Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 201
Filter
1.
Sci Rep ; 14(1): 13201, 2024 06 08.
Article in English | MEDLINE | ID: mdl-38851845

ABSTRACT

Sugar esters display surface-active properties, wetting, emulsifying, and other physicochemical phenomena following their amphipathic nature and recognize distinct biological activity. The development of nutritional pharmaceuticals and other applications remains of great interest. Herein, three novel homologous series of several N-mono-fatty acyl amino acid glucosyl esters were synthesized, and their physicochemical properties and biological activities were evaluated. The design and preparation of these esters were chemically performed via the reaction of glucose with different fatty acyl amino acids as renewable starting materials, with the suggestion that they would acquire functional characteristics superior and competitive to certain conventional surfactants. The synthesized products are characterized using FTIR, 1H-NMR, and 13C-NMR spectroscopy. Further, their physicochemical properties, such as HLB, CMC, Γmax, γCMC, and Amin, were determined. Additionally, their antimicrobial and anticancer efficiency were assessed. The results indicate that the esters' molecular structure, including the acyl chain length and the type of amino acid, significantly influences their properties. The measured HLB ranged from 8.84 to 12.27, suggesting their use as oil/water emulsifiers, wetting, and cleansing agents. All esters demonstrate promising surface-active characteristics, with moderate to high foam production with good stability. Notably, compounds 6-O-(N-dodecanoyl, tetradecanoyl cysteine)-glucopyranose (34, 35), respectively and 6-O-(N-12-hydroxy-9-octadecenoyl cysteine)-glucopyranose (38) display superior foamability. Wetting efficiency increased with decreasing the chain length of the acyl group. The storage results reveal that increasing the fatty acyl hydrophobe length enhances the derived emulsion's stability for up to 63 days. Particularly, including cysteine in these glucosyl esters improves wetting, foaming, and emulsifying potentialities. Furthermore, the esters exhibit antibacterial activity against several tested Gram-positive and Gram-negative bacteria and fungi. On the other hand, they show significant antiproliferative effects on some liver tumor cell lines. For instance, compounds 6-O-(N-12-hydroxy-9-octadecenoylglycine)-glucopyranose (28), 6-O-(N-dodecanoyl, hexadecanoyl, 9-octadecenoyl and 12-hydroxy-9-octadecenoylvaline)- glucopyranose (29, 31, 32 and 33), respectively in addition to the dodecanoyl, hexadecanoyl, 9-octadecenoyl and 12-hydroxy-9-octadecenoyl cysteine glucopyranose (34, 36, 37 and 38), respectively significantly inhibit the examined cancer cells.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Surface-Active Agents , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Surface-Active Agents/chemistry , Surface-Active Agents/chemical synthesis , Surface-Active Agents/pharmacology , Humans , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Structure-Activity Relationship , Microbial Sensitivity Tests , Esters/chemistry , Esters/pharmacology , Esters/chemical synthesis , Cell Line, Tumor , Amino Acids/chemistry
2.
Implement Sci Commun ; 5(1): 62, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845055

ABSTRACT

As global adoption of antiretroviral therapy extends the lifespan of People Living with HIV (PLHIV) through viral suppression, the risk of comorbid conditions such as hypertension has risen, creating a need for effective, scalable interventions to manage comorbidities in PLHIV. The Heart, Lung, and Blood Co-morbiditieS Implementation Models in People Living with HIV (HLB-SIMPLe) Alliance has been funded by the National Heart, Lung, and Blood Institute (NHLBI) and the Fogarty International Center (FIC) since September 2020. The Alliance was created to conduct late-stage implementation research to contextualize, implement, and evaluate evidence-based strategies to integrate the diagnosis, treatment, and control of cardiovascular diseases, particularly hypertension, in PLHIV in low- and middle-income countries (LMICs).The Alliance consists of six individually-funded clinical trial cooperative agreement research projects based in Botswana, Mozambique, Nigeria, South Africa, Uganda, and Zambia; the Research Coordinating Center; and personnel from NIH, NHLBI, and FIC (the Federal Team). The Federal Team works together with the members of the seven cooperative agreements which comprise the alliance. The Federal Team includes program officials, project scientists, grant management officials and clinical trial specialists. This Alliance of research scientists, trainees, and administrators works collaboratively to provide and support venues for ongoing information sharing within and across the clinical trials, training and capacity building in research methods, publications, data harmonization, and community engagement. The goal is to leverage shared learning to achieve collective success, where the resulting science and training are greater with an Alliance structure rather than what would be expected from isolated and unconnected individual research projects.In this manuscript, we describe how the Research Coordinating Center performs the role of providing organizational efficiencies, scientific technical assistance, research capacity building, operational coordination, and leadership to support research and training activities in this multi-project cooperative research Alliance. We outline challenges and opportunities during the initial phases of coordinating research and training in the HLB-SIMPLe Alliance, including those most relevant to dissemination and implementation researchers.

3.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791401

ABSTRACT

Porous ß-tricalcium phosphate (Ca3(PO4)2; ß-TCP) was prepared via freeze-drying and the effects of this process on pore shapes and sizes were investigated. Various samples were prepared by freezing ß-TCP slurries above a liquid nitrogen surface at -180 °C with subsequent immersion in liquid nitrogen at -196 °C. These materials were then dried under reduced pressure in a freeze-dryer, after which they were sintered with heating. Compared with conventional heat-based drying, the resulting pores were more spherical, which increased both the mechanical strength and porosity of the ß-TCP. These materials had a wide range of pore sizes from 50 to 200 µm, with the mean and median values both approximately 100 µm regardless of the freeze-drying conditions. Mercury porosimetry data showed that the samples contained small, interconnected pores with sizes of 1.24 ± 0.25 µm and macroscopic, interconnected pores of 25.8 ± 4.7 µm in size. The effects of nonionic surfactants having different hydrophilic/lipophilic balance (HLB) values on foaming and pore size were also investigated. Materials made with surfactants having lower HLB values exhibited smaller pores and lower porosity, whereas higher HLB surfactants gave higher porosity and slightly larger macropores. Even so, the pore diameter could not be readily controlled solely by adjusting the HLB value. The findings of this work indicated that high porosity (>75%) and good compressive strength (>2 MPa) can both be obtained in the same porous material and that foaming agents with HLB values between 12.0 and 13.5 were optimal.


Subject(s)
Calcium Phosphates , Ceramics , Freeze Drying , Freeze Drying/methods , Calcium Phosphates/chemistry , Porosity , Ceramics/chemistry , Surface-Active Agents/chemistry , Materials Testing , X-Ray Diffraction
4.
Genetics ; 227(3)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38775472

ABSTRACT

Despite binding similar cis elements in multiple locations, a single transcription factor (TF) often performs context-dependent functions at different loci. How factors integrate cis sequence and genomic context is still poorly understood and has implications for off-target effects in genetic engineering. The Drosophila context-dependent TF chromatin-linked adaptor for male-specific lethal proteins (CLAMP) targets similar GA-rich cis elements on the X-chromosome and at the histone gene locus but recruits very different, locus-specific factors. We discover that CLAMP leverages information from both cis element and local sequence to perform context-specific functions. Our observations imply the importance of other cues, including protein-protein interactions and the presence of additional cofactors.


Subject(s)
Drosophila Proteins , Transcription Factors , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , X Chromosome/genetics , Male , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Histones/metabolism , Histones/genetics , Chromatin/metabolism , Chromatin/genetics
5.
Microb Pathog ; 192: 106688, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750772

ABSTRACT

The unprecedented worldwide spread of the Citrus greening disorder, called Huanglongbing (HLB), has urged researchers for rapid interventions. HLB poses a considerable threat to global citriculture owing to its devastating impact on citrus species. This disease is caused by Candidatus Liberibacter species (CLs), primarily transferred through psyllid insects, such as Trioza erytreae and Diaphorina citri. It results in phloem malfunction, root decline, and altered plant source-sink relationships, leading to a deficient plant with minimal yield before it dies. Thus, many various techniques have been employed to eliminate HLB and control vector populations through the application of insecticides and antimicrobials. The latter have evidenced short-term efficiency. While nucleic acid-based analyses and symptom-based identification of the disease have been used for detection, they suffer from limitations such as false negatives, complex sample preparation, and high costs. To address these challenges, secreted protein-based biomarkers offer a promising solution for accurate, rapid, and cost-effective disease detection. This paper presents an overview of HLB symptoms in citrus plants, including leaf and fruit symptoms, as well as whole tree symptoms. The differentiation between HLB symptoms and those of nutrient deficiencies is discussed, emphasizing the importance of precise identification for effective disease management. The elusive nature of CLs and the challenges in culturing them in axenic cultures have hindered the understanding of their pathogenic mechanisms. However, genome sequencing has provided insights into CLs strains' metabolic traits and potential virulence factors. Efforts to identify potential host target genes for resistance are discussed, and a high-throughput antimicrobial testing method using Citrus hairy roots is introduced as a promising tool for rapid assessment of potential treatments. This review summarizes current challenges and novel therapies for HLB disease. It highlights the urgency of developing accurate and efficient detection methods and identifying the complex relations between CLs and their host plants. Transgenic citrus in conjunction with secreted protein-based biomarkers and innovative testing methodologies could revolutionize HLB management strategies toward achieving a sustainable citrus cultivation. It offers more reliable and practical solutions to combat this devastating disease and safeguard the global citriculture industry.


Subject(s)
Citrus , Plant Diseases , Citrus/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Animals , Hemiptera/microbiology , Rhizobiaceae/genetics , Rhizobiaceae/pathogenicity , Liberibacter/genetics , Plant Leaves/microbiology , Fruit/microbiology , Biomarkers , Insect Vectors/microbiology
6.
Plants (Basel) ; 13(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674575

ABSTRACT

To reveal genetic diversity for effective resistance to five foliar diseases and toxic aluminum ions, the entire collection of wheat species from the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) originating from Ethiopia and Eritrea were studied regarding their traits. The collection contains 509 samples of four wheat species (Triticum aestivum-122 samples; T. aethiopicum-340 samples; T. polonicum-6 samples; and T. dicoccum-41 samples). The majority of accessions are new entries of landraces added to the Vavilov collection as a result of the Russian-Ethiopian expedition in 2012. Wheat seedlings were inoculated with causal agents of leaf rust (Pt), powdery mildew (Bgt), Septoria nodorum blotch (SNB), and dark-brown leaf spot blotch (HLB). The types of reaction and disease development were assessed to describe the levels of resistance. All samples of T. aethiopicum were also screened for seedling and adult resistance to Pt, Bgt, and yellow rust (Pst) under field conditions after double inoculation with the corresponding pathogens. To study tolerance to abiotic stress, seedlings were grown in a solution of Al3+ (185 µM, pH 4,0) and in water. The index of root length was used to characterize tolerance. Seedlings belonging to only two accessions out of those studied-k-68236 of T. aethiopicum and k-67397 of T. dicoccum-were resistant to Pt at 20 °C but susceptible at 25 °C. Specific molecular markers closely linked to the five genes for Pt resistance effective against populations of the pathogen from the northwestern region of Russia were not amplified in these two entries after PCR with corresponding primers. Four entries of T. dicoccum-k-18971, k-18975, k-19577, and k-67398-were highly resistant to Bgt. All samples under study were susceptible to HLB and SNB. Under field conditions, 15% of the T. aethiopicum samples were resistant to Pst, both at the seedling and the flag leaf stages, but all were susceptible to the other diseases under study. Among the evaluated samples, 20 entries of T. aestivum, 1 of T. polonicum (k-43765), and 2 of T. dicoccum (k-18971, k-67397) were tolerant to aluminum ions. The identified entries could be valuable sources for the breeding of T. aestivum and other wheats for resistance to biotic and abiotic stresses.

7.
Polymers (Basel) ; 16(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38399887

ABSTRACT

This article aims to explore the impact of HLB (Hydrophile-Lipophile Balance) values on two key properties, namely the thermoelectric conductivities and the stability of the suspension, of a hybrid nanofluid composed of TiO2 and CuO nanoparticles. The present study employed a two-step synthesis method to prepare the polymeric nanofluid, which meant that the nanoparticles were mixed with the base fluid using an ultrasonic oscillator, which was easier and cheaper than the one-step synthesis method. To ensure that the nanoparticles remain evenly dispersed in the base fluid, two distinct polymer-emulsifier combinations with different HLB values were employed as the dispersing agents. The first pair of polymeric emulsifiers consisted of Span#20 and Tween#20, and the second pair was Span#80 and Tween#80 composed to four HLB values of 12, 13, 14, and 15. The experiment measured the properties of the nanofluid, including the particle size, Zeta potential, and thermoelectric conductivities at different temperatures from 20 °C to 50 °C. The experimental outcomes indicated that an HLB value of 13 was the best for the two sets of polymeric emulsifiers tested. This value corresponded to the most reduced particle size, measured at 170 nm, alongside the most elevated Zeta potential, recorded at -30 mV. Additionally, this HLB value was associated with the peak thermoelectric conductivity, which was 1.46 W/m∙K. This suggests that there may be some variation in the best HLB value depending on the type of polymeric emulsifiers and the temperature of the hybrid nanofluid.

8.
J Forensic Sci ; 69(3): 1021-1024, 2024 May.
Article in English | MEDLINE | ID: mdl-38362738

ABSTRACT

The conventional methamphetamine (MA) detection method using the Simon reaction can be affected by false positives owing to compounds similar to aliphatic secondary amines. In this study, we examined the new Simon reaction to improve the qualitative accuracy of MA detection to discriminate substances that give false positives in a conventional Simon reaction. After the conventional Simon reaction for MA and false positives (N-isopropylbenzylamine (NIP-BA), N-methylbenzylamine (NMe-BA), L-proline (Pro), and L-hydroxyproline (HYP)), which are colored blue, di-tert-butyl dicarbonate (t-Boc) reagent was added, and color tone changes were observed. When t-Boc was added to the false positives (NIP-BA, NMe-BA, Pro, and HYP), the colors of MA, Pro, and HYP changed to purple; NIP-BA changed to blue; and NMe-BA changed to light pink after 3 min. These results suggested that MA can be differentiated from NIP-BA and NMe-BA. Furthermore, the solid-phase chromogenic method was examined, and it was confirmed that MA could be differentiated from Pro and HYP. The method developed in this study should increase the accuracy of MA appraisal at crime scenes and contribute to the reduction of misclassifications arising from false-positive substances.


Subject(s)
Forensic Toxicology , Methamphetamine , Humans , False Positive Reactions , Forensic Toxicology/methods , Central Nervous System Stimulants/analysis , Color
9.
J Agric Food Chem ; 72(8): 4325-4333, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38350922

ABSTRACT

The acylation of flavonoids serves as a means to alter their physicochemical properties, enhance their stability, and improve their bioactivity. Compared with natural flavonoid glycosides, the acylation of nonglycosylated flavonoids presents greater challenges since they contain fewer reactive sites. In this work, we propose an efficient strategy to solve this problem based on a first α-glucosylation step catalyzed by a sucrose phosphorylase, followed by acylation using a lipase. The method was applied to phloretin, a bioactive dihydrochalcone mainly present in apples. Phloretin underwent initial glucosylation at the 4'-OH position, followed by subsequent (and quantitative) acylation with C8, C12, and C16 acyl chains employing an immobilized lipase from Thermomyces lanuginosus. Electrospray ionization-mass spectrometry (ESI-MS) and two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) confirmed that the acylation took place at 6-OH of glucose. The water solubility of C8 acyl glucoside closely resembled that of aglycone, but for C12 and C16 derivatives, it was approximately 3 times lower. Compared with phloretin, the radical scavenging capacity of the new derivatives slightly decreased with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and was similar to 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+). Interestingly, C12 acyl-α-glucoside displayed an enhanced (3-fold) transdermal absorption (using pig skin biopsies) compared to phloretin and its α-glucoside.


Subject(s)
Flavonoids , Malus , Animals , Swine , Flavonoids/chemistry , Phloretin , Malus/chemistry , Glucosides , Acylation , Lipase/chemistry , Antioxidants
10.
Drug Deliv Transl Res ; 14(1): 223-235, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37523093

ABSTRACT

In the present study, a self-nano-emulsifying drug delivery system (SNEDDS) was developed to evaluate the efficiency of thymoquinone (TQ) in hepatic ischemia/reperfusion. SNEDDS was pharmaceutically characterized to evaluate droplet size, morphology, zeta potential, thermodynamic stability, and dissolution/diffusion capacity. Animals were orally pre-treated during 10 days with TQ-loaded SNEDDS. Biochemical analyses, hematoxylin-eosin staining, indirect immunofluorescence, and reverse transcription polymerase chain reaction (RT-PCR) were carried out to assess cell injury, oxidative stress, inflammation, and apoptosis. The TQ formulation showed good in vitro characteristics, including stable nanoparticle structure and size with high drug release rate. In vivo determinations revealed that TQ-loaded SNEDDS pre-treatment of rats maintained cellular integrity by decreasing transaminase (ALT and AST) release and preserving the histological characteristics of their liver. The antioxidant ability of the formulation was proven by increased SOD activity, reduced MDA concentration, and iNOS protein expression. In addition, this formulation exerted an anti-inflammatory effect evidenced by reduced plasma CRP concentration, MPO activity, and gene expressions of TLR-4, TNF-α, NF-κB, and IL-6. Finally, the TQ-loaded SNEDDS formulation promoted cell survival by enhancing the Bcl-2/Bax ratio. In conclusion, our results indicate that TQ encapsulated in SNEDDS significantly protects rat liver from I/R injury.


Subject(s)
Nanoparticle Drug Delivery System , Reperfusion Injury , Rats , Animals , Rats, Wistar , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Ischemia/drug therapy , Drug Delivery Systems
11.
J Agric Food Chem ; 72(1): 351-362, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38115585

ABSTRACT

Volatile terpenoids accumulate in citrus and play important roles in plant defense against various stressors. However, the broad-spectrum response of terpenoid biosynthesis to ubiquitous stressors in citrus has not been comparatively investigated. In this study, volatile terpenoids were profiled under six stressors: high temperature, citrus miner, citrus red mite, citrus canker, Alternaria brown spot, and huanglongbing (HLB). Significant content changes in 15 terpenoids, including ß-ocimene, were observed in more than four of the six stressors, implying their possibly universal stress-response effects. Notably, the emission of terpenoids, including ß-caryophyllene, ß-ocimene, and nerolidol glucoside, was significantly increased by HLB in HLB-tolerant "Shatian" pomelo leaves. The upregulation of CgTPS1 and CgTPS2 and their characterization in vivo identified them as mono- or sesquiterpenoid biosynthetic genes. This study provides a foundation for determining stress resistance mechanisms in citrus and biopesticide designations for future industrial applications.


Subject(s)
Citrus , Citrus/genetics , Terpenes , Acyclic Monoterpenes , Gene Expression Profiling , Plant Diseases/prevention & control
12.
Front Plant Sci ; 14: 1270929, 2023.
Article in English | MEDLINE | ID: mdl-38034569

ABSTRACT

Instruction: Citrus is a globally important fruit tree whose microbiome plays a vital role in its growth, adaptability, and resistance to stress. Methods: With the high throughput sequencing of 16S rRNA genes, this study focused on analyzing the bacterial community, especially in the leaf midribs, of healthy and Huanglongbing (HLB)-infected plants. Results: We firstly identified the shared bacterial taxa in the midribs of both healthy and HLB-infected plants, and then analyzed their functions. Results showed that the shared bacterial taxa in midribs belonged to 62 genera, with approximately 1/3 of which modified in the infected samples. Furthermore, 366 metabolic pathways, 5851 proteins, and 1833 enzymes in the shared taxa were predicted. Among these, three metabolic pathways and one protein showed significant importance in HLB infection. With the random forest method, six genera were identified to be significantly important for HLB infection. Notably, four of these genera were also among the significantly different shared taxa. Further functional characterization of these four genera revealed that Pseudomonas and Erwinia likely contributed to plant defense against HLB, while Streptomyces might have implications for plant defense against HLB or the pathogenicity of Candidatus Liberibacter asiaticus (CLas). Disccusion: Overall, our study highlights that the functions of the shared taxa in leaf midribs are distinguished between healthy and HLB-infected plants, and these microbiome-based findings can contribute to the management and protection of citrus crops against CLas.

13.
Plants (Basel) ; 12(19)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37836104

ABSTRACT

Early detection and prompt response are key factors in the eradication of 'huanglongbing' (HLB) in California. Currently, qPCR testing of leaf tissue guides the removal of infected trees. However, because of the uneven distribution of 'Candidatus Liberibacter asiaticus' (CLas) in an infected tree and asymptomatic infection, selecting the best leaves to sample, from a mature tree with more than 200,000 estimated leaves, is a major hurdle for timely detection. The goal of this study was to address this issue by testing alternative tissues that might improve the CLas detection rate. Using two years of field data, old and young leaves, peduncle bark of fruit, and feeder roots were evaluated for the presence of CLas. Quadrant-peduncle (Q-P) tissue sampling consistently resulted in better CLas detection than any other tissue type. Q-P samples had a 30% higher qPCR positivity rate than quadrant-leaf (Q-L) samples. No significant seasonal patterns were observed. Roots and single peduncles had similar detection rates; both were higher than single leaves or Q-L samples. If symptoms were used to guide sampling, 30% of infected trees would have been missed. Taken together, these results suggest that Q-P tissue sampling is the optimal choice for improved CLas detection under California growing conditions.

14.
J Agric Food Chem ; 71(43): 16391-16401, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37857602

ABSTRACT

Huanglongbing (HLB) is a highly destructive disease that inflicts significant economic losses on the citrus industry worldwide but with no cure available. However, microbiomes formulated by citrus plants may serve as disease antagonists, increasing the level of HLB tolerance. This study established an integrated analysis of untargeted metabolomics and microbiomics data for different citrus cultivars, providing critical insights into the interactions between plant metabolism and plant-associated bacteria in the development of HLB. Machine learning models were applied to screen important metabolites and bacteria in multiple citrus materials, and the selected metabolites were then analyzed to identify essential pathways enriched in the plant and to correlate with the selected bacteria. Results demonstrated that the regulation of plant pathways, especially ABC transporters and ubiquinone and other terpene-ubiquinone biosynthesis pathways, could affect the microbial community structure, indicating potential solutions for controlling HLB by modulating bacteria in citrus plants or breeding tolerant citrus cultivars.


Subject(s)
Citrus , Rhizobiaceae , Citrus/metabolism , Multiomics , Ubiquinone/metabolism , Plant Breeding , Bacteria/genetics , Plant Diseases/microbiology , Rhizobiaceae/genetics
15.
Mol Hortic ; 3(1): 14, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37789492

ABSTRACT

Citrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CaLas), is the most serious disease worldwide. CaLasSDE460 was previously characterized as a potential virulence factor of CaLas. However, the function and mechanism of CaLasSDE460 involved in CaLas against citrus is still elusive. Here, we showed that transgenic expression of CaLasSDE460 in Wanjincheng oranges (C. sinensis Osbeck) contributed to the early growth of CaLas and the development of symptoms. When the temperature increased from 25 °C to 32 °C, CaLas growth and symptom development in transgenic plants were slower than those in WT controls. RNA-seq analysis of transgenic plants showed that CaLasSDE460 affected multiple biological processes. At 25 °C, transcription activities of the "Protein processing in endoplasmic reticulum" and "Cyanoamino acid metabolism" pathways increased while transcription activities of many pathways decreased at 32 °C. 124 and 53 genes, separately annotated to plant-pathogen interaction and MAPK signaling pathways, showed decreased expression at 32 °C, compared with these (38 for plant-pathogen interaction and 17 for MAPK signaling) at 25 °C. Several important genes (MAPKKK14, HSP70b, NCED3 and WRKY33), remarkably affected by CaLasSDE460, were identified. Totally, our data suggested that CaLasSDE460 participated in the pathogenesis of CaLas through interfering transcription activities of citrus defense response and this interfering was temperature-dependent.

16.
Front Plant Sci ; 14: 1224736, 2023.
Article in English | MEDLINE | ID: mdl-37554557

ABSTRACT

Citrus Huanglongbing (HLB) is the most destructive citrus disease worldwide, mainly caused by 'Candidatus Liberibacter asiaticus' (CLas). It encodes a large number of Sec-dependent effectors that contribute to HLB progression. In this study, an elicitor triggering ROS burst and cell death in Nicotiana benthamiana, CLIBASIA_04425 (CLas4425), was identified. Of particular interest, its cell death-inducing activity is associated with its subcellular localization and the cytoplasmic receptor Botrytis-induced kinase 1 (BIK1). Compared with CLas infected psyllids, CLas4425 showed higher expression level in planta. The transient expression of CLas4425 in N. benthamiana and its overexpression in Citrus sinensis enhanced plant susceptibility to Pseudomonas syringae pv. tomato DC3000 ΔhopQ1-1 and CLas, respectively. Furthermore, the salicylic acid (SA) level along with the expression of genes NPR1/EDS1/NDR1/PRs in SA signal transduction was repressed in CLas4425 transgenic citrus plants. Taken together, CLas4425 is a virulence factor that promotes CLas proliferation, likely by interfering with SA-mediated plant immunity. The results obtained facilitate our understanding of CLas pathogenesis.

17.
Plant Dis ; 107(12): 3996-4009, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37415358

ABSTRACT

Huanglongbing (HLB, citrus greening disease), the most destructive disease affecting citrus production, is primarily linked to the gram-negative, insect-vectored, phloem-inhabiting α-proteobacterium 'Candidatus Liberibacter asiaticus' (CLas). With no effective treatment available, management strategies have largely focused on the use of insecticides in addition to the destruction of infected trees, which are environmentally hazardous and cost-prohibitive for growers, respectively. A major limitation to combating HLB is the inability to isolate CLas in axenic culture, which hinders in vitro studies and creates a need for robust in situ CLas detection and visualization methods. The aim of this study was to investigate the efficacy of a nutritional program-based approach for HLB treatment, and to explore the effectiveness of an enhanced immunodetection method to detect CLas-infected tissues. To achieve this, four different biologically enhanced nutritional programs (bENPs; P1, P2, P3, and P4) were tested on CLas-infected citrus trees. Structured illumination microscopy preceded by a modified immunolabeling process and transmission electron microscopy were used to show treatment-dependent reduction of CLas cells in phloem tissues. No sieve pore plugging was seen in the leaves of P2 trees. This was accompanied by an 80% annual increase in fruit number per tree and 1,503 (611 upregulated and 892 downregulated) differentially expressed genes. These included an MLRQ subunit gene, UDP-glucose transferase, and genes associated with the alpha-amino linolenic acid metabolism pathway in P2 trees. Taken together, the results highlight a major role for bENPs as a viable, sustainable, and cost effective option for HLB management.


Subject(s)
Citrus , Rhizobiaceae , Transcriptome , Rhizobiaceae/genetics , Plant Diseases/prevention & control , Plant Diseases/microbiology , Citrus/microbiology , Trees
18.
Foods ; 12(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37297442

ABSTRACT

Surfactants are always added to coating formulations to ensure good adhesion of edible coatings to a product's surface and to maintain freshness. In this study, the effects of the mix surfactants Tween 20 and Span 80 with different hydrophile-lipophile balance (HLB) values on the film-forming ability, wettability, and preservation capacity of blueberry sodium alginate coating were investigated. The results indicated that Tween 20 obviously ensured favorable wettability and improved the uniformity and mechanical properties of the resulting film. While the addition of Span 80 reduced the mean particle size of the coating, enhanced the water resistance of the film, and helped to reduce blueberry weight loss. A sodium alginate coating with low viscosity and medium HLB could better inhibit the galactose, sucrose, and linoleic acid metabolism of blueberries, reduce the consumption of phenols, promote the accumulation of flavonoids, and thus display superior coating performance. In summary, sodium alginate coating with medium HLB had comprehensive advantages in film-forming ability and wettability and was conducive to the fresh-keeping role.

19.
J Agric Food Chem ; 71(19): 7593-7603, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37139986

ABSTRACT

This work aimed to develop an analytical method for the screening of multiple aminoglycoside residues in foods of animal origin using an ethylene-bridged hybrid (BEH) particle-based sulfoalkylbetaine stationary phase. The effects of chromatographic conditions on the separation of 17 aminoglycosides have been systematically investigated. Sample preparation and mass spectrometry detection have also been investigated and optimized. In contrast to high buffer concentrations in the mobile phase required for silica-based sulfoalkylbetaine stationary phases, a moderate buffer concentration (20 mM) provided the optimal separation of 17 aminoglycosides with the BEH sulfoalkylbetaine stationary phase. The developed method has been evaluated in milk, beef, pork, liver, and honey samples with good performance for retention, selectivity, sensitivity, linearity, precision, and accuracy. The majority of the limit of quantitation estimated with the matrix was less than 25 µg/kg. The overall accuracy across five matrices was in the range from 96 to 111%, with standard deviations of less than 19%.


Subject(s)
Aminoglycosides , Tandem Mass Spectrometry , Animals , Cattle , Aminoglycosides/analysis , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Anti-Bacterial Agents/analysis , Solid Phase Extraction , Ethylenes , Chromatography, High Pressure Liquid/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...