Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 766
Filter
1.
Epigenomes ; 8(3)2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39189257

ABSTRACT

We examined whether prenatal exposure to two classes of endocrine-disrupting chemicals (EDCs) was associated with infant epigenetic age acceleration (EAA), a DNA methylation biomarker of aging. Participants included 224 maternal-infant pairs from a Canadian pregnancy cohort study. Two bisphenols and 12 phthalate metabolites were measured in maternal second trimester urines. Buccal epithelial cell cheek swabs were collected from 3 month old infants and DNA methylation was profiled using the Infinium MethylationEPIC BeadChip. The Pediatric-Buccal-Epigenetic tool was used to estimate EAA. Sex-stratified robust regressions examined individual chemical associations with EAA, and Bayesian kernel machine regression (BKMR) examined chemical mixture effects. Adjusted robust models showed that in female infants, prenatal exposure to total bisphenol A (BPA) was positively associated with EAA (B = 0.72, 95% CI: 0.21, 1.24), and multiple phthalate metabolites were inversely associated with EAA (Bs from -0.36 to -0.66, 95% CIs from -1.28 to -0.02). BKMR showed that prenatal BPA was the most important chemical in the mixture and was positively associated with EAA in both sexes. No overall chemical mixture effects or male-specific associations were noted. These findings indicate that prenatal EDC exposures are associated with sex-specific deviations in biological aging, which may have lasting implications for child health and development.

3.
Antioxidants (Basel) ; 13(8)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39199190

ABSTRACT

Pregnant women with chronic kidney disease (CKD) face increased risks of adverse outcomes in their adult offspring. Offspring rats born to dams fed an adenine diet develop hypertension, coinciding with dysregulated hydrogen sulfide (H2S) and nitric oxide (NO) pathways, as well as alterations in gut microbiota. Chondroitin sulfate (CS) is a multifunctional food known for its diverse bioactivities. As a sulfate prebiotic, CS has shown therapeutic potential in various diseases. Here, we investigated the protective effects of maternal CS supplementation against hypertension in offspring induced by an adenine diet. Mother rats were administered regular chow, 0.5% adenine, 3% CS, or a combination throughout gestation and lactation. Maternal CS supplementation effectively protected offspring from hypertension induced by the adenine diet. These beneficial effects of CS were connected with increased renal mRNA and protein levels of 3-mercaptopyruvate sulfurtransferase, an enzyme involved in H2S production. Furthermore, maternal CS treatment significantly enhanced alpha diversity and altered beta diversity of gut microbiota in adult offspring. Specifically, perinatal CS treatment promoted the abundance of beneficial microbes such as Roseburia hominis and Ruminococcus gauvreauii. In conclusion, perinatal CS treatment mitigates offspring hypertension associated with maternal adenine diet, suggesting that early administration of sulfate prebiotics may hold preventive potential. These findings warrant further translational research to explore their clinical implications.

4.
Soc Sci Med ; 358: 117251, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39190943

ABSTRACT

The use of medicinal plants in traditional healing practices is essential to Tanzanian and African health care. This paper examined the African traditional healing tendencies, particularly the Sukuma tribe of Tanzania, from 1922 to the 1960s. Several types of research challenged traditional healing tendencies' role in the health sector. They claimed that traditional healing has no scientific evidence or methodology and is inefficient. This paper comprises three objectives: the evolution of traditional healing practices among the Sukuma; the traditional healers' conceptualization and adaptation of social, economic, and ecological changes; and the challenges faced by the traditional healers. The study was conducted in Mwamapalala and Mwalushu Wards where Mwamunhu and Mwamigagani represented as sampled villages in Bariadi District. It used both qualitative and quantitative approaches that involved an interpretive, naturalistic approach to its subject matter. Archival materials were also used. The findings reveal that the traditional healers understood the nature of traditional healing in the pre-colonial period. Before colonial domination, all people in the region depended on the traditional medicines obtained from flora and fauna. Their ancestors were diviners, and few were herbalists. The paper concludes that the current healing practice in Tanzania results from the political transition from the colonial period to the independence era. Most people conceptualize that the government had neither effectively accepted the field of traditional medicine nor given the healers any support to sustain their activities. More often, traditional healers have been ignored by the government, and it has been claimed that traditional healing practices instigated violence and, therefore, threaten society.

5.
Sci Rep ; 14(1): 15841, 2024 07 09.
Article in English | MEDLINE | ID: mdl-38982178

ABSTRACT

Intense psychosocial stress during early life has a detrimental effect on health-disease balance in later life. Simultaneously, despite its sensitivity to stress, the developing microbiome contributes to long-term health. Following stress exposure, HPA-axis activation regulates the "fight or flight" response with the release of glucose and cortisol. Here, we investigated the interaction between the oral microbiome and the stress response. We used a cohort of 115 adults, mean age 24, who either experienced institutionalisation and adoption (n = 40) or were non-adopted controls (n = 75). Glucose and cortisol measurements were taken from participants following an extended socially evaluated cold pressor test (seCPT) at multiple time points. The cohort´s oral microbiome was profiled via 16S-V4 sequencing on microbial DNA from saliva and buccal samples. Using mixed-effect linear regressions, we identified 12 genera that exhibited an interaction with host's cortisol-glucose response to stress, strongly influencing intensity and clearance of cortisol and glucose following stress exposure. Particularly, the identified taxa influenced the glucose and cortisol release profiles and kinetics following seCPT exposure. In conclusion, our study provided evidence for the oral microbiome modifying the effect of stress on the HPA-axis and human metabolism, as shown in glucose-cortisol time series data.


Subject(s)
Hydrocortisone , Hypothalamo-Hypophyseal System , Microbiota , Pituitary-Adrenal System , Saliva , Stress, Psychological , Humans , Hypothalamo-Hypophyseal System/metabolism , Stress, Psychological/microbiology , Stress, Psychological/metabolism , Hydrocortisone/metabolism , Hydrocortisone/analysis , Male , Female , Adult , Pituitary-Adrenal System/metabolism , Saliva/microbiology , Saliva/metabolism , Young Adult , Mouth/microbiology , Glucose/metabolism
7.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000532

ABSTRACT

We hypothesized and investigated whether prenatal exposure to preeclampsia (PE) would simultaneously affect perinatal cardiovascular features and angiotensin system expressions. This prospective study was composed of mother-neonate dyads with (n = 49) and without maternal preeclampsia (n = 48) in a single tertiary medical center. The neonates exposed to PE had significantly larger relative sizes for the left and right coronary arteries and a higher cord plasma level of aminopeptidase-N, which positively correlated with the maternal diastolic blood pressures and determined the relative sizes of the left and right coronary arteries, whereas the encoding aminopeptidase-N (ANPEP) mRNA level in the PE cord blood leukocytes was significantly decreased, positively correlated with the neonatal systolic blood pressures (SBPs), and negatively correlated with the cord plasma-induced endothelial vascular cell adhesion molecule-1 mRNA levels. The PE cord plasma significantly induced higher endothelial mRNA levels of angiotensin II type 1 receptor (AT1R) and AT4R, whereas in the umbilical arteries, the protein expressions of AT2R and AT4R were significantly decreased in the PE group. The endothelial AT1R mRNA level positively determined the maternal SBPs, and the AT4R mRNA level positively determined the neonatal chamber size and cardiac output. In conclusion, PE may influence perinatal angiotensin system and cardiovascular manifestations of neonates across placentae. Intriguing correlations between these two warrant further mechanistic investigation.


Subject(s)
Pre-Eclampsia , Humans , Female , Pregnancy , Pre-Eclampsia/metabolism , Pre-Eclampsia/genetics , Adult , Infant, Newborn , Fetal Blood/metabolism , Blood Pressure , Prospective Studies , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Cardiovascular System/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
8.
Toxicol Sci ; 201(1): 26-37, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38954831

ABSTRACT

Phthalates are used as plasticizers and solvents in consumer products. Virtually 100% of the US population has measurable exposure levels to phthalates, however, the mechanisms by which prenatal exposure to phthalate mixtures affects reproductive health in the offspring remain unclear. Thus, this study tested the hypothesis that prenatal exposure to an environmentally relevant phthalate mixture promotes inflammation in F1 ovarian tissue. Pregnant CD-1 dams were dosed orally with vehicle control (corn oil) or phthalate mixture (20 µg/kg/d, 200 µg/kg/d, 200 mg/kg/d, 500 mg/kg/d). Pregnant dams delivered pups naturally and ovaries and sera from the F1 females were collected at postnatal day (PND) 21, PND 60, 3 mo, and 6 mo. Sera were used to measure levels of C-reactive protein (CRP). Ovaries and sera were used for cytokine array analysis. RNA was isolated from F1 ovaries and used to quantify expression of selected cytokine genes. Prenatal exposure to the mixture significantly increased the levels of CRP at 200 µg/kg/d on PND 21 compared with controls. The mixture altered 6 immune factors in sera at PND 21 and 33 immune factors in the ovary and sera at 6 mo compared with controls. The mixture increased ovarian expression of cytokines at PND 21 and decreased ovarian expression of cytokines at 6 mo compared with controls. These data suggest that prenatal exposure to a phthalate mixture interferes with the immune response in F1 female mice long after initial exposure.


Subject(s)
Cytokines , Ovary , Phthalic Acids , Prenatal Exposure Delayed Effects , Animals , Female , Pregnancy , Ovary/drug effects , Ovary/metabolism , Cytokines/blood , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/blood , Phthalic Acids/toxicity , Mice , Biomarkers/blood , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Maternal Exposure/adverse effects , Environmental Pollutants/toxicity
9.
Biol Sex Differ ; 15(1): 52, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898532

ABSTRACT

BACKGROUND: Prenatal hypoxia, a common pregnancy complication, leads to impaired cardiovascular outcomes in the adult offspring. It results in impaired vasodilation in coronary and mesenteric arteries of the adult offspring, due to reduced nitric oxide (NO). Thromboxane A2 (TxA2) is a potent vasoconstrictor increased in cardiovascular diseases, but its role in the impact of prenatal hypoxia is unknown. To prevent the risk of cardiovascular disease by prenatal hypoxia, we have tested a maternal treatment using a nanoparticle-encapsulated mitochondrial antioxidant (nMitoQ). We hypothesized that prenatal hypoxia enhances vascular TxA2 responses in the adult offspring, due to decreased NO modulation, and that this might be prevented by maternal nMitoQ treatment. METHODS: Pregnant Sprague-Dawley rats received a single intravenous injection (100 µL) of vehicle (saline) or nMitoQ (125 µmol/L) on gestational day (GD)15 and were exposed to normoxia (21% O2) or hypoxia (11% O2) from GD15 to GD21 (term = 22 days). Coronary and mesenteric arteries were isolated from the 4-month-old female and male offspring, and vasoconstriction responses to U46619 (TxA2 analog) were evaluated using wire myography. In mesenteric arteries, L-NAME (pan-NO synthase (NOS) inhibitor) was used to assess NO modulation. Mesenteric artery endothelial (e)NOS, and TxA2 receptor expression, superoxide, and 3-nitrotyrosine levels were assessed by immunofluorescence. RESULTS: Prenatal hypoxia resulted in increased U46619 responsiveness in coronary and mesenteric arteries of the female offspring, and to a lesser extent in the male offspring, which was prevented by nMitoQ. In females, there was a reduced impact of L-NAME in mesenteric arteries of the prenatal hypoxia saline-treated females, and reduced 3-nitrotyrosine levels. In males, L-NAME increased U46619 responses in mesenteric artery to a similar extent, but TxA2 receptor expression was increased by prenatal hypoxia. There were no changes in eNOS or superoxide levels. CONCLUSIONS: Prenatal hypoxia increased TxA2 vasoconstrictor capacity in the adult offspring in a sex-specific manner, via reduced NO modulation in females and increased TP expression in males. Maternal placental antioxidant treatment prevented the impact of prenatal hypoxia. These findings increase our understanding of how complicated pregnancies can lead to a sex difference in the programming of cardiovascular disease in the adult offspring.


Prenatal hypoxia, when the fetus does not receive enough oxygen, is a common problem during pregnancy that impacts the developing fetus. It is associated with an increased risk of cardiovascular disease in the offspring in adulthood. While the mechanisms are not fully understood, the blood vessel function in the offspring may be impacted by prenatal hypoxia. We hypothesize that prenatal hypoxia increases the constriction of the blood vessels in the offspring. The placenta, an essential organ for fetal development, supplies oxygen and nutrients to the fetus. In prenatal hypoxia pregnancies, the placenta does not work properly. We have been studying a placental treatment (called nMitoQ) to improve placenta function and thereby the blood vessel function of the offspring. We used a rat model of prenatal hypoxia, where pregnant rats (dams) were placed in a low oxygen environment (hypoxia) during the last trimester of pregnancy. Control rats were kept in normal oxygen conditions. The dams were treated with nMitoQ, or with saline (control). Next, we studied the blood vessels of the offspring in adulthood. We found that prenatal hypoxia increases the constriction of the blood vessels, which was prevented by treating the dams with nMitoQ. Interestingly, this impact was more severe in females compared to males, and the mechanisms were different between the sexes. This study helps in the understanding of how complicated pregnancies can impair cardiovascular health in the offspring, and in a potential development of targeted and sex-specific therapies for those offspring at high risk for future cardiovascular disease.


Subject(s)
Prenatal Exposure Delayed Effects , Rats, Sprague-Dawley , Sex Characteristics , Thromboxane A2 , Vasoconstriction , Animals , Female , Pregnancy , Vasoconstriction/drug effects , Male , Thromboxane A2/metabolism , Antioxidants/pharmacology , Nitric Oxide/metabolism , Mesenteric Arteries/drug effects , Mesenteric Arteries/metabolism , Rats , Hypoxia/metabolism , Fetal Hypoxia/metabolism , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
10.
Metabolites ; 14(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38921474

ABSTRACT

Intrauterine growth-restricted (IUGR) fetuses exhibit systemic inflammation that contributes to programmed deficits in myoblast function and muscle growth. Thus, we sought to determine if targeting fetal inflammation improves muscle growth outcomes. Heat stress-induced IUGR fetal lambs were infused with eicosapentaenoic acid (IUGR+EPA; n = 9) or saline (IUGR; n = 8) for 5 days during late gestation and compared to saline-infused controls (n = 11). Circulating eicosapentaenoic acid was 42% less (p < 0.05) for IUGR fetuses but was recovered in IUGR+EPA fetuses. The infusion did not improve placental function or fetal O2 but resolved the 67% greater (p < 0.05) circulating TNFα observed in IUGR fetuses. This improved myoblast function and muscle growth, as the 23% reduction (p < 0.05) in the ex vivo differentiation of IUGR myoblasts was resolved in IUGR+EPA myoblasts. Semitendinosus, longissimus dorsi, and flexor digitorum superficialis muscles were 24-39% lighter (p < 0.05) for IUGR but not for IUGR+EPA fetuses. Elevated (p < 0.05) IL6R and reduced (p < 0.05) ß2 adrenoceptor content in IUGR muscle indicated enhanced inflammatory sensitivity and diminished ß2 adrenergic sensitivity. Although IL6R remained elevated, ß2 adrenoceptor deficits were resolved in IUGR+EPA muscle, demonstrating a unique underlying mechanism for muscle dysregulation. These findings show that fetal inflammation contributes to IUGR muscle growth deficits and thus may be an effective target for intervention.

11.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928001

ABSTRACT

We examined whether the administration of growth hormone (GH) improves insulin resistance in females of a non-obese hyperglycemic mouse model after birth with low birth weight (LBW), given that GH is known to increase muscle mass. The intrauterine Ischemia group underwent uterine artery occlusion for 15 min on day 16.5 of gestation. At 4 weeks of age, female mice in the Ischemia group were divided into the GH-treated (Ischemia-GH) and non-GH-treated (Ischemia) groups. At 8 weeks of age, the glucose metabolism, muscle pathology, and metabolome of liver were assessed. The insulin resistance index improved in the Ischemia-GH group compared with the Ischemia group (p = 0.034). The percentage of type 1 muscle fibers was higher in the Ischemia-GH group than the Ischemia group (p < 0.001); the muscle fiber type was altered by GH. In the liver, oxidative stress factors were reduced, and ATP production was increased in the Ischemia-GH group compared to the Ischemia group (p = 0.014), indicating the improved mitochondrial function of liver. GH administration is effective in improving insulin resistance by increasing the content of type 1 muscle fibers and improving mitochondrial function of liver in our non-obese hyperglycemic mouse model after birth with LBW.


Subject(s)
Disease Models, Animal , Hyperglycemia , Insulin Resistance , Liver , Animals , Female , Humans , Mice , Pregnancy , Human Growth Hormone/pharmacology , Human Growth Hormone/administration & dosage , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Liver/metabolism , Liver/drug effects , Oxidative Stress/drug effects , Recombinant Proteins/pharmacology
12.
Ciênc. Saúde Colet. (Impr.) ; 29(6): e07992023, Jun. 2024.
Article in Portuguese | LILACS-Express | LILACS | ID: biblio-1557528

ABSTRACT

Resumo O artigo discute questões sobre o futuro da humanidade ante as ameaças que rondam a saúde das populações, cujo impacto vem se exacerbando no curso das desigualdades em todas as partes do mundo, pari passu o desenvolvimento global no modelo hegemonizado a partir do século passado. A pandemia de COVID-19 foi tomada como um caso que bem ilustra essa dessintonia entre desenvolvimento e desigualdades. Formulam-se perguntas a serem postas em debate sobre a construção do futuro da sociedade mundial, com base na acepção sobre o caráter evolucional da vida no planeta vis-à-vis os males que acometem grandes contingentes populacionais e representam poderosos riscos para esse processo evolutivo. São indagações que apontam para a discussão em torno da participação social na definição e no controle das políticas públicas, em contrapartida à hegemonia dos interesses privados na formulação e execução dessas políticas, tanto nos cenários de cada país como no contexto internacional.


Abstract This article discusses questions concerning the future of humanity in the face of threats to the health of populations, whose impact has been exacerbated in the course of inequalities in all parts of the world, pari passu with global development in the hegemonized model since last century. The COVID-19 pandemic is a good example that illustrates this dissonance between development and inequalities. Questions were formulated to be debated about the construction of the future of world society, based on the understanding of the evolutionary character of life on the planet vis-à-vis the evils that affect large contingents of the population and represent powerful risks for this evolutionary process. These questions call attention to the discussion around social participation in the definition and control of public policies, as opposed to the hegemony of private interests in the formulation and execution of these policies, both in the scenarios of each country and in the international context.

13.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731818

ABSTRACT

Early life exposure lays the groundwork for the risk of developing cardiovascular-kidney-metabolic (CKM) syndrome in adulthood. Various environmental chemicals to which pregnant mothers are commonly exposed can disrupt fetal programming, leading to a wide range of CKM phenotypes. The aryl hydrocarbon receptor (AHR) has a key role as a ligand-activated transcription factor in sensing these environmental chemicals. Activating AHR through exposure to environmental chemicals has been documented for its adverse impacts on cardiovascular diseases, hypertension, diabetes, obesity, kidney disease, and non-alcoholic fatty liver disease, as evidenced by both epidemiological and animal studies. In this review, we compile current human evidence and findings from animal models that support the connection between antenatal chemical exposures and CKM programming, focusing particularly on AHR signaling. Additionally, we explore potential AHR modulators aimed at preventing CKM syndrome. As the pioneering review to present evidence advocating for the avoidance of toxic chemical exposure during pregnancy and deepening our understanding of AHR signaling, this has the potential to mitigate the global burden of CKM syndrome in the future.


Subject(s)
Cardiovascular Diseases , Prenatal Exposure Delayed Effects , Receptors, Aryl Hydrocarbon , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Humans , Pregnancy , Animals , Female , Prenatal Exposure Delayed Effects/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/etiology , Cardiovascular Diseases/chemically induced , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Kidney Diseases/etiology , Maternal Exposure/adverse effects , Signal Transduction/drug effects , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Fetal Development/drug effects , Environmental Pollutants/toxicity , Environmental Pollutants/adverse effects , Metabolic Reprogramming
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167246, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38763408

ABSTRACT

Glucose and lipid metabolic disorders (GLMDs), such as diabetes, dyslipidemia, metabolic syndrome, nonalcoholic fatty liver disease, and obesity, are significant public health issues that negatively impact human health. The endoplasmic reticulum (ER) plays a crucial role at the cellular level for lipid and sterol biosynthesis, intracellular calcium storage, and protein post-translational modifications. Imbalance and dysfunction of the ER can affect glucose and lipid metabolism. As an essential trace element, selenium contributes to various human physiological functions mainly through 25 types of selenoproteins (SELENOs). At least 10 SELENOs, with experimental and/or computational evidence, are predominantly found on the ER membrane or within its lumen. Two iodothyronine deiodinases (DIOs), DIO1 and DIO2, regulate the thyroid hormone deiodination in the thyroid and some external thyroid tissues, influencing glucose and lipid metabolism. Most of the other eight members maintain redox homeostasis in the ER. Especially, SELENOF, SELENOM, and SELENOS are involved in unfolded protein responses; SELENOI catalyzes phosphatidylethanolamine synthesis; SELENOK, SELENON, and SELENOT participate in calcium homeostasis regulation; and the biological significance of thioredoxin reductase 3 in the ER remains unexplored despite its established function in the thioredoxin system. This review examines recent research advances regarding ER SELENOs in GLMDs and aims to provide insights on ER-related pathology through SELENOs regulation.


Subject(s)
Endoplasmic Reticulum , Lipid Metabolism , Selenoproteins , Selenoproteins/metabolism , Humans , Endoplasmic Reticulum/metabolism , Animals , Lipid Metabolism/physiology , Lipid Metabolism Disorders/metabolism , Lipid Metabolism Disorders/pathology , Glucose Metabolism Disorders/metabolism , Glucose Metabolism Disorders/pathology , Glucose/metabolism
15.
Front Endocrinol (Lausanne) ; 15: 1272270, 2024.
Article in English | MEDLINE | ID: mdl-38689729

ABSTRACT

During parturition and the immediate post-partum period there are two opposite, yet interdependent and intertwined systems that are highly active and play a role in determining lifelong health and behaviour in both the mother and her infant: the stress and the anti-stress (oxytocin) system. Before attempting to understand how the environment around birth determines long-term health trajectories, it is essential to understand how these two systems operate and how they interact. Here, we discuss together the hormonal and neuronal arms of both the hypothalamic-pituitary-adrenal (HPA) axis and the oxytocinergic systems and how they interact. Although the HPA axis and glucocorticoid stress axis are well studied, the role of oxytocin as an extremely powerful anti-stress hormone deserves more attention. It is clear that these anti-stress effects depend on oxytocinergic nerves emanating from the supraoptic nucleus (SON) and paraventricular nucleus (PVN), and project to multiple sites at which the stress system is regulated. These, include projections to corticotropin releasing hormone (CRH) neurons within the PVN, to the anterior pituitary, to areas involved in sympathetic and parasympathetic nervous control, to NA neurons in the locus coeruleus (LC), and to CRH neurons in the amygdala. In the context of the interaction between the HPA axis and the oxytocin system birth is a particularly interesting period as, for both the mother and the infant, both systems are very strongly activated within the same narrow time window. Data suggest that the HPA axis and the oxytocin system appear to interact in this early-life period, with effects lasting many years. If mother-child skin-to-skin contact occurs almost immediately postpartum, the effects of the anti-stress (oxytocin) system become more prominent, moderating lifelong health trajectories. There is clear evidence that HPA axis activity during this time is dependent on the balance between the HPA axis and the oxytocin system, the latter being reinforced by specific somatosensory inputs, and this has long-term consequences for stress reactivity.


Subject(s)
Hypothalamo-Hypophyseal System , Oxytocin , Pituitary-Adrenal System , Animals , Female , Humans , Pregnancy , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Oxytocin/metabolism , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiology , Stress, Physiological/physiology , Stress, Psychological/metabolism , Yin-Yang
16.
Nutrients ; 16(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732510

ABSTRACT

Amino acids are essential for normal pregnancy and fetal development. Disruptions in maternal amino acid metabolism have been associated with various adult diseases later in life, a phenomenon referred to as the developmental origins of health and disease (DOHaD). In this review, we examine the recent evidence highlighting the significant impact of amino acids on fetal programming, their influence on the modulation of gut microbiota, and their repercussions on offspring outcomes, particularly in the context of cardiovascular-kidney-metabolic (CKM) syndrome. Furthermore, we delve into experimental studies that have unveiled the protective effects of therapies targeting amino acids. These interventions have demonstrated the potential to reprogram traits associated with CKM in offspring. The discussion encompasses the challenges of translating the findings from animal studies to clinical applications, emphasizing the complexity of this process. Additionally, we propose potential solutions to overcome these challenges. Ultimately, as we move forward, future research endeavors should aim to pinpoint the most effective amino-acid-targeted therapies, determining the optimal dosage and mode of administration. This exploration is essential for maximizing the reprogramming effects, ultimately contributing to the enhancement of cardiovascular-kidney-metabolic health in offspring.


Subject(s)
Amino Acids , Cardiovascular Diseases , Fetal Development , Gastrointestinal Microbiome , Kidney , Humans , Pregnancy , Female , Amino Acids/metabolism , Kidney/metabolism , Animals , Gastrointestinal Microbiome/physiology , Prenatal Exposure Delayed Effects , Kidney Diseases , Maternal Nutritional Physiological Phenomena
17.
Mod Rheumatol ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38706167

ABSTRACT

Objectives There is a need for more specific biomarkers to diagnose and predict disease course in patients with axial spondyloarthritis (axSpA). This study aimed to study immunological plasma biomarkers, at different time-points in radiographic (r)-axSpA patients overall and stratified by sex and compare these biomarker pattern in r-axSpA patients concerning disease phenotypes and disease activity. Methods Plasma samples were analysed from r-axSpA patients at and prior (Pre-Backbone) inclusion in the Backbone study. Interferon gamma, interleukin-10, -17A, -17F, -22, -23, -6, MCP-1, TNF-α, VEGF-A, MIF, IgA anti-CD74, zonulin, ESR, hsCRP, white blood cell count, and blood lipids were measured. Results Biomarker pattern discriminated significantly between r-axSpA patients in Backbone and Pre-Backbone compared with controls. When stratifying by sex, it was possible to discriminate between male and female r-axSpA patients in Backbone vs controls and between male r-axSpA patients in pre-Backbone and controls. In Backbone, markers with high discriminative capacity were MIF, IgA anti-CD74, and MCP-1. In Pre-Backbone, IL-6, TNF-α, MIF, triglycerides, cholesterol, IL-10, and zonulin displayed high discriminative capacity. Conclusion Based on their temporal pattern and mutual relationship, we suggest studying MIF, IgA anti-CD74, and MCP-1 in depth, at more time points, to further elucidate disease-driving mechanisms in this complex disease.

18.
Mol Biomed ; 5(1): 14, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38644450

ABSTRACT

NLRP inflammasomes are a group of cytosolic multiprotein oligomer pattern recognition receptors (PRRs) involved in the recognition of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) produced by infected cells. They regulate innate immunity by triggering a protective inflammatory response. However, despite their protective role, aberrant NLPR inflammasome activation and gain-of-function mutations in NLRP sensor proteins are involved in occurrence and enhancement of non-communicating autoimmune, auto-inflammatory, and neurodegenerative diseases. In the last few years, significant advances have been achieved in the understanding of the NLRP inflammasome physiological functions and their molecular mechanisms of activation, as well as therapeutics that target NLRP inflammasome activity in inflammatory diseases. Here, we provide the latest research progress on NLRP inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRP7, NLRP2, NLRP9, NLRP10, and NLRP12 regarding their structural and assembling features, signaling transduction and molecular activation mechanisms. Importantly, we highlight the mechanisms associated with NLRP inflammasome dysregulation involved in numerous human auto-inflammatory, autoimmune, and neurodegenerative diseases. Overall, we summarize the latest discoveries in NLRP biology, their forming inflammasomes, and their role in health and diseases, and provide therapeutic strategies and perspectives for future studies about NLRP inflammasomes.


Subject(s)
Inflammasomes , NLR Proteins , Humans , Inflammasomes/immunology , Inflammasomes/metabolism , NLR Proteins/metabolism , Animals , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/metabolism , Signal Transduction/immunology , Immunity, Innate , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Inflammation/immunology , Inflammation/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/immunology , Adaptor Proteins, Signal Transducing/genetics
19.
J Med Philos ; 49(3): 271-282, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38557763

ABSTRACT

The following article presents preliminary reflections on a processual theory of health and disease. It does this by steering the discussion more toward an ontology of organisms rather than conceptual analysis of the semantic content of the terms "health" and "disease." In the first section, four meta-theoretical assumptions of the traditional debate are identified and alternative approaches to the problems are presented. Afterwards, the view that health and disease are constituted by a dynamic relation between demands imposed on an organism and individual presuppositions for adequate response is developed. In the last section, the paper takes stock of three possible objections to and clarifies some implications of this approach to the notions of health and disease.


Subject(s)
Philosophy, Medical , Humans
20.
Int J Hyg Environ Health ; 258: 114333, 2024 May.
Article in English | MEDLINE | ID: mdl-38460460

ABSTRACT

We examined associations between prenatal fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) exposures and child respiratory outcomes through age 8-9 years in 1279 ECHO-PATHWAYS Consortium mother-child dyads. We averaged spatiotemporally modeled air pollutant exposures during four fetal lung development phases: pseudoglandular (5-16 weeks), canalicular (16-24 weeks), saccular (24-36 weeks), and alveolar (36+ weeks). We estimated adjusted relative risks (RR) for current asthma at age 8-9 and asthma with recent exacerbation or atopic disease, and odds ratios (OR) for wheezing trajectories using modified Poisson and multinomial logistic regression, respectively. Effect modification by child sex, maternal asthma, and prenatal environmental tobacco smoke was explored. Across all outcomes, 95% confidence intervals (CI) included the null for all estimates of associations between prenatal air pollution exposures and respiratory outcomes. Pseudoglandular PM2.5 exposure modestly increased risk of current asthma (RRadj = 1.15, 95% CI: 0.88-1.51); canalicular PM2.5 exposure modestly increased risk of asthma with recent exacerbation (RRadj = 1.26, 95% CI: 0.86-1.86) and persistent wheezing (ORadj = 1.28, 95% CI: 0.86-1.89). Similar findings were observed for O3, but not NO2, and associations were strengthened among mothers without asthma. While not statistically distinguishable from the null, trends in effect estimates suggest some adverse associations of early pregnancy air pollution exposures with child respiratory conditions, warranting confirmation in larger samples.


Subject(s)
Air Pollutants , Air Pollution , Asthma , Child , Pregnancy , Female , Humans , Respiratory Sounds , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/analysis , Asthma/epidemiology , Asthma/chemically induced , Particulate Matter/analysis , Nitrogen Dioxide , Environmental Exposure/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL