strongly than HIV-1-infected CD4+ T cells. The present study suggests the importance of fibrocytes in the induction and maintenance of HIV-1-specific T cells.


Subject(s)
CD8-Positive T-Lymphocytes , Down-Regulation , HIV Infections , HIV-1 , HLA-B Antigens , nef Gene Products, Human Immunodeficiency Virus , Humans , HIV-1/immunology , nef Gene Products, Human Immunodeficiency Virus/metabolism , nef Gene Products, Human Immunodeficiency Virus/immunology , CD8-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV Infections/virology , HLA-B Antigens/immunology , HLA-B Antigens/metabolism , Fibroblasts/virology , Fibroblasts/immunology , Fibroblasts/metabolism , CD4-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Macrophages/immunology , Macrophages/virology , Macrophages/metabolism
12.
Methods Mol Biol ; 2809: 245-261, 2024.
Article in English | MEDLINE | ID: mdl-38907902

ABSTRACT

Mutation-containing immunogenic peptides from tumor cells, also named as neoantigens, have various amino acid descriptors and physical-chemical properties characterized intrinsic features, which are useful in prioritizing the immunogenicity potentials of neoantigens and predicting patients' survival. Here, we describe a glioma neoantigen intrinsic feature database, GNIFdb, that hosts computationally predicted HLA-I restricted neoantigens of gliomas, their intrinsic features, and the tools for calculating intrinsic features and predicting overall survival of gliomas. We illustrate the application of GNIFdb in searching for possible neoantigen candidates from ATF6 that plays important roles in tumor growth and resistance to radiotherapy in glioblastoma. We also demonstrate the application of intrinsic feature associated tools in GNIFdb to predict the overall survival of primary IDH wild-type glioblastoma.


Subject(s)
Antigens, Neoplasm , Histocompatibility Antigens Class I , Humans , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/chemistry , Antigens, Neoplasm/immunology , Computer Simulation , Glioma/immunology , Glioma/genetics , Glioma/pathology , Computational Biology/methods , Glioblastoma/immunology , Glioblastoma/pathology , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Mutation
13.
Cell Rep ; 43(6): 114325, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38870014

ABSTRACT

The sensitivity of malignant tissues to T cell-based immunotherapies depends on the presence of targetable human leukocyte antigen (HLA) class I ligands. Peptide-intrinsic factors, such as HLA class I affinity and proteasomal processing, have been established as determinants of HLA ligand presentation. However, the role of gene and protein sequence features as determinants of epitope presentation has not been systematically evaluated. We perform HLA ligandome mass spectrometry to evaluate the contribution of 7,135 gene and protein sequence features to HLA sampling. This analysis reveals that a number of predicted modifiers of mRNA and protein abundance and turnover, including predicted mRNA methylation and protein ubiquitination sites, inform on the presence of HLA ligands. Importantly, integration of such "hard-coded" sequence features into a machine learning approach augments HLA ligand predictions to a comparable degree as experimental measures of gene expression. Our study highlights the value of gene and protein features for HLA ligand predictions.


Subject(s)
Histocompatibility Antigens Class I , Humans , Ligands , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Amino Acid Sequence , Machine Learning , Peptides/metabolism , Peptides/chemistry
14.
HLA ; 103(6): e15509, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837741

ABSTRACT

Loss of heterozygosity (LOH) has been reported to occur in HLA regions in cervical intraepithelial neoplasia (CIN) and cervical cancer. However, the details of how this is related to the progression of CIN have been unclear. In this study, we examined the human papillomavirus (HPV) antigen-presenting capacity of people with CIN and the significance of LOH of HLA class I in the progression of CIN. It was shown that differences in antigen-presenting capacity among each case depended on HLA types, not HPV genotypes. Focusing on the HLA type, there was a positive correlation between antigen-presenting capacity against HPV and the frequency of allelic loss. Furthermore, the lost HLA-B alleles had a higher HPV antigen-presenting capacity than intact alleles. In addition, frequency of LOH of HLA class I was significantly higher in advanced CIN (CIN2-3) than in cervicitis or early-stage CIN (CIN1): around half of CIN2-3 had LOH of any HLA class I. Moreover, the antigen-presenting capacity against E5, which is the HPV proteins that facilitate viral escape from this immune surveillance by suppressing HLA class I expression, had the most significant impact on the LOH in HLA-B. This study suggests that HPV evades immune surveillance mechanisms when host cells lose the capacity for antigen presentation by HLA class I molecules, resulting in long-term infection and progression to advanced lesions.


Subject(s)
Histocompatibility Antigens Class I , Loss of Heterozygosity , Papillomavirus Infections , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Humans , Uterine Cervical Dysplasia/immunology , Uterine Cervical Dysplasia/genetics , Uterine Cervical Dysplasia/virology , Uterine Cervical Dysplasia/pathology , Female , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/genetics , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Papillomavirus Infections/immunology , Papillomavirus Infections/genetics , Antigen Presentation/immunology , Adult , Alleles , Papillomaviridae/immunology , Immunologic Surveillance , Middle Aged , Genotype
15.
HLA ; 103(6): e15543, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837862

ABSTRACT

The MHC class I region contains crucial genes for the innate and adaptive immune response, playing a key role in susceptibility to many autoimmune and infectious diseases. Genome-wide association studies have identified numerous disease-associated SNPs within this region. However, these associations do not fully capture the immune-biological relevance of specific HLA alleles. HLA imputation techniques may leverage available SNP arrays by predicting allele genotypes based on the linkage disequilibrium between SNPs and specific HLA alleles. Successful imputation requires diverse and large reference panels, especially for admixed populations. This study employed a bioinformatics approach to call SNPs and HLA alleles in multi-ethnic samples from the 1000 genomes (1KG) dataset and admixed individuals from Brazil (SABE), utilising 30X whole-genome sequencing data. Using HIBAG, we created three reference panels: 1KG (n = 2504), SABE (n = 1171), and the full model (n = 3675) encompassing all samples. In extensive cross-validation of these reference panels, the multi-ethnic 1KG reference exhibited overall superior performance than the reference with only Brazilian samples. However, the best results were achieved with the full model. Additionally, we expanded the scope of imputation by developing reference panels for non-classical, MICA, MICB and HLA-H genes, previously unavailable for multi-ethnic populations. Validation in an independent Brazilian dataset showcased the superiority of our reference panels over the Michigan Imputation Server, particularly in predicting HLA-B alleles among Brazilians. Our investigations underscored the need to enhance or adapt reference panels to encompass the target population's genetic diversity, emphasising the significance of multiethnic references for accurate imputation across different populations.


Subject(s)
Alleles , Ethnicity , Gene Frequency , Polymorphism, Single Nucleotide , Humans , Brazil , Ethnicity/genetics , HLA Antigens/genetics , Linkage Disequilibrium , Genome-Wide Association Study/methods , Genotype , Genetics, Population/methods , Histocompatibility Antigens Class I/genetics , Computational Biology/methods
16.
Front Nephrol ; 4: 1403096, 2024.
Article in English | MEDLINE | ID: mdl-38933742

ABSTRACT

Introduction: Liver transplant recipients may have pre-formed anti-HLA antibodies directed to mismatched HLA of the liver donor (donor specific antibodies, DSA) or not directed to the liver donor (non-donor specific, non-DSA). We observed the fate of these antibodies (DSA and non-DSA) at 12 months after transplant. Methods: Patients transplanted between 4/2015 and 12/2018 (N = 216) who had anti-HLA antibody measurements at both transplant and 12 months posttransplant (N = 124) and with DSAs at transplant (N = 31) were considered informative for a paired analysis of the natural history of DSA and non-DSA following liver transplantation. Results: Class I DSAs and non-DSAs decreased between transplant and 12 months; however, Class I DSAs essentially disappeared by 12 months while Class I non-DSAs did not. Anti-HLA Class II DSAs performed differently. While there was a significant drop in values between transplant and 12 months, these antibodies mostly persisted at a low level. Discussion: Our study demonstrated a significant difference in the kinetics of DSA compared to non-DSA following liver transplantation, most profoundly for anti-HLA Class I antibodies. Class I DSAs were mostly absent at 12 months while Class II DSAs persisted, although at lower levels. The mechanisms of reduction in anti-HLA antibodies following liver transplantation are not completely understood and were not pursued as a part of this study. This detailed analysis of Class I and Class II DSAs and non-DSAs represents and important study to explore the change in antibodies at one year from liver transplantation.

17.
HLA ; 103(5): e15472, 2024 May.
Article in English | MEDLINE | ID: mdl-38699870

ABSTRACT

Immunotherapy using immune checkpoint inhibitors (ICIs) has shown superior efficacy compared with conventional chemotherapy in certain cancer types, establishing immunotherapy as the fourth standard treatment alongside surgical intervention, chemotherapy, and radiotherapy. In cancer immunotherapy employing ICIs, CD8-positive cytotoxic T lymphocytes are recognized as the primary effector cells. For effective clinical outcomes, it is essential that the targeted cancer cells express HLA class I molecules to present antigenic peptides derived from the tumor. However, cancer cells utilize various mechanisms to downregulate or lose HLA class I molecules from their surface, resulting in evasion from immune surveillance. Correlations between prognosis and the integrity of HLA class I molecules expressed by cancer cells have been consistently found across different types of cancer. This paper provides an overview of the regulatory mechanisms of HLA class I molecules and their role in cancer immunotherapy, with a particular emphasis on the significance of utilizing pathological tissues to evaluate HLA class I molecules expressed in cancer cells.


Subject(s)
Histocompatibility Antigens Class I , Immunotherapy , Neoplasms , Humans , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/pathology , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology
18.
Front Immunol ; 15: 1342335, 2024.
Article in English | MEDLINE | ID: mdl-38596688

ABSTRACT

Introduction: Human leukocyte antigen (HLA) I molecules present antigenic peptides to activate CD8+ T cells. Type 1 Diabetes (T1D) is an auto-immune disease caused by aberrant activation of the CD8+ T cells that destroy insulin-producing pancreatic ß cells. Some HLA I alleles were shown to increase the risk of T1D (T1D-predisposing alleles), while some reduce this risk (T1D-protective alleles). Methods: Here, we compared the T1D-predisposing and T1D-protective allotypes concerning peptide binding, maturation, localization and surface expression and correlated it with their sequences and energetic profiles using experimental and computational methods. Results: T1D-predisposing allotypes had more peptide-bound forms and higher plasma membrane levels than T1D-protective allotypes. This was related to the fact that position 116 within the F pocket was more conserved and made more optimal contacts with the neighboring residues in T1D-predisposing allotypes than in protective allotypes. Conclusion: Our work uncovers that specific polymorphisms in HLA I molecules potentially influence their susceptibility to T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , CD8-Positive T-Lymphocytes , Histocompatibility Antigens Class I , Peptides/metabolism , Histocompatibility Antigens Class II/metabolism , HLA Antigens/metabolism , Histocompatibility Antigens/metabolism
19.
HLA ; 103(4): e15465, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38575371

ABSTRACT

Identification of the novel HLA-A*02:1148 and HLA-B*44:386 alleles by next-generation sequencing.


Subject(s)
HLA-A Antigens , High-Throughput Nucleotide Sequencing , Humans , Alleles , HLA-B Antigens/genetics
20.
HLA ; 103(4): e15471, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38566402

ABSTRACT

A novel HLA-C*07 allele, now officially designated HLA-C*07:02:150, was identified by next-generation sequencing.


Subject(s)
Genes, MHC Class I , HLA-C Antigens , Humans , HLA-C Antigens/genetics , Alleles , High-Throughput Nucleotide Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL