Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Ecol Appl ; 34(2): e2919, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37688799

ABSTRACT

The practice of space-for-time substitution assumes that the responses of species or communities to land-use change over space represents how they will respond to that same change over time. Space-for-time substitution is commonly used in both ecology and conservation, but whether the assumption produces reliable insights remains inconclusive. Here, we tested space-for-time substitution using data from the North American Breeding Bird Survey (BBS) and Global Forest Change (GFC) to compare the effects of landscape-scale forest cover on bird richness and abundance over time and space, for 25 space-time comparisons. Each comparison consisted of a landscape that experienced at least 20% forest loss over 19 years (temporal site) and a set of 15-19 landscapes (spatial sites) that represented the same forest cover gradient over space in 2019 as experienced over time in their corresponding temporal site. Across the 25 comparisons, the observed responses of forest and open-habitat birds to forest cover over time generally aligned with their responses to forest cover over space, but with comparatively higher variability in the magnitude and direction of effect across the 25 temporal slopes than across the 25 spatial slopes. On average, the mean differences between the spatial and temporal slopes across the 25 space-time comparisons frequently overlapped with zero, suggesting that the spatial slopes are generally informative of the temporal slopes. However, we observed high variability around these mean differences, indicating that a single spatial slope is not strongly predictive of its corresponding temporal slope. We suggest that our results may be explained by annual variability in other relevant environmental factors that combine to produce complex effects on population abundances over time that are not easily captured by snapshots in space. While not being a 1:1 proxy, measuring bird responses to changes in habitat amount in space provides an idea on how birds might be expected to eventually equilibrate to similar changes in habitat amount over time. Further, analyses such as this could be potentially used to screen for cases of regional space-time mismatches where population-limiting factors other than habitat could be playing a more important role in the population trends observed there.


Subject(s)
Birds , Forests , Animals , Time Factors , Ecology
2.
Oecologia ; 203(1-2): 95-112, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37817053

ABSTRACT

The habitat amount hypothesis (HAH) stresses the importance of total patch amount over the size of individual patches in determining species richness within a local landscape. However, the absence of some species from patches too small to contain a territory would be inconsistent with the HAH. Using the association of territory size with body size and the circle as optimal territory shape, we tested several HAH predictions of threshold patch occupancy and richness of 19 guilds of primarily insectivorous breeding birds. We characterized 16 guild-associated patch types at high spatial resolution and assigned one type to each guild. We measured functional patch size as the largest circle that fit within each patch type occurring in a local landscape. Functional patch size was the sole or primary predictor in regression models of species richness for 15 of the 19 guilds. Total patch amount was the sole or primary variable in only 2 models. Quantifying patch size at high resolution also demonstrated that breeding birds should be absent from patches that are too small to contain a territory and larger species should occur only in larger patches. Functional patch size is a readily interpretable metric that helps explain the habitat basis for differences in species composition and richness between areas. It provides a tool to assess the combined effects of patch size, shape and perforation on threshold habitat availability, and with total patch amount can inform design and/or evaluation of conservation, restoration or enhancement options for focal taxa or biodiversity in general.


Subject(s)
Biodiversity , Ecosystem , Animals , Birds
3.
Animals (Basel) ; 13(16)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37627438

ABSTRACT

Predicting species' ecological responses to landcovers within landscapes could guide conservation practices. Current modelling efforts derived from classic species-area relationships almost always predict richness monotonically increasing as the proportion of landcovers increases. Yet evidence to explain hump-shaped richness-landcover patterns is lacking. We tested predictions related to hypothesised drivers of peaked relationships between richness and proportion of natural landcover. We estimated richness from breeding bird atlases at different spatial scales (25 to 900 km2) in New York State and Southern Ontario. We modelled richness to gradients of natural landcover, temperature, and landcover heterogeneity. We controlled models for sampling effort and regional size of the species pool. Species richness peaks as a function of the proportion of natural landcover consistently across spatial scales and geographic regions sharing similar biogeographic characteristics. Temperature plays a role, but peaked relationships are not entirely due to climate-landcover collinearities. Heterogeneity weakly explains richness variance in the models. Increased amounts of natural landcover promote species richness to a limit in landscapes with relatively little (<30%) natural cover. Higher amounts of natural cover and a certain amount of human-modified landcovers can provide habitats for species that prefer open habitats. Much of the variation in richness among landscapes must be related to variables other than natural versus human-dominated landcovers.

4.
Ecology ; 104(5): e4037, 2023 05.
Article in English | MEDLINE | ID: mdl-36942593

ABSTRACT

Habitat loss is often considered the greatest near-term threat to biodiversity, while the impact of habitat fragmentation remains intensely debated. A key issue of this debate centers on the problem of scale-landscape or patch-at which to assess the consequences of fragmentation. Yet patterns are often confounded across scales, and experimental designs that could solve this scaling problem remain scarce. We conducted two field experiments in 30 experimental landscapes in which we manipulated habitat loss, fragmentation, and patch size for a community of four insect herbivores that specialize on the cactus Opuntia. In the first experiment, we destroyed 2088 Opuntia patches in either aggregated or random patterns and compared the relative effects of landscape-scale loss and fragmentation to those of local patch size on species occurrence. This experiment focused on manipulating the relative separation of remaining patches, where we hypothesized that aggregated loss would disrupt dispersal more than random loss, leading to lower occurrence. In the second experiment, we destroyed 759 Opuntia patches to generate landscapes that varied in patch number and size for a given amount of habitat loss and assessed species occurrence. This experiment focused on manipulating the subdivision of remaining habitat, where we hypothesized that an increase in the number of patches for a given amount of loss would lead to negative effects on occurrence. For both, we expected that occurrence would increase with patch size. We find strong evidence for landscape-scale effects of habitat fragmentation, with aggregated loss and a larger number of patches for a given amount of habitat loss leading to a lower frequency of patches occupied in landscapes. In both experiments, occurrence increased with patch size, yet interactions of patch size and landscape-scale loss and fragmentation drove species occurrence in patches. Importantly, the direction of effects were consistent across scales and effects of patch size were sufficient to predict the effects of habitat loss and fragmentation across entire landscapes. Our experimental results suggest that changes at both the patch and landscape scales can impact populations, but that a long-standing pattern-the patch-size effect-captures much of the key variation shaping patterns of species occurrence.


Subject(s)
Biodiversity , Ecosystem
5.
Mol Ecol ; 32(4): 951-969, 2023 02.
Article in English | MEDLINE | ID: mdl-36461661

ABSTRACT

While ecologists agree that habitat loss has a substantial negative effect on biodiversity it is still very much a matter of debate whether habitat fragmentation has a lesser effect and whether this effect is positive or negative for biodiversity. Here, we assess the relative influence of tropical forest loss and fragmentation on the prevalence of vector-borne blood parasites of the genera Plasmodium and Haemoproteus in six forest bird species. We also determine whether habitat loss and fragmentation are associated with a rise or fall in prevalence. We sample more than 4000 individual birds from 58 forest sites in Guadeloupe and Martinique. Considering 34 host-parasite combinations independently and a fine characterization of the amount and spatial configuration of habitat, we use partial least square regressions to disentangle the relative effects of forest loss, forest fragmentation, landscape heterogeneity, and local weather conditions on spatial variability of parasite prevalence. Then we test for the magnitude and the sign of the effect of each environmental descriptor. Strikingly, we show that forest fragmentation explains twice as much of the variance in prevalence as habitat loss or landscape heterogeneity. In addition, habitat fragmentation leads to an overall rise in prevalence in Guadeloupe, but its effect is variable in Martinique. Both habitat loss and landscape heterogeneity exhibit taxon-specific effects. Our results suggest that habitat loss and fragmentation may have contrasting effects between tropical and temperate regions and that inter-specific interactions may not respond in the same way as more commonly used biodiversity metrics such as abundance and diversity.


Subject(s)
Ecosystem , Host-Parasite Interactions , Animals , Forests , Biodiversity , Birds/parasitology
6.
Rev. biol. trop ; 70(1)dic. 2022.
Article in English | LILACS, SaludCR | ID: biblio-1407238

ABSTRACT

Abstract Introduction: The effects of habitat transformation have been widely studied and the effects are well-known at different levels of biological organization. However, few studies have focused on responses to this process at the level of multiple taxa in diverse taxonomic and functional groups. Objective: Determine the variations in taxonomic and functional diversity of ants, butterflies, and dung beetles, at a spatial and temporal level in a landscape mosaic of the ecoregion of the Colombian foothills. Methods: We assessed amount of natural habitat and landscape composition in four types of vegetation, during the highest and lowest rain periods. We collected butterflies with hand nets and used baited pitfall traps for dung beetles and ants. Results: Habitat loss positively affected ant and butterfly species richness, and negatively affected dung beetles. The abundance of ants and butterflies had a positive effect on the dominance of species in the transformed vegetation, for dung beetles the abundance was negatively affected by the absence of canopy cover. Habitat loss had no negative effect on functional diversity as there is no difference between natural and transformed vegetation. Conclusions: The amount of habitat, habitat connectivity and different types of vegetation cover were important factors in the maintenance of insect diversity in the modified ecosystems of foothills of the Colombian Orinoquia. The lack of a common spatial and temporal pattern shows that studies of multiple insect taxa should be carried out for biodiversity monitoring and conservation processes.


Resumen Introducción: Los efectos de la transformación del hábitat han sido ampliamente estudiados y son bien conocidos los efectos a diferentes niveles de organización biológica. Sin embargo, pocos estudios se han centrado en las respuestas a este proceso a nivel de múltiples taxones en diversos grupos taxonómicos y funcionales. Objetivo: Determinar las variaciones en la diversidad taxonómica y funcional de hormigas, mariposas y escarabajos coprófagos, a nivel espacial y temporal en un mosaico paisajístico de la ecorregión del piedemonte colombiano. Métodos: Evaluamos la cantidad de hábitat natural y la composición del paisaje en cuatro tipos de vegetación, durante los períodos de mayor y menor lluvia. Recolectamos mariposas con redes de mano y usamos trampas de caída con cebo para escarabajos coprófagos y hormigas. Resultados: La pérdida de hábitat afectó positivamente la riqueza de especies de hormigas y mariposas y afectó negativamente a los escarabajos peloteros. La abundancia de hormigas y mariposas tuvo un efecto positivo sobre la dominancia de especies en la vegetación transformada, para los escarabajos coprófagos la abundancia se vio afectada negativamente por la ausencia de cobertura de dosel. La pérdida de hábitat no tuvo un efecto negativo sobre la diversidad funcional ya que no hay diferencia entre la vegetación natural y la transformada. Conclusiones: La cantidad de hábitat, la conectividad del hábitat y los diferentes tipos de cobertura vegetal fueron factores importantes en el mantenimiento de la diversidad de insectos en los ecosistemas modificados del piedemonte de la Orinoquia colombiana. La falta de un patrón espacial y temporal común muestra que se deben realizar estudios de múltiples taxones de insectos para los procesos de monitoreo y conservación de la biodiversidad.


Subject(s)
Animals , Ants , Coleoptera , Ecosystem , Moths , Colombia
7.
Ecol Appl ; 32(1): e02476, 2022 01.
Article in English | MEDLINE | ID: mdl-34653282

ABSTRACT

Understanding the factors and mechanisms shaping differences in species composition across space and time (ß-diversity) in human-modified landscapes has key ecological and applied implications. This topic is, however, challenging because landscape disturbance can promote either decreases (biotic homogenization) or increases (biotic differentiation) in ß-diversity. We assessed temporal differences in intersite ß-diversity of medium-bodied and large-bodied mammals in the fragmented Lacandona rainforest, Mexico. We hypothesized that, given the relatively short history of land-use changes in the region, and the gain and loss of some species caused by landscape spatial changes, ß-diversity would increase through time, especially its nestedness component. We estimated ß-diversity between 24 forest sites (22 forest patches and two continuous forest sites) in 2011 and 2017 to assess whether ß-diversity is decreasing or increasing in the region, and calculated its turnover and nestedness components to understand the mechanisms responsible for changes in ß-diversity, separately assessing mammal groups with different body mass, feeding guild, and habitat specialization. We then related such temporal changes in ß-diversity to temporal changes in five landscape variables (forest cover, matrix openness, number of patches, edge density and interpatch distance) to identify the landscape drivers of ß-diversity. In contrast with our expectations, ß-diversity decreased over time, suggesting an ongoing biotic homogenization process. This pattern was mostly driven by a decrease in species turnover in all mammal groups, especially in landscapes with decreasing forest cover and increasing forested matrices. Although the nestedness component showed a three-fold increase through time, species turnover was 22 and six times higher than nestedness in 2011 and 2017, respectively. The decreased turnover appears to be driven by an increase in dispersal (i.e., spillover) of native species among patches. The prevalence of species turnover over nestedness indicates that different forest sites have a fairly distinct subset of species (i.e., high complementarity in species composition). Therefore, conserving all remaining forest patches and increasing forest cover is of utmost importance to effectively maintain ß-diversity and conserve the total diversity (γ) of mammal assemblages in this Mesoamerican biodiversity hotspot.


Subject(s)
Biodiversity , Mammals , Rainforest , Animals , Ecosystem , Forests
8.
Ecol Lett ; 24(5): 950-957, 2021 May.
Article in English | MEDLINE | ID: mdl-33694308

ABSTRACT

Habitat fragmentation may present a major impediment to species range shifts caused by climate change, but how it affects local community dynamics in a changing climate has so far not been adequately investigated empirically. Using long-term monitoring data of butterfly assemblages, we tested the effects of the amount and distribution of semi-natural habitat (SNH), moderated by species traits, on climate-driven species turnover. We found that spatially dispersed SNH favoured the colonisation of warm-adapted and mobile species. In contrast, extinction risk of cold-adapted species increased in dispersed (as opposed to aggregated) habitats and when the amount of SNH was low. Strengthening habitat networks by maintaining or creating stepping-stone patches could thus allow warm-adapted species to expand their range, while increasing the area of natural habitat and its spatial cohesion may be important to aid the local persistence of species threatened by a warming climate.


Subject(s)
Butterflies , Climate Change , Adaptation, Physiological , Animals , Ecosystem , Population Dynamics
9.
Ecol Lett ; 24(5): 1114-1116, 2021 May.
Article in English | MEDLINE | ID: mdl-33538034

ABSTRACT

Banks-Leite et al. (2021) claim that our suggestion of preserving ≥ 40% forest cover lacks evidence and can be problematic. We find these claims unfounded, and discuss why conservation planning urgently requires valuable, well-supported and feasible general guidelines like the 40% criterion. Using region-specific thresholds worldwide is unfeasible and potentially harmful.


Subject(s)
Conservation of Natural Resources , Forests , Ecosystem
10.
Ecol Lett ; 23(9): 1404-1420, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32537896

ABSTRACT

Agriculture and development transform forest ecosystems to human-modified landscapes. Decades of research in ecology have generated myriad concepts for the appropriate management of these landscapes. Yet, these concepts are often contradictory and apply at different spatial scales, making the design of biodiversity-friendly landscapes challenging. Here, we combine concepts with empirical support to design optimal landscape scenarios for forest-dwelling species. The supported concepts indicate that appropriately sized landscapes should contain ≥ 40% forest cover, although higher percentages are likely needed in the tropics. Forest cover should be configured with c. 10% in a very large forest patch, and the remaining 30% in many evenly dispersed smaller patches and semi-natural treed elements (e.g. vegetation corridors). Importantly, the patches should be embedded in a high-quality matrix. The proposed landscape scenarios represent an optimal compromise between delivery of goods and services to humans and preserving most forest wildlife, and can therefore guide forest preservation and restoration strategies.


Subject(s)
Conservation of Natural Resources , Ecosystem , Biodiversity , Forests , Humans , Trees
11.
Ecol Lett ; 23(4): 674-681, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32043741

ABSTRACT

Decades of research suggest that species richness depends on spatial characteristics of habitat patches, especially their size and isolation. In contrast, the habitat amount hypothesis predicts that (1) species richness in plots of fixed size (species density) is more strongly and positively related to the amount of habitat around the plot than to patch size or isolation; (2) habitat amount better predicts species density than patch size and isolation combined, (3) there is no effect of habitat fragmentation per se on species density and (4) patch size and isolation effects do not become stronger with declining habitat amount. Data on eight taxonomic groups from 35 studies around the world support these predictions. Conserving species density requires minimising habitat loss, irrespective of the configuration of the patches in which that habitat is contained.


Subject(s)
Ecosystem
12.
Ecol Evol ; 9(24): 14005-14014, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31938498

ABSTRACT

Studies of impacts of fragmentation have focused heavily on measures of species presence or absence in fragments, or species richness in relation to fragmentation, but have often not considered the effects of fragmentation on ranging behavior of individual species. Effective management will benefit from knowledge of the effects of fragmentation on space use by species.We investigated how a woodland specialist, the eastern bettong (Bettongia gaimardi), responded to fragmentation in an agricultural landscape, the Midlands region of Tasmania, Australia. We tested whether individual bettongs could adjust home range size to maintain access to essential habitat across three sites differing in degree of fragmentation.We used GPS tracking to measure the home ranges of individual bettongs. Our models tested the effects of habitat aggregation and habitat amount measured at two radii comparable to a typical core range (250 m) and a typical home range (750 m), and habitat quality and sex on individual home range. We also tested the relationship between fragmentation on woodland used to determine whether individuals could compensate for fragmentation.Depending on the spatial scale of fragmentation measured, bettongs altered their movement to meet their habitat requirements. Our top model suggested that at the core range scale, individuals had smaller ranges when habitat is more aggregated. The second model showed support for habitat amount at the core range, suggesting individuals can occupy larger areas when there is a higher amount of habitat, regardless of configuration.Species that are relatively mobile may be able to compensate for the effects of habitat fragmentation by altering their movement. We highlight that any patch size is of value within a home range and management efforts should focus on maintaining sufficient habitat especially at the core range scale.

13.
Ecology ; 99(10): 2176-2186, 2018 10.
Article in English | MEDLINE | ID: mdl-30112822

ABSTRACT

Habitat loss is often considered the greatest near-term threat to biodiversity. Yet the impact of habitat fragmentation, or the change in habitat configuration for a given amount of habitat loss, has been intensely debated. We isolated effects of habitat loss from fragmentation on the demography, movement, and abundance of wild populations of a specialist herbivore, Chelinidea vittiger, by removing 2,088 patches across 15 landscapes. We compared fragmentation resulting from random loss, which is often considered in theory, to aggregated loss, which is often observed in the real world. When quantifying fragmentation caused by random vs. aggregated loss, aggregated loss led to less fragmented landscapes than random loss based on patch isolation, but more fragmented landscapes when based on isolation at a larger mesoscale scale defined by dispersal distances of C. vittiger. Overall, habitat loss decreased population size and demographic parameters, with thresholds occurring at approximately 70-80% patch loss. Synergistic effects also occurred, where an aggregated pattern of loss had negative effects at low, but not high, amounts of habitat loss. Effects on population size of C. vittiger were driven by reductions in movement and subsequent reproduction. The direction of habitat fragmentation effects from random and aggregated loss treatments, for a given habitat amount, was conflictingly positive or negative depending on the scale at which fragmentation was quantified. Fragmentation quantified at the scale of dispersal for this species best explained population size and highlighted that fragmentation had negative effects at a mesoscale. Our results emphasize the importance of quantifying habitat fragmentation at biologically appropriate scales.


Subject(s)
Biodiversity , Ecosystem , Demography , Population Density , Reproduction
14.
Ecology ; 99(8): 1857-1865, 2018 08.
Article in English | MEDLINE | ID: mdl-29846000

ABSTRACT

Variation in habitat quality and quantity drive selection on dispersal traits in heterogeneous environments, but the extent to which environmental conditions predict geographic variation in dispersal is rarely evaluated. We assessed dispersal trait variation across the range of Cakile edentula var. lacustris, an annual herb that occupies beaches of the Great Lakes. Cakile edentula has dimorphic fruits that each contain one dispersive and one non-dispersive seed. Previous work showed that plant height, branching density, and dispersive fruit wing-loading can determine the distance that seeds disperse locally by wind, while pericarp thickness influences the distance they disperse by water. We tested if these traits vary predictably with latitude across the species' geographic range, and if variation in dispersal characteristics can be predicted by the quality and quantity of habitat available at a site. We observed that the dispersive fruits from northern and southern populations had thinner pericarps than those from the interior of the species' range, reflecting reduced long-distance dispersal by water at both range limits. Plants at the northern range limit were shorter with less dense branching and lower wing-loading than populations elsewhere in the range, suggesting that these populations have enhanced local wind dispersal. In contrast, southern populations exhibited traits with inconsistent effects on wind dispersal: plants tended to be short, which facilitates wind dispersal in C. edentula, but also had relatively higher branching density and distal segment wing-loading that reduce wind dispersal. Geographic variation in maternal plant height and branching density was partially explained by variation in habitat quality, which declined at the species' range limits. In addition, population differences in branching density, fruit wing-loading, and pericarp thickness were predicted by the abundance and distribution of beach habitat. Finally, a common garden analysis recovered latitudinal patterns for the dispersal traits associated with fruits, but not those associated with maternal architecture. Thus, the geographic patterns of dispersal trait variation that we observed likely reflect responses to past selection by the distribution, abundance, and quality of habitat, strong plasticity in dispersal traits, and the effects dispersal itself has in shaping local adaptation by driving gene flow among populations.


Subject(s)
Brassicaceae , Ecosystem , Animals , Seeds
15.
Conserv Biol ; 32(3): 535-545, 2018 06.
Article in English | MEDLINE | ID: mdl-29388249

ABSTRACT

Limited knowledge of dispersal for most organisms hampers effective connectivity conservation in fragmented landscapes. In forest ecosystems, deadwood-dependent organisms (i.e., saproxylics) are negatively affected by forest management and degradation globally. We reviewed empirically established dispersal ecology of saproxylic insects and fungi. We focused on direct studies (e.g., mark-recapture, radiotelemetry), field experiments, and population genetic analyses. We found 2 somewhat opposite results. Based on direct methods and experiments, dispersal is limited to within a few kilometers, whereas genetic studies showed little genetic structure over tens of kilometers, which indicates long-distance dispersal. The extent of direct dispersal studies and field experiments was small and thus these studies could not have detected long-distance dispersal. Particularly for fungi, more studies at management-relevant scales (1-10 km) are needed. Genetic researchers used outdated markers, investigated few loci, and faced the inherent difficulties of inferring dispersal from genetic population structure. Although there were systematic and species-specific differences in dispersal ability (fungi are better dispersers than insects), it seems that for both groups colonization and establishment, not dispersal per se, are limiting their occurrence at management-relevant scales. Because most studies were on forest landscapes in Europe, particularly the boreal region, more data are needed from nonforested landscapes in which fragmentation effects are likely to be more pronounced. Given the potential for long-distance dispersal and the logical necessity of habitat area being a more fundamental landscape attribute than the spatial arrangement of habitat patches (i.e., connectivity sensu strict), retaining high-quality deadwood habitat is more important for saproxylic insects and fungi than explicit connectivity conservation in many cases.


Subject(s)
Conservation of Natural Resources , Ecosystem , Ecology , Europe , Forests
16.
Oecologia ; 186(1): 11-27, 2018 01.
Article in English | MEDLINE | ID: mdl-29170820

ABSTRACT

Since the publication of the theory of island biogeography, ecologists have postulated that fragmentation of continuous habitat presents a prominent threat to species diversity. However, negative fragmentation effects may be artifacts; the result of species diversity declining with habitat loss, and habitat loss correlating positively with degree of fragmentation. In this study, we used butterfly assemblages on islands of Lake of the Woods, Ontario, Canada to decouple habitat fragmentation from habitat loss and test two competing hypotheses: (1) the island effect hypothesis, which predicts that decreasing fragment size and increasing fragment isolation reduces species diversity beyond the effects of habitat loss, and (2) the habitat amount hypothesis, which negates fragmentation effects and predicts that only total habitat area determines the diversity of species persisting on fragmented landscapes. Using eight independent size classes of islands (ranging from 0.1 to 8.0 ha) that varied in number of islands while holding total area constant, species diversity comparisons, species accumulation curves, and species-area relationship extrapolations demonstrated that smaller insular habitats contained at least as many butterfly species as continuous habitat. However, when highly mobile species occurring on islands without their larval food plants were excluded from analyses, island effects on potentially reproducing species became apparent. Similarily, generalized linear models suggested that effects of island isolation and vascular plant richness on insular butterfly richness were confounded by species of high mobility. We conclude that inter-fragment movements of highly mobile species may obscure important fragmentation effects on potentially reproducing populations, questioning support for the habitat amount hypothesis.


Subject(s)
Butterflies , Animals , Ecosystem , Lakes , Ontario , Wood
17.
Glob Chang Biol ; 24(2): 597-607, 2018 02.
Article in English | MEDLINE | ID: mdl-29095549

ABSTRACT

Despite the general recognition that fragmentation can reduce forest biomass through edge effects, a systematic review of the literature does not reveal a clear role of edges in modulating biomass loss. Additionally, the edge effects appear to be constrained by matrix type, suggesting that landscape composition has an influence on biomass stocks. The lack of empirical evidence of pervasive edge-related biomass losses across tropical forests highlights the necessity for a general framework linking landscape structure with aboveground biomass. Here, we propose a conceptual model in which landscape composition and configuration mediate the magnitude of edge effects and seed-flux among forest patches, which ultimately has an influence on biomass. Our model hypothesizes that a rapid reduction of biomass can occur below a threshold of forest cover loss. Just below this threshold, we predict that changes in landscape configuration can strongly influence the patch's isolation, thus enhancing biomass loss. Moreover, we expect a synergism between landscape composition and patch attributes, where matrix type mediates the effects of edges on species decline, particularly for shade-tolerant species. To test our conceptual framework, we propose a sampling protocol where the effects of edges, forest amount, forest isolation, fragment size, and matrix type on biomass stocks can be assessed both collectively and individually. The proposed model unifies the combined effects of landscape and patch structure on biomass into a single framework, providing a new set of main drivers of biomass loss in human-modified landscapes. We argue that carbon trading agendas (e.g., REDD+) and carbon-conservation initiatives must go beyond the effects of forest loss and edges on biomass, considering the whole set of effects on biomass related to changes in landscape composition and configuration.


Subject(s)
Biomass , Conservation of Natural Resources/methods , Forests , Carbon , Models, Biological , Trees
18.
Proc Biol Sci ; 284(1858)2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28679731

ABSTRACT

In spatially structured populations, distributional dynamics are driven by the quantity, connectivity and quality of habitat. Because these drivers are rarely measured directly and simultaneously at relevant scales, information on their relative importance remains unclear. I assessed the influence of both direct and indirect measures of local habitat quality, and of landscape habitat amount and connectivity on long-term territory occupancy dynamics of non-migratory pygmy owls. Direct measures of local habitat quality based on territory-specific reproductive output had greater effects on distribution than landscape factors, but only when spatio-temporal fluxes in performance linked to environmental stochasticity and intraspecific competition were considered. When habitat quality was measured indirectly based on habitat structure, however, landscape factors had greater effects. Although all landscape factors were important, measures of landscape connectivity that were uncorrelated with habitat amount and based on attributes of matrix structure and habitat configuration that influence dispersal movements had greater effects than habitat effective area (amount weighted by quality). Moreover, the influence of connectivity (but not habitat effective area) depended on local habitat quality. Such results suggest the relative importance of local habitat quality in driving distribution has been underestimated and that conservation strategies should vary spatially depending on both local and landscape contexts.


Subject(s)
Ecosystem , Environment , Strigiformes , Animals , Conservation of Natural Resources , Population Dynamics , Spatio-Temporal Analysis
19.
Ecology ; 98(6): 1613-1622, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28317111

ABSTRACT

The habitat-amount hypothesis challenges traditional concepts that explain species richness within habitats, such as the habitat-patch hypothesis, where species number is a function of patch size and patch isolation. It posits that effects of patch size and patch isolation are driven by effects of sample area, and thus that the number of species at a site is basically a function of the total habitat amount surrounding this site. We tested the habitat-amount hypothesis for saproxylic beetles and their habitat of dead wood by using an experiment comprising 190 plots with manipulated patch sizes situated in a forested region with a high variation in habitat amount (i.e., density of dead trees in the surrounding landscape). Although dead wood is a spatio-temporally dynamic habitat, saproxylic insects have life cycles shorter than the time needed for habitat turnover and they closely track their resource. Patch size was manipulated by adding various amounts of downed dead wood to the plots (~800 m³ in total); dead trees in the surrounding landscape (~240 km2 ) were identified using airborne laser scanning (light detection and ranging). Over 3 yr, 477 saproxylic species (101,416 individuals) were recorded. Considering 20-1,000 m radii around the patches, local landscapes were identified as having a radius of 40-120 m. Both patch size and habitat amount in the local landscapes independently affected species numbers without a significant interaction effect, hence refuting the island effect. Species accumulation curves relative to cumulative patch size were not consistent with either the habitat-patch hypothesis or the habitat-amount hypothesis: several small dead-wood patches held more species than a single large patch with an amount of dead wood equal to the sum of that of the small patches. Our results indicate that conservation of saproxylic beetles in forested regions should primarily focus on increasing the overall amount of dead wood without considering its spatial arrangement. This means dead wood should be added wherever possible including in local landscapes with low or high dead-wood amounts. For species that have disappeared from most forests owing to anthropogenic habitat degradation, this should, however, be complemented by specific conservation measures pursued within their extant distributional ranges.


Subject(s)
Coleoptera/physiology , Forests , Animals , Ecosystem , Trees , Wood
20.
Environ Monit Assess ; 189(3): 126, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28238172

ABSTRACT

Land use change-mostly habitat loss and fragmentation-has been recognized as one of the major drivers of biodiversity loss worldwide. According to the habitat amount hypothesis, these phenomena are mostly driven by the habitat area effect. As a result, species richness is a function of both the extent of suitable habitats and their availability in the surrounding landscape, irrespective of the dimension and isolation of patches of suitable habitat. In this context, we tested how the extent of natural areas, selected as proxies of suitable habitats for biodiversity, influences species richness in highly anthropogenic landscapes. We defined five circular sampling areas of 5 km radius, including both natural reserves and anthropogenic land uses, centred in five major industrial sites in France, Italy and Germany. We monitored different biodiversity indicators for both terrestrial and aquatic ecosystems, including breeding birds, diurnal butterflies, grassland vegetation, odonata, amphibians, aquatic plants and benthic diatoms. We studied the response of the different indicators to the extent of natural land uses in the sampling area (local effect) and in the surrounding landscape (landscape effect), identified as a peripheral ring encircling the sampling area. Results showed a positive response of five out of seven biodiversity indicators, with aquatic plants and odonata responding positively to the local effect, while birds, vegetation and diatoms showed a positive response to the landscape effect. Diatoms also showed a significant combined response to both effects. We conclude that surrounding landscapes act as important biodiversity sources, increasing the local biodiversity in highly anthropogenic contexts.


Subject(s)
Biodiversity , Conservation of Natural Resources/methods , Ecosystem , Environmental Monitoring/methods , Animals , Birds , Butterflies , France , Germany , Grassland , Italy , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...