Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.359
Filter
1.
Front Oncol ; 14: 1430833, 2024.
Article in English | MEDLINE | ID: mdl-39091915

ABSTRACT

Background: Ruxolitinib has been approved by the US FDA for the treatment of myeloproliferative neoplasms such as polycythemia vera and primary myelofibrosis. Ruxolitinib will remain a main stay in the treatment of MPN patients due to its effective therapeutic benefits. However, there have been instances of ruxolitinib resistance in MPN patients. As JAK2 is a direct target of ruxolitinib, we generated ruxolitinib-resistant clones to find out the mechanism of resistance. Methods: Cell-based screening strategy was used to detect the ruxolitinib-resistant mutations in JAK2. The Sanger sequencing method was used to detect the point mutations in JAK2. Mutations were re-introduced using the site-directed mutagenesis method and stably expressed in Ba/F3 cells. Drug sensitivities against the JAK2 inhibitors were measured using an MTS-based assay. JAK2 and STAT5 activation levels and total proteins were measured using immunoblotting. Computational docking studies were performed using the Glide module of Schrodinger Maestro software. Results: In this study, we have recovered seven residues in the kinase domain of JAK2 that affect ruxolitinib sensitivity. All these mutations confer cross-resistance across the panel of JAK2 kinase inhibitors except JAK2-L983F. JAK2-L983F reduces the sensitivity towards ruxolitinib. However, it is sensitive towards fedratinib indicating that our screen identifies the drug-specific resistance profiles. All the ruxolitinib-resistant JAK2 variants displayed sensitivity towards type II JAK2 inhibitor CHZ-868. In this study, we also found that JAK1-L1010F (homologous JAK2-L983F) is highly resistant towards ruxolitinib suggesting the possibility of JAK1 escape mutations in JAK2-driven MPNs and JAK1 mutated ALL. Finally, our study also shows that HSP90 inhibitors are potent against ruxolitinib-resistant variants through the JAK2 degradation and provides the rationale for clinical evaluation of potent HSP90 inhibitors in genetic resistance driven by JAK2 inhibitors. Conclusion: Our study identifies JAK1 and JAK2 resistance variants against the type I JAK2 inhibitors ruxolitinib, fedratinib, and lestaurtinib. The sensitivity of these resistant variants towards the type II JAK2 inhibitor CHZ-868 indicates that this mode of type II JAK2 inhibition is a potential therapeutic approach against ruxolitinib refractory leukemia. This also proposes the development of potent and specific type II JAK2 inhibitors using ruxolitinib-resistance variants as a prototype.

2.
Trop Anim Health Prod ; 56(7): 230, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096401

ABSTRACT

Raising cattle is a lucrative business that operates globally but is confronted by many obstacles, such as thermal stress, which results in substantial monetary losses. A vital role of heat shock proteins (HSPs) is to protect cells from cellular damage. HSP90 is a highly prevalent, extremely adaptable gene linked to physiological resilience in thermal stress. This study aimed to find genetic polymorphisms of the HSP90AA1 gene in Karan Fries cattle and explore their relationship to thermal tolerance and production traits. One SNP (g.3292 A > C) was found in the Intron 8 and three SNPs loci (g.4776 A > G, g.5218T > C and g.5224 A > C) were found in the exon 11 of 100 multiparous Karan Fries cattle. The association study demonstrated that the SNP1-g.3292 A > C was significantly (P < 0.01) linked to the variables respiratory rate (RR), heat tolerance coefficient (HTC) and total milk yield (TMY (kg)) attributes. There was no significant correlation identified between any of the other SNP sites (SNP2-g.4776 A > G; SNP3-g.5218T > C; SNP4-g.5224 A > C) with the heat tolerance and production attributes in Karan Fries cattle. Haploview 4.2 and SHEsis software programs were used to analyse pair linkage disequilibrium and construct haplotypes for HSP90AA1. Association studies indicated that the Hap3 (CATA) was beneficial for heat tolerance breeding in Karan Fries cattle. In conclusion, genetic polymorphisms and haplotypes in the HSP90AA1 were associated with thermal endurance attributes. This relationship can be utilized as a beneficial SNP or Hap marker for genetic heat resistance selection in cow breeding platforms.


Subject(s)
HSP90 Heat-Shock Proteins , Polymorphism, Single Nucleotide , Thermotolerance , Animals , Cattle/genetics , Cattle/physiology , Thermotolerance/genetics , HSP90 Heat-Shock Proteins/genetics , Female , India , Haplotypes
3.
Eur J Med Chem ; 276: 116620, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38971048

ABSTRACT

A series of indazole analogs, derived from the B,C-ring-truncated scaffold of deguelin, were designed to function as C-terminal inhibitors of heat shock protein 90 (HSP90) and investigated as novel antitumor agents against HER2-positive breast cancer. Among the synthesized compounds, compound 12d exhibited substantial inhibitory effects in trastuzumab-sensitive (BT474) and trastuzumab-resistant (JIMT-1) breast cancer cells, with IC50 values of 6.86 and 4.42 µM, respectively. Notably, compound 12d exhibited no cytotoxicity in normal cells. Compound 12d markedly downregulated the expression of the major HSP90 client proteins in both cell types, attributing its cytotoxicity to the destabilization and inactivation of HSP90 client proteins. Molecular docking studies using the homology model of an HSP90 homodimer demonstrated that inhibitor 12d fit nicely into the C-terminal domain, boasting a higher electrostatic complementary score than ATP. In vivo pharmacokinetic study indicated the high oral bioavailability of compound 12 d at F = 66.9 %, while toxicological studies indicated its negligible impact on hERG channels and CYP isozymes. Genotoxicity tests further confirmed its safety profile. The findings collectively position compound 12d as a promising candidate for further development as an antitumor agent against HER2-positive breast cancer.

4.
Plant J ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969341

ABSTRACT

HSP90Cs are essential molecular chaperones localized in the plastid stroma that maintain protein homeostasis and assist the import and thylakoid transport of chloroplast proteins. While HSP90C contains all conserved domains as an HSP90 family protein, it also possesses a unique feature in its variable C-terminal extension (CTE) region. This study elucidated the specific function of this HSP90C CTE region. Our phylogenetic analyses revealed that this intrinsically disordered region contains a highly conserved DPW motif in the green lineages. With biochemical assays, we showed that the CTE is required for the chaperone to effectively interact with client proteins PsbO1 and LHCB2 to regulate ATP-independent chaperone activity and to effectuate its ATP hydrolysis. The CTE truncation mutants could support plant growth and development reminiscing the wild type under normal conditions except for a minor phenotype in cotyledon when expressed at a level comparable to wild type. However, higher HSP90C expression was observed to correlate with a stronger response to specific photosystem II inhibitor DCMU, and CTE truncations dampened the response. Additionally, when treated with lincomycin to inhibit chloroplast protein translation, CTE truncation mutants showed a delayed response to PsbO1 expression repression, suggesting its role in chloroplast retrograde signaling. Our study therefore provides insights into the mechanism of HSP90C in client protein binding and the regulation of green chloroplast maturation and function, especially under stress conditions.

5.
Cancers (Basel) ; 16(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39061141

ABSTRACT

Aberrant estrogen receptor (ERα) signaling mediates detrimental effects of tamoxifen including drug resistance and endometrial hyperplasia. ERα36, an alternative isoform of ERα, contributes to these effects. We have demonstrated that CK2 modulates ERα expression and function in breast cancer (BCa). Here, we assess if CX-4945 (CX), a clinical stage CK2 inhibitor, can disrupt ERα66 and ERα36 signaling in BCa. Using live cell imaging, we assessed the antiproliferative effects of CX in tamoxifen-sensitive and tamoxifen-resistant BCa cells in monolayer and/or spheroid cultures. CX-induced alterations in ERα66 and ERα36 mRNA and protein expression were assessed by RT-PCR and immunoblot. Co-immunoprecipitation was performed to determine the differential interaction of ERα isoforms with HSP90 and CK2 upon CX exposure. CX caused concentration-dependent decreases in proliferation in tamoxifen-sensitive MCF-7 and tamoxifen-resistant MCF-7 Tam1 cells and significantly repressed spheroid growth in 3D models. Additionally, CX caused dramatic decreases in endogenous or exogenously expressed ERα66 and ERα36 protein. Silencing of CK2ß, the regulatory subunit of CK2, resulted in destabilization and decreased proliferation, similar to CX. Co-immunoprecipitation demonstrated that ERα66/36 show CK2 dependance for interaction with molecular chaperone HSP90. Our findings show that CK2 functions regulate the protein stability of ERα66 and ERα36 through a mechanism that is dependent on CK2ß subunit and HSP90 chaperone function. CX may be a component of a novel therapeutic strategy that targets both tamoxifen-sensitive and tamoxifen-resistant BCa, providing an additional tool to treat ERα-positive BCa.

6.
Bioorg Med Chem Lett ; 111: 129893, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39043265

ABSTRACT

Glucose-regulated protein 94 (Grp94) is an isoform of the heat shock protein 90 kDa (Hsp90) family of molecular chaperones. Inhibiting Grp94 has been implicated for many diseases. Co-crystal structures of two generations of Grp94 inhibitors revealed the importance of investigating the ester group, which is projected into the site 2 pocket unique to Grp94. Therefore, a series of KUNG65 benzamide analogs was designed and synthesized to evaluate their impact on the affinity and selectivity for Grp94. The data demonstrated that substituents with small and saturated ring systems that contain hydrogen bond acceptors exhibited increased affinity for Grp94, whereas larger saturated ring system manifested increased selectivity for Grp94 over Hsp90α.

7.
Subcell Biochem ; 104: 459-483, 2024.
Article in English | MEDLINE | ID: mdl-38963496

ABSTRACT

The mechanistic target of rapamycin (mTOR) is a master regulator of cell growth and metabolism, integrating environmental signals to regulate anabolic and catabolic processes, regulating lipid synthesis, growth factor-induced cell proliferation, cell survival, and migration. These activities are performed as part of two distinct complexes, mTORC1 and mTORC2, each with specific roles. mTORC1 and mTORC2 are elaborated dimeric structures formed by the interaction of mTOR with specific partners. mTOR functions only as part of these large complexes, but their assembly and activation require a dedicated and sophisticated chaperone system. mTOR folding and assembly are temporarily separated with the TELO2-TTI1-TTI2 (TTT) complex assisting the cotranslational folding of mTOR into a native conformation. Matured mTOR is then transferred to the R2TP complex for assembly of active mTORC1 and mTORC2 complexes. R2TP works in concert with the HSP90 chaperone to promote the incorporation of additional subunits to mTOR and dimerization. This review summarizes our current knowledge on how the HSP90-R2TP-TTT chaperone system facilitates the maturation and assembly of active mTORC1 and mTORC2 complexes, discussing interactions, structures, and mechanisms.


Subject(s)
HSP90 Heat-Shock Proteins , Molecular Chaperones , Humans , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/chemistry , Molecular Chaperones/metabolism , Molecular Chaperones/chemistry , Animals , TOR Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Multiprotein Complexes/metabolism , Multiprotein Complexes/chemistry , Signal Transduction
8.
Cells ; 13(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38994997

ABSTRACT

Extracellular HSP90α (eHSP90α) is a promoter of tumor development and malignant progression. Patients with malignancies, including pancreatic ductal adenocarcinoma (PDAC), have generally shown 5~10-fold increases in serum/plasma eHSP90α levels. In this study, we developed a humanized antibody HH01 to target eHSP90α and evaluated its anticancer efficacy. HH01, with novel complementarity-determining regions, exhibits high binding affinity toward HSP90α. It recognizes HSP90α epitope sites 235AEEKEDKEEE244 and 251ESEDKPEIED260, with critical amino acid residues E237, E239, D240, K241, E253, and K255. HH01 effectively suppressed eHSP90α-induced invasive and spheroid-forming activities of colorectal cancer and PDAC cell lines by blocking eHSP90α's ligation with the cell-surface receptor CD91. In mouse models, HH01 potently inhibited the tumor growth of PDAC cell grafts/xenografts promoted by endothelial-mesenchymal transition-derived cancer-associated fibroblasts while also reducing serum eHSP90α levels, reflecting its anticancer efficacy. HH01 also modulated tumor immunity by reducing M2 macrophages and reinvigorating immune T-cells. Additionally, HH01 showed low aggregation propensity, high water solubility, and a half-life time of >18 days in mouse blood. It was not cytotoxic to retinal pigmented epithelial cells and showed no obvious toxicity in mouse organs. Our data suggest that targeting eHSP90α with HH01 antibody can be a promising novel strategy for PDAC therapy.


Subject(s)
Antibodies, Monoclonal, Humanized , HSP90 Heat-Shock Proteins , Pancreatic Neoplasms , Humans , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Animals , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Mice , Cell Line, Tumor , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Cell Proliferation/drug effects , Epithelial-Mesenchymal Transition/drug effects , Xenograft Model Antitumor Assays , Adenocarcinoma/pathology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Endothelial-Mesenchymal Transition
9.
Med Oncol ; 41(8): 194, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958814

ABSTRACT

Neuroblastoma is a common nervous system tumor in childhood, and current treatments are not adequate. HSP90 is a molecular chaperone protein that plays a critical role in the regulation of cancer-related proteins. HSP90 inhibition may exert anticancer effects by targeting cancer-related processes such as tumor growth, cell proliferation, metastasis, and apoptosis. Therefore, HSP90 inhibition is a promising strategy in the treatment of various types of cancer, and the development of next-generation inhibitors could potentially lead to more effective and safer treatments. XL-888 and Debio0932 is a next-generation HSP90 inhibitor and can inhibit the correct folding and stabilization of client proteins that cancer-associated HSP90 helps to fold correctly. In this study, we aimed to investigate the comprehensive molecular pathways of the anticancer activity of XL-888 and Debio0932 in human neuroblastoma cells SH-SY5Y. The cytotoxic effects of XL-888 and Debio0932 on the neuroblastoma cell line SH-SY5Y cells were evaluated by MTT assay. Then, the effect of these HSP90 inhibitors on the expression of important genes in cancer was revealed by Quantitative Real Time Polymerase Chain Reaction (qRT-PCR) method. The qRT-PCR data were evaluated using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) biological process tools. Finally, the effect of HSP90 inhibitors on HSP27, HSP70 and HSP90 protein expression was investigated by Western blotting analysis. The results revealed that XL-888 and Debio0932 had a role in regulating many cancer-related pathways such as migration, invasion, metastasis, angiogenesis, and apoptosis in SH-SY5Y cells. In conclusion, it shows that HSP90 inhibitors can be considered as a promising candidate in the treatment of neuroblastoma and resistance to chemotherapy.


Subject(s)
Antineoplastic Agents , HSP90 Heat-Shock Proteins , Neuroblastoma , Humans , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Neuroblastoma/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects
10.
Mol Neurobiol ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995443

ABSTRACT

This study aims to explore the molecular mechanisms of miR-206-3p in regulating Hsp90aa1 and its involvement in the central nervous system (CNS) injury in heat stroke. Weighted gene co-expression network analysis (WGCNA) was performed on the GSE64778 dataset of heat stroke to identify module genes most closely associated with disease characteristics. Through the selection of key genes and predicting upstream miRNAs using RNAInter and miRWalk databases, the regulatory relationship between miR-206-3p and Hsp90aa1 was determined. Through in vitro experiments, various methods, including bioinformatics analysis, dual-luciferase reporter gene assay, RIP experiment, and RNA pull-down experiment, were utilized to validate this regulatory relationship. Furthermore, functional experiments, including CCK-8 assay to test neuron cell viability and flow cytometry to assess neuron apoptosis levels, confirmed the role of miR-206-3p. Transmission electron microscopy, real-time quantitative PCR, DCFH-DA staining, and ATP assay were employed to verify neuronal mitochondrial damage. Heat stroke rat models were constructed, and mNSS scoring and cresyl violet staining were utilized to assess neural functional impairment. Biochemical experiments were conducted to evaluate inflammation, brain water content, and histopathological changes in brain tissue using H&E staining. TUNEL staining was applied to detect neuronal apoptosis in brain tissue. RT-qPCR and Western blot were performed to measure gene and protein expression levels, further validating the regulatory relationship in vivo. Bioinformatics analysis indicated that miR-206-3p regulation of Hsp90aa1 may be involved in CNS injury in heat stroke. In vivo, animal experiments demonstrated that miR-206-3p and Hsp90aa1 co-localized in neurons of the rat hippocampal CA3 region, and with prolonged heat stress, the expression of miR-206-3p gradually increased while the expression of Hsp90aa1 gradually decreased. Further in vitro cellular mechanism validation and functional experiments confirmed that miR-206-3p could inhibit neuronal cell viability and promote apoptosis and mitochondrial damage by targeting Hsp90aa1. In vivo, experiments confirmed that miR-206-3p promotes CNS injury in heat stroke. This study revealed the regulatory relationship between miR-206-3p and Hsp90aa1, suggesting that miR-206-3p could regulate the expression of Hsp90aa1, inhibit neuronal cell viability, and promote apoptosis, thereby contributing to CNS injury in heat stroke.

11.
Microb Cell ; 11: 242-253, 2024.
Article in English | MEDLINE | ID: mdl-39040524

ABSTRACT

Various stress conditions, such as heat stress (HS) and oxidative stress, can cause biomolecular condensates represented by stress granules (SGs) via liquid-liquid phase separation. We have previously shown that Hsp90 forms aggregates in response to HS and that Hsp90 aggregates transiently co-localize with SGs as visualized by Pabp. Here, we showed that arsenite, one of the well-described SG-inducing stimuli, induces Hsp90 aggregates distinct from conventional SGs in fission yeast. Arsenite induced Hsp90 granules in a dose-dependent manner, and these granules were significantly diminished by the co-treatment with a ROS scavenger N-acetyl cysteine (NAC), indicating that ROS are required for the formation of Hsp90 granules upon arsenite stress. Notably, Hsp90 granules induced by arsenite do not overlap with conventional SGs as represented by eIF4G or Pabp, while HS-induced Hsp90 granules co-localize with SGs. Nrd1, an RNA-binding protein known as a HS-induced SG component, was recruited into Hsp90 aggregates but not to the conventional SGs upon arsenite stress. The non-phosphorylatable eIF2α mutants significantly delayed the Hsp90 granule formation upon arsenite treatment. Importantly, inhibition of Hsp90 by geldanamycin impaired the Hsp90 granule formation and reduced the arsenite tolerance. Collectively, arsenite stimulates two types of distinct aggregates, namely conventional SGs and a novel type of aggregates containing Hsp90 and Nrd1, wherein Hsp90 plays a role as a center for aggregation, and stress-specific compartmentalization of biomolecular condensates.

12.
Article in English | MEDLINE | ID: mdl-39046654

ABSTRACT

Our objective was to determine the role of acetyl-Hsp90 and its relationship with the NF-κB p65 signaling pathway in CVDs. We investigated the effect of acetyl-Hsp90 on cardiac inflammation and apoptosis after ischemia-reperfusion injury (I/RI). The results showed that the induction of acetyl-Hsp90 occurred in the heart during I/R and in primary cardiomyocytes during oxygen-glucose deprivation/reoxygenation (OGD/R). Moreover, the nonacetylated mutant of Hsp90 (Hsp90-K284R), through the regulation of ATPase activities within its N-terminal domain (NTD), indirectly or directly increases its interaction with NF-κB p65. This led to a reduction in the activation of the NF-κB p65 pathway, thereby attenuating inflammation, apoptosis, and fibrosis, ultimately leading to an improvement in cardiac function. Furthermore, we demonstrated that recombinant human interleukin-37 (rIL-37) exerts a similar cardioprotective effect by reducing acetylation at K284 of Hsp90 after inhibiting the expression of KAT2A.

13.
Adv Sci (Weinh) ; : e2400741, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992961

ABSTRACT

Myocardial infarction (MI) triggers a poor ventricular remodeling response, but the underlying mechanisms remain unclear. Here, the authors show that sentrin-specific protease 1 (SENP1) is downregulated in post-MI mice and in patients with severe heart failure. By generating cardiomyocyte-specific SENP1 knockout and overexpression mice to assess cardiac function and ventricular remodeling responses under physiological and pathological conditions. Increased cardiac fibrosis in the cardiomyocyte-specific SENP1 deletion mice, associated with increased fibronectin (Fn) expression and secretion in cardiomyocytes, promotes fibroblast activation in response to myocardial injury. Mechanistically, SENP1 deletion in mouse cardiomyocytes increases heat shock protein 90 alpha family class B member 1 (HSP90ab1) SUMOylation with (STAT3) activation and Fn secretion after ventricular remodeling initiated. Overexpression of SENP1 or mutation of the HSP90ab1 Lys72 ameliorates adverse ventricular remodeling and dysfunction after MI. Taken together, this study identifies SENP1 as a positive regulator of cardiac repair and a potential drug target for the treatment of MI. Inhibition of HSP90ab1 SUMOylation stabilizes STAT3 to inhibit the adverse ventricular remodeling response.

14.
Plant Cell Environ ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007522

ABSTRACT

Living organisms have the capacity to respond to environmental stimuli, including warm conditions. Upon sensing mild temperature, plants launch a transcriptional response that promotes morphological changes, globally known as thermomorphogenesis. This response is orchestrated by different hormonal networks and by the activity of different transcription factors, including the heat shock factor A1 (HSFA1) family. Members of this family interact with heat shock protein 70 (HSP70) and heat shock protein 90 (HSP90); however, the effect of this binding on the regulation of HSFA1 activity or of the role of cochaperones, such as the HSP70-HSP90 organizing protein (HOP) on HSFA1 regulation, remains unknown. Here, we show that AtHOPs are involved in the folding and stabilization of the HSFA1a and are required for the onset of the transcriptional response associated to thermomorphogenesis. Our results demonstrate that the three members of the AtHOP family bind in vivo to the HSFA1a and that the expression of multiple HSFA1a-responsive-responsive genes is altered in the hop1 hop2 hop3 mutant under warm temperature. Interestingly, HSFA1a is accumulated at lower levels in the hop1 hop2 hop3 mutant, while control levels are recovered in the presence of the proteasome inhibitor MG132 or the synthetic chaperone tauroursodeoxycholic acid (TUDCA). This uncovers the HSFA1a as a client of HOP complexes in plants and reveals the participation of HOPs in HSFA1a stability.

15.
Eur J Med Chem ; 276: 116664, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39018921

ABSTRACT

Colorectal cancer (CRC) has been becoming one of the most common causes of cancer mortality worldwide. Accumulating studies suggest that the progressive up-regulation of Wnt/ß-catenin signaling is a crucial hallmark of CRC, and suppressing it is a promising strategy to treat CRC. Herein, we reported our latest efforts in the discovery of novel fused tetrahydroisoquinoline derivatives with good anti-CRC activities by screening our in-house berberine-like library and further structure-activity relationship (SAR) studies, in which we identified compound 10 is a potent lead compound with significant antiproliferation potencies. By the biotinylated probe and LC-MS/MS study, Hsp90 was identified as its molecular target, which is a fully different mechanism of action from what we reported before. Further studies showed compound 10 directly engaged the N-terminal site of Hsp90 and promoted the degradation of ß-catenin, thereby suppressing the Wnt/ß-catenin signaling. More importantly, compound 10 exhibits favorable pharmacokinetic parameters and significant anti-tumor efficacies in the HCT116 xenograft model. Taken together, this study furnished the discovery of candidate drug compound 10 possessing a novel fused tetrahydroisoquinoline scaffold with excellent in vitro and in vivo anti-CRC activities by targeting Hsp90 to disturb Wnt/ß-catenin signaling pathway, which lay a foundation for discovering more effective CRC-targeted therapies.

16.
Comput Struct Biotechnol J ; 23: 2811-2836, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39045026

ABSTRACT

We developed a bio-cheminformatics method, exploring disease inhibition mechanisms using machine learning-enhanced quantitative structure-activity relationship (ML-QSAR) models and knowledge-driven neural networks. ML-QSAR models were developed using molecular fingerprint descriptors and the Random Forest algorithm to explore the chemical spaces of Chalcones inhibitors against diverse disease properties, including antifungal, anti-inflammatory, anticancer, antimicrobial, and antiviral effects. We generated and validated robust machine learning-based bioactivity prediction models (https://github.com/RatulChemoinformatics/QSAR) for the top genes. These models underwent ROC and applicability domain analysis, followed by molecular docking studies to elucidate the molecular mechanisms of the molecules. Through comprehensive neural network analysis, crucial genes such as AKT1, HSP90AA1, SRC, and STAT3 were identified. The PubChem fingerprint-based model revealed key descriptors: PubchemFP521 for AKT1, PubchemFP180 for SRC, PubchemFP633 for HSP90AA1, and PubchemFP145 and PubchemFP338 for STAT3, consistently contributing to bioactivity across targets. Notably, chalcone derivatives demonstrated significant bioactivity against target genes, with compound RA1 displaying a predictive pIC50 value of 5.76 against HSP90AA1 and strong binding affinities across other targets. Compounds RA5 to RA7 also exhibited high binding affinity scores comparable to or exceeding existing drugs. These findings emphasize the importance of knowledge-based neural network-based research for developing effective drugs against diverse disease properties. These interactions warrant further in vitro and in vivo investigations to elucidate their potential in rational drug design. The presented models provide valuable insights for inhibitor design and hold promise for drug development. Future research will prioritize investigating these molecules for mycobacterium tuberculosis, enhancing the comprehension of effectiveness in addressing infectious diseases.

17.
Front Cell Infect Microbiol ; 14: 1392564, 2024.
Article in English | MEDLINE | ID: mdl-38983116

ABSTRACT

Antifungal resistance and antifungal tolerance are two distinct terms that describe different cellular responses to drugs. Antifungal resistance describes the ability of a fungus to grow above the minimal inhibitory concentration (MIC) of a drug. Antifungal tolerance describes the ability of drug susceptible strains to grow slowly at inhibitory drug concentrations. Recent studies indicate antifungal resistance and tolerance have distinct evolutionary trajectories. Superficial candidiasis bothers millions of people yearly. Miconazole has been used for topical treatment of yeast infections for over 40 years. Yet, fungal resistance to miconazole remains relatively low. Here we found different clinical isolates of Candida albicans had different profile of tolerance to miconazole, and the tolerance was modulated by physiological factors including temperature and medium composition. Exposure of non-tolerant strains with different genetic backgrounds to miconazole mainly induced development of tolerance, not resistance, and the tolerance was mainly due to whole chromosomal or segmental amplification of chromosome R. The efflux gene CDR1 was required for maintenance of tolerance in wild type strains but not required for gain of aneuploidy-mediated tolerance. Heat shock protein Hsp90 and calcineurin were essential for maintenance as well as gain of tolerance. Our study indicates development of aneuploidy-mediated tolerance, not resistance, is the predominant mechanism of rapid adaptation to miconazole in C. albicans, and the clinical relevance of tolerance deserves further investigations.


Subject(s)
Aneuploidy , Antifungal Agents , Calcineurin , Candida albicans , Drug Resistance, Fungal , Fungal Proteins , HSP90 Heat-Shock Proteins , Miconazole , Microbial Sensitivity Tests , Miconazole/pharmacology , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/metabolism , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Antifungal Agents/pharmacology , Drug Resistance, Fungal/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Calcineurin/metabolism , Humans , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Candidiasis/microbiology , Candidiasis/drug therapy , Drug Tolerance
18.
Cancer ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985885

ABSTRACT

BACKGROUND: Pimitespib (TAS-116), a first-in-class, oral, selective heat-shock protein 90 inhibitor, is approved as fourth-line treatment for gastrointestinal stromal tumors in Japan. This phase 1 study evaluated the cardiac safety of pimitespib. METHODS: In this open-label, nonrandomized, multicenter study, Japanese patients (aged ≥20 years) with refractory, advanced solid tumors received placebo on day -1, then pimitespib 160 mg daily on days 1-5 of the cardiac safety evaluation period. Electrocardiograms were conducted at baseline, and on days -2, -1, 1, and 5; and blood samples were collected on days 1 and 5. Patients then received once-daily pimitespib for 5 days every 3 weeks. The primary end point was the time-matched difference in QT interval corrected for heart rate using the Fridericia correction (QTcF) between pimitespib and placebo. Pharmacokinetics, safety, and preliminary efficacy were also assessed. RESULTS: Of the 22 patients in the cardiac safety-evaluable population, no clinically relevant QTc prolongation was observed; the upper bound of the one-sided 95% confidence interval for the time-matched difference in change from baseline in QTcF was <20 msec at all time points on days 1 and 5. Pimitespib pharmacokinetic parameters were consistent with previous data, and the time-matched difference in change from baseline in QTcF showed no marked increase as plasma concentrations increased. The safety profile was acceptable; 40% of patients experienced grade 3 or greater adverse drug reactions, mostly diarrhea (20%). The median progression-free survival was 3.1 months. CONCLUSIONS: In Japanese patients with refractory, advanced solid tumors, pimitespib was not associated with clinically relevant QTc prolongation, and there were no cardiovascular safety concerns. PLAIN LANGUAGE SUMMARY: Pimitespib is a new anticancer drug that is being used to treat cancer in the stomach or intestines (gastrointestinal stromal tumors). This study demonstrated that pimitespib had no marked effect on heart rhythm or negative effects on the heart or blood vessels and had promising anticancer effects in Japanese patients with advanced solid tumors who were unable to tolerate or benefit from standard treatment.

19.
Heliyon ; 10(11): e32579, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38912441

ABSTRACT

Aims: Alveolar epithelial barrier integrity is essential for lung homeostasis. Na, K-ATPase ß1 subunit (ATP1B1) involves alveolar edema fluid clearance and alveolar epithelial barrier stability. However, the underlying molecular mechanism of ATP1B1 in alveolar epithelial cells still needs to be understood. Main methods: We utilized Co-Immunoprecipitation mass spectrometry proteomic analysis, protein-protein interaction (PPI) analysis, enrichment analysis, and parallel reaction monitoring (PRM) analysis to investigate proteins interacting with ATP1B1 in A549 cells. Key findings: A total of 159 proteins were identified as significant proteins interacting with ATP1B1 in A549 cells. Ribosomal and heat shock proteins were major constituents of the two main functional modules based on the PPI network. Enrichment analysis showed that significant proteins were involved in protein translation, posttranslational processing, and function regulation. Moreover, 10 proteins of interest were verified by PRM, and fold changes in 6 proteins were consistent with proteomics results. Finally, HSP90AB1, EIF4A1, TUBB4B, HSPA8, STAT1, and PLEC were considered candidates for binding to ATP1B1 to function in alveolar epithelial cells. Significance: Our study provides new insights into the role of ATP1B1 in alveolar epithelial cells and indicates that six proteins, in particular HSP90AB1, may be key proteins interacting with and regulating ATP1B1, which might be potential targets for the treatment of acute respiratory distress syndrome.

20.
World J Gastroenterol ; 30(21): 2793-2816, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38899332

ABSTRACT

BACKGROUND: Pancreatic cancer (PC) is associated with some of the worst prognoses of all major cancers. Thymoquinone (TQ) has a long history in traditional medical practice and is known for its anti-cancer, anti-inflammatory, anti-fibrosis and antioxidant pharmacological activities. Recent studies on hypoxia-inducible factor-1α (HIF-1α) and PC have shown that HIF-1α affects the occurrence and development of PC in many aspects. In addition, TQ could inhibit the development of renal cancer by decreasing the expression of HIF-1α. Therefore, we speculate whether TQ affects HIF-1α expression in PC cells and explore the mechanism. AIM: To elucidate the effect of TQ in PC cells and the regulatory mechanism of HIF-1α expression. METHODS: Cell counting kit-8 assay, Transwell assay and flow cytometry were performed to detect the effects of TQ on the proliferative activity, migration and invasion ability and apoptosis of PANC-1 cells and normal pancreatic duct epithelial (hTERT-HPNE) cells. Quantitative real-time polymerase chain reaction and western blot assay were performed to detect the expression of HIF-1α mRNA and protein in PC cells. The effects of TQ on the HIF-1α protein initial expression pathway and ubiquitination degradation in PANC-1 cells were examined by western blot assay and co-immunoprecipitation. RESULTS: TQ significantly inhibited proliferative activity, migration, and invasion ability and promoted apoptosis of PANC-1 cells; however, no significant effects on hTERT-HPNE cells were observed. TQ significantly reduced the mRNA and protein expression levels of HIF-1α in PANC-1, AsPC-1, and BxPC-3 cells. TQ significantly inhibited the expression of the HIF-1α initial expression pathway (PI3K/AKT/mTOR) related proteins, and promoted the ubiquitination degradation of the HIF-1α protein in PANC-1 cells. TQ had no effect on the hydroxylation and von Hippel Lindau protein mediated ubiquitination degradation of the HIF-1α protein but affected the stability of the HIF-1α protein by inhibiting the interaction between HIF-1α and HSP90, thus promoting its ubiquitination degradation. CONCLUSION: The regulatory mechanism of TQ on HIF-1α protein expression in PC cells was mainly to promote the ubiquitination degradation of the HIF-1α protein by inhibiting the interaction between HIF-1α and HSP90; Secondly, TQ reduced the initial expression of HIF-1α protein by inhibiting the PI3K/AKT/mTOR pathway.


Subject(s)
Apoptosis , Benzoquinones , Cell Movement , Cell Proliferation , HSP90 Heat-Shock Proteins , Hypoxia-Inducible Factor 1, alpha Subunit , Pancreatic Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Benzoquinones/pharmacology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , HSP90 Heat-Shock Proteins/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Signal Transduction/drug effects , Cell Proliferation/drug effects , Apoptosis/drug effects , Cell Movement/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Neoplasm Invasiveness
SELECTION OF CITATIONS
SEARCH DETAIL
...