Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 440
Filter
1.
J. bras. nefrol ; 46(3): e20230123, July-Sept. 2024.
Article in English | LILACS-Express | LILACS | ID: biblio-1558253

ABSTRACT

Abstract In the past decades, an epidemic of chronic kidney disease (CKD) has been associated with environmental and occupational factors (heat stress from high workloads in hot temperatures and exposure to chemicals, such as pesticides and metals), which has been termed CKD of non-traditional origin (CKDnt). This descriptive review aims to present recent evidence about heat stress, pesticides, and metals as possible causes of CKDnt and provide an overview of the related Brazilian regulation, enforcement, and health surveillance strategies. Brazilian workers are commonly exposed to extreme heat conditions and other CKDnt risk factors, including increasing exposure to pesticides and metals. Furthermore, there is a lack of adequate regulation (and enforcement), public policies, and strategies to protect the kidney health of workers, considering the main risk factors. CKDnt is likely to be a significant cause of CKD in Brazil, since CKD's etiology is unknown in many patients and several conditions for its development are present in the country. Further epidemiological studies may be conducted to explore causal associations and estimate the impact of heat, pesticides, and metals on CKDnt in Brazil. Moreover, public policies should prioritize reducing workers´ exposure and promoting their health and safety.


Resumo Nas últimas décadas, uma epidemia de doença renal crônica (DRC) tem sido associada a fatores ambientais e ocupacionais (estresse térmico decorrente de cargas de trabalho elevadas em altas temperaturas e exposição a produtos químicos, como agrotóxicos e metais), denominada DRC de origem não tradicional (DRCnt). Esta revisão descritiva tem como objetivo apresentar evidências recentes sobre estresse térmico, agrotóxicos e metais como possíveis causas de DRCnt e fornecer uma visão geral das estratégias brasileiras de regulamentação, fiscalização e vigilância sanitária relacionadas. Os trabalhadores brasileiros são comumente expostos a condições extremas de calor e outros fatores de risco de DRCnt, incluindo o aumento da exposição a agrotóxicos e metais. Além disso, há uma falta de regulamentação e fiscalização, políticas públicas e estratégias adequadas para proteger a saúde renal dos trabalhadores em relação aos principais fatores de risco. É provável que a DRCnt seja uma causa significativa de DRC no Brasil, uma vez que a etiologia da doença é desconhecida em muitos pacientes e diversas condições para seu desenvolvimento estão presentes no país. Estudos epidemiológicos devem ser realizados para explorar associações causais e estimar o impacto do calor, dos agrotóxicos e dos metais na DRCnt no Brasil. Além disso, as políticas públicas devem priorizar a redução da exposição dos trabalhadores e a promoção de sua saúde e segurança.

2.
Cells ; 13(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38994992

ABSTRACT

Previous studies reported that a mild, non-protein-denaturing, fever-like temperature increase induced the unfolded protein response (UPR) in mammalian cells. Our dSTORM super-resolution microscopy experiments revealed that the master regulator of the UPR, the IRE1 (inositol-requiring enzyme 1) protein, is clustered as a result of UPR activation in a human osteosarcoma cell line (U2OS) upon mild heat stress. Using ER thermo yellow, a temperature-sensitive fluorescent probe targeted to the endoplasmic reticulum (ER), we detected significant intracellular thermogenesis in mouse embryonic fibroblast (MEF) cells. Temperatures reached at least 8 °C higher than the external environment (40 °C), resulting in exceptionally high ER temperatures similar to those previously described for mitochondria. Mild heat-induced thermogenesis in the ER of MEF cells was likely due to the uncoupling of the Ca2+/ATPase (SERCA) pump. The high ER temperatures initiated a pronounced cytosolic heat-shock response in MEF cells, which was significantly lower in U2OS cells in which both the ER thermogenesis and SERCA pump uncoupling were absent. Our results suggest that depending on intrinsic cellular properties, mild hyperthermia-induced intracellular thermogenesis defines the cellular response mechanism and determines the outcome of hyperthermic stress.


Subject(s)
Endoplasmic Reticulum , Heat-Shock Response , Thermogenesis , Humans , Animals , Endoplasmic Reticulum/metabolism , Mice , Unfolded Protein Response , Cell Line, Tumor , Endoplasmic Reticulum Stress , Hyperthermia/metabolism , Hyperthermia/pathology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Fibroblasts/metabolism , Protein Serine-Threonine Kinases/metabolism
3.
Article in English | MEDLINE | ID: mdl-38969306

ABSTRACT

Proteins are acknowledged as the phenotypical manifestation of the genotype, because protein-coding genes carry the information for the strings of amino acids that constitute the proteins. It is widely accepted that protein function depends on the corresponding "native" structure or folding achieved within the cell, and that native protein folding corresponds to the lowest free energy minimum for a given protein. However, protein folding within the cell is a non-deterministic dissipative process that from the same input may produce different outcomes, thus conformational heterogeneity of folded proteins is the rule and not the exception. Local changes in the intracellular environment promote variation in protein folding. Hence protein folding requires "supervision" by a host of chaperones and co-chaperones that help their client proteins to achieve the folding that is most stable according to the local environment. Such environmental influence on protein folding is continuously transduced with the help of the cellular stress responses (CSRs) and this may lead to changes in the rules of engagement between proteins, so that the corresponding protein interactome could be modified by the environment leading to an alternative cellular phenotype. This allows for a phenotypic plasticity useful for adapting to sudden and/or transient environmental changes at the cellular level. Starting from this perspective, hereunder we develop the argument that the presence of sustained cellular stress coupled to efficient CSRs may lead to the selection of an aberrant phenotype as the resulting adaptation of the cellular proteome (and the corresponding interactome) to such stressful conditions, and this can be a common epigenetic pathway to cancer.

4.
Aging Cell ; : e14246, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895933

ABSTRACT

The transcription factor HSF-1 (heat shock factor 1) acts as a master regulator of heat shock response in eukaryotic cells to maintain cellular proteostasis. The protein has a protective role in preventing cells from undergoing ageing, and neurodegeneration, and also mediates tumorigenesis. Thus, modulating HSF-1 activity in humans has a promising therapeutic potential for treating these pathologies. Loss of HSF-1 function is usually associated with impaired stress tolerance. Contrary to this conventional knowledge, we show here that inactivation of HSF-1 in the nematode Caenorhabditis elegans results in increased thermotolerance at young adult stages, whereas HSF-1 deficiency in animals passing early adult stages indeed leads to decreased thermotolerance, as compared to wild-type. Furthermore, a gene expression analysis supports that in young adults, distinct cellular stress response and immunity-related signaling pathways become induced upon HSF-1 deficiency. We also demonstrate that increased tolerance to proteotoxic stress in HSF-1-depleted young worms requires the activity of the unfolded protein response of the endoplasmic reticulum and the SKN-1/Nrf2-mediated oxidative stress response pathway, as well as an innate immunity-related pathway, suggesting a mutual compensatory interaction between HSF-1 and these conserved stress response systems. A similar compensatory molecular network is likely to also operate in higher animal taxa, raising the possibility of an unexpected outcome when HSF-1 activity is manipulated in humans.

5.
Temperature (Austin) ; 11(2): 157-169, 2024.
Article in English | MEDLINE | ID: mdl-38846523

ABSTRACT

Pre-exercise passive heating attenuates muscle damage caused by eccentric exercise in rats where the induction of heat shock proteins (HSPs) confers a myoprotective effect. We investigated whether pre-exercise hot water immersion (HWI) confers similar benefits in humans. Eleven recreational male athletes were immersed in 41°C water up to 60 min or until rectal temperatures reached 39.5°C. After a 6 h rest, the participants performed an eccentric downhill run for 1 h at -4% gradient to induce muscle damage. An endurance capacity test at 75% VO2max was conducted 18 h later. The control trial was similar except that participants were immersed at 34°C. Blood samples were collected to assess HSPs levels, creatine kinase, and lactate dehydrogenase activities. Plasma eHSP70 was higher post-immersion in HWI trials (1.3 ± 0.4 vs 1.1 ± 0.4; p = 0.005). Plasma eHSP27 was higher before (p = 0.049) and after (p = 0.015) endurance test in HWI. Leukocytic p-HSP27 was increased 18 h after HWI (0.97 ± 0.14 vs 0.67 ± 0.11; p = 0.04). Creatine kinase and lactate dehydrogenase activities were increased by 3-fold and 1.5-fold, respectively, after endurance test in HWI but did not differ across trials (p > 0.05). Mean heart rates were higher during eccentric run and endurance test in HWI as compared to control (p < 0.05). Endurance capacity was similar between trials (57.3 ± 11.5 min vs 55.0 ± 13.5 min; p = 0.564). Pre-exercise heating increased the expression of plasma eHSPs and leukocytic p-HSP27 but did not reduce muscle damage nor enhance endurance capacity.

6.
J Insect Physiol ; 156: 104667, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914156

ABSTRACT

Temperature is a crucial factor in many physiological processes, especially in small ectotherms whose body temperature is highly influenced by ambient temperature. Polistes (paper wasps) is a genus of primitively eusocial wasps found in widely varying thermal environments throughout the world. Paper wasps construct open-faced combs in which the brood is exposed to varying ambient temperatures. The Heat Shock Response is a physiological mechanism that has been shown to help cope with thermal stress. We investigated the expression of heat shock proteins in different life stages of three species of Polistes from different climates with the aim of deducing adaptive patterns. This was done by assaying heat shock protein (hsp70, hsp83, hsc70) expression during control conditions (25 °C) or a heat insult (35 or 45 °C) in individuals collected from natural populations in Alpine, Temperate, or Mediterranean climates. Basal expression of hsc70 and hsp83 was found to be high, while hsp70 and hsp83 expression was found to be highly responsive to severe heat stress. As expression levels varied based on species, geographical origin, and life stage as well as between heat shock proteins, the Heat Shock Response of Polistes was found to be complex. The results suggest that adaptive utilization of the heat shock response contributes to the ability of Polistes spp. to inhabit widely different thermal environments.

7.
Viruses ; 16(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38932213

ABSTRACT

The mode and outcome of fish-virus interactions are influenced by many abiotic factors, among which water temperature is especially important in poikilothermic fish. Rare minnow Gobiocypris rarus is a eurythermal small cyprinid fish that is sensitive to infection with genotype II grass carp reovirus (GCRV). HSP70, a conservative and key player in heat shock response, is previously identified as an induced pro-viral factor during GCRV infection in vitro. Here, rare minnow was subjected to heat shock treatment (HST), 1 h treatment at 32 °C followed by reverting to a normal temperature of 24 °C, and subsequently challenged with GCRV-II at a dosage of 1 × LD50. The effect of HST on GCRV virulence in vivo was evaluated by calculating virus-associated mortality and viral load in both dead and survival fish. The results revealed that HST enhanced the mortality of rare minnow infected with GCRV; the fact that viral loads in the tissue samples of HST-treated fish were significantly higher than those in samples of the control group at 6, 8 d p.i. reflected a faster infection process due to HST. Quantitative gene expression analysis was further employed to show that the expression levels of Hsp70 in intestine and liver tissues from the HST group declined faster than muscle tissue after HST. HST W/O GCRV challenge upregulated proinflammatory cytokines such as MyD88 and Nf-κB, which was in consistence with the inflammation observed in histopathological analysis. This study shed light on the complexity of the interaction between fish abiotic and biotic stress response, which suggested that HST, an abiotic stress, could enhance the virulence of GCRV in Gobiocypris rarus that involved modulating the gene expression of host heat shock, as well as a pro-inflammatory response.


Subject(s)
Cyprinidae , Fish Diseases , Reoviridae Infections , Reoviridae , Animals , Fish Diseases/virology , Reoviridae/pathogenicity , Reoviridae/genetics , Reoviridae/physiology , Virulence , Reoviridae Infections/virology , Reoviridae Infections/veterinary , Cyprinidae/virology , Viral Load , Carps/virology , Heat-Shock Response , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Hot Temperature
8.
Cell Stress Chaperones ; 29(3): 472-482, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735625

ABSTRACT

Muscle-damaging exercise (e.g., downhill running [DHR]) or heat exposure bouts potentially reduce physiological and/or cellular stress during future exertional heat exposure; however, the true extent of their combined preconditioning effects is unknown. Therefore, this study investigated the effect of muscle-damaging exercise in the heat on reducing physiological and cellular stress during future exertional heat exposure. Ten healthy males (mean ± Standard Definition; age, 23 ± 3 years; body mass, 78.7 ± 11.5 kg; height, 176.9 ± 4.7 cm) completed this study. Participants were randomly assigned into two preconditioning groups: (a) DHR in the heat (ambient temperature [Tamb], 35 °C; relative humidity [RH], 40%) and (b) DHR in thermoneutral (Tamb, 20 °C; RH, 20%). Seven days following DHR, participants performed a 45-min flat run in the heat (FlatHEAT [Tamb, 35 °C; RH, 40%]). During exercise, heart rate and rectal temperature (Trec) were recorded at baseline and every 5-min. Peripheral blood mononuclear cells were isolated to assess heat shock protein 72 (Hsp72) concentration between conditions at baseline, immediately post-DHR, and immediately pre-FlatHEAT and post-FlatHEAT. Mean Trec during FlatHEAT between hot (38.23 ± 0.38 °C) and thermoneutral DHR (38.26 ± 0.38 °C) was not significantly different (P = 0.68), with no mean heart rate differences during FlatHEAT between hot (172 ± 15 beats min-1) and thermoneutral conditions (174 ± 8 beats min-1; P = 0.58). Hsp72 concentration change from baseline to immediately pre-FlatHEAT was significantly lower in hot (-51.4%) compared to thermoneutral (+24.2%; P = 0.025) DHR, with Hsp72 change from baseline to immediately post-FlatHEAT also lower in hot (-52.6%) compared to thermoneutral conditions (+26.3%; P = 0.047). A bout of muscle-damaging exercise in the heat reduces cellular stress levels prior to and immediately following future exertional heat exposure.


Subject(s)
Exercise , Hot Temperature , Humans , Male , Young Adult , Adult , Exercise/physiology , Heart Rate/physiology , Muscle, Skeletal/physiology , Stress, Physiological/physiology , Body Temperature/physiology , Physical Exertion/physiology , Running/physiology
9.
Genes Dev ; 38(9-10): 380-392, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38816072

ABSTRACT

The ability to sense and respond to proteotoxic insults declines with age, leaving cells vulnerable to chronic and acute stressors. Reproductive cues modulate this decline in cellular proteostasis to influence organismal stress resilience in Caenorhabditis elegans We previously uncovered a pathway that links the integrity of developing embryos to somatic health in reproductive adults. Here, we show that the nuclear receptor NHR-49, an ortholog of mammalian peroxisome proliferator-activated receptor α (PPARα), regulates stress resilience and proteostasis downstream from embryo integrity and other pathways that influence lipid homeostasis and upstream of HSF-1. Disruption of the vitelline layer of the embryo envelope, which activates a proteostasis-enhancing intertissue pathway in somatic cells, triggers changes in lipid catabolism gene expression that are accompanied by an increase in fat stores. NHR-49, together with its coactivator, MDT-15, contributes to this remodeling of lipid metabolism and is also important for the elevated stress resilience mediated by inhibition of the embryonic vitelline layer. Our findings indicate that NHR-49 also contributes to stress resilience in other pathways known to change lipid homeostasis, including reduced insulin-like signaling and fasting, and that increased NHR-49 activity is sufficient to improve proteostasis and stress resilience in an HSF-1-dependent manner. Together, our results establish NHR-49 as a key regulator that links lipid homeostasis and cellular resilience to proteotoxic stress.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Lipid Metabolism , Proteostasis , Receptors, Cytoplasmic and Nuclear , Reproduction , Signal Transduction , Stress, Physiological , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Lipid Metabolism/genetics , Reproduction/genetics , Reproduction/physiology
10.
mSphere ; 9(5): e0076423, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38722162

ABSTRACT

Cervimycins A-D are bis-glycosylated polyketide antibiotics produced by Streptomyces tendae HKI 0179 with bactericidal activity against Gram-positive bacteria. In this study, cervimycin C (CmC) treatment caused a spaghetti-like phenotype in Bacillus subtilis 168, with elongated curved cells, which stayed joined after cell division, and exhibited a chromosome segregation defect, resulting in ghost cells without DNA. Electron microscopy of CmC-treated Staphylococcus aureus (3 × MIC) revealed swollen cells, misshapen septa, cell wall thickening, and a rough cell wall surface. Incorporation tests in B. subtilis indicated an effect on DNA biosynthesis at high cervimycin concentrations. Indeed, artificial downregulation of the DNA gyrase subunit B gene (gyrB) increased the activity of cervimycin in agar diffusion tests, and, in high concentrations (starting at 62.5 × MIC), the antibiotic inhibited S. aureus DNA gyrase supercoiling activity in vitro. To obtain a more global view on the mode of action of CmC, transcriptomics and proteomics of cervimycin treated versus untreated S. aureus cells were performed. Interestingly, 3 × MIC of cervimycin did not induce characteristic responses, which would indicate disturbance of the DNA gyrase activity in vivo. Instead, cervimycin induced the expression of the CtsR/HrcA heat shock operon and the expression of autolysins, exhibiting similarity to the ribosome-targeting antibiotic gentamicin. In summary, we identified the DNA gyrase as a target, but at low concentrations, electron microscopy and omics data revealed a more complex mode of action of cervimycin, which comprised induction of the heat shock response, indicating protein stress in the cell.IMPORTANCEAntibiotic resistance of Gram-positive bacteria is an emerging problem in modern medicine, and new antibiotics with novel modes of action are urgently needed. Secondary metabolites from Streptomyces species are an important source of antibiotics, like the cervimycin complex produced by Streptomyces tendae HKI 0179. The phenotypic response of Bacillus subtilis and Staphylococcus aureus toward cervimycin C indicated a chromosome segregation and septum formation defect. This effect was at first attributed to an interaction between cervimycin C and the DNA gyrase. However, omics data of cervimycin treated versus untreated S. aureus cells indicated a different mode of action, because the stress response did not include the SOS response but resembled the response toward antibiotics that induce mistranslation or premature chain termination and cause protein stress. In summary, these results point toward a possibly novel mechanism that generates protein stress in the cells and subsequently leads to defects in cell and chromosome segregation.


Subject(s)
Anti-Bacterial Agents , Bacillus subtilis , Microbial Sensitivity Tests , Staphylococcus aureus , Streptomyces , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Streptomyces/genetics , Streptomyces/metabolism , Streptomyces/drug effects , Bacillus subtilis/drug effects , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Polyketides/pharmacology , Polyketides/metabolism , Glycosides/pharmacology , Cell Wall/drug effects , Cell Wall/metabolism , Proteomics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , DNA Gyrase/genetics , DNA Gyrase/metabolism
11.
Front Immunol ; 15: 1390026, 2024.
Article in English | MEDLINE | ID: mdl-38807604

ABSTRACT

Introduction: The pulmonary endothelium is the primary target of lung ischemia-reperfusion injury leading to primary graft dysfunction after lung transplantation. We hypothesized that treating damaged rat lungs by a transient heat stress during ex-vivo lung perfusion (EVLP) to elicit a pulmonary heat shock response could protect the endothelium from severe reperfusion injury. Methods: Rat lungs damaged by 1h warm ischemia were reperfused on an EVLP platform for up to 6h at a constant temperature (T°) of 37°C (EVLP37°C group), or following a transient heat stress (HS) at 41.5°C from 1 to 1.5h of EVLP (EVLPHS group). A group of lungs exposed to 1h EVLP only (pre-heating conditions) was added as control (Baseline group). In a first protocol, we measured lung heat sock protein expression (HSP70, HSP27 and Hsc70) at selected time-points (n=5/group at each time). In a second protocol, we determined (n=5/group) lung weight gain (edema), pulmonary compliance, oxygenation capacity, pulmonary artery pressure (PAP) and vascular resistance (PVR), the expression of PECAM-1 (CD31) and phosphorylation status of Src-kinase and VE-cadherin in lung tissue, as well as the release in perfusate of cytokines (TNFα, IL-1ß) and endothelial biomarkers (sPECAM, von Willebrand Factor -vWF-, sE-selectin and sICAM-1). Histological and immunofluorescent studies assessed perivascular edema and formation of 3-nitrotyrosine (a marker of peroxinitrite) in CD31 lung endothelium. Results: HS induced an early (3h) and persisting expression of HSP70 and HSP27, without influencing Hsc70. Lungs from the EVLP37°C group developed massive edema, low compliance and oxygenation, elevated PAP and PVR, substantial release of TNFα, IL-1ß, s-PECAM, vWF, E-selectin and s-ICAM, as well as significant Src-kinase activation, VE-cadherin phosphorylation, endothelial 3-NT formation and reduced CD31 expression. In marked contrast, all these alterations were either abrogated or significantly attenuated by HS treatment. Conclusion: The therapeutic application of a transient heat stress during EVLP of damaged rat lungs reduces endothelial permeability, attenuates pulmonary vasoconstriction, prevents src-kinase activation and VE-cadherin phosphorylation, while reducing endothelial peroxinitrite generation and the release of cytokines and endothelial biomarkers. Collectively, these data demonstrate that therapeutic heat stress may represent a promising strategy to protect the lung endothelium from severe reperfusion injury.


Subject(s)
Heat-Shock Response , Lung , Perfusion , Animals , Lung/pathology , Lung/metabolism , Rats , Male , Perfusion/methods , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Lung Transplantation/adverse effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Platelet Endothelial Cell Adhesion Molecule-1/metabolism
12.
PeerJ ; 12: e17197, 2024.
Article in English | MEDLINE | ID: mdl-38708341

ABSTRACT

Waterborne transmission of the bacterium Legionella pneumophila has emerged as a major cause of severe nosocomial infections of major public health impact. The major route of transmission involves the uptake of aerosolized bacteria, often from the contaminated hot water systems of large buildings. Public health regulations aimed at controlling the mesophilic pathogen are generally concerned with acute pasteurization and maintaining high temperatures at the heating systems and throughout the plumbing of hot water systems, but L. pneumophila is often able to survive these treatments due to both bacterium-intrinsic and environmental factors. Previous work has established an experimental evolution system to model the observations of increased heat resistance in repeatedly but unsuccessfully pasteurized L. pneumophila populations. Here, we show rapid fixation of novel alleles in lineages selected for resistance to heat shock and shifts in mutational profile related to increases in the temperature of selection. Gene-level and nucleotide-level parallelisms between independently-evolving lineages show the centrality of the DnaJ/DnaK chaperone system in the heat resistance of L. pneumophila. Inference of epistatic interactions through reverse genetics shows an unexpected interaction between DnaJ/DnaK and the polyhydroxybutyrate-accumulation energy storage mechanism used by the species to survive long-term starvation in low-nutrient environments.


Subject(s)
Heat-Shock Response , Legionella pneumophila , Legionella pneumophila/genetics , Heat-Shock Response/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hot Temperature , Evolution, Molecular
13.
ACS Synth Biol ; 13(5): 1477-1491, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38676700

ABSTRACT

Escherichia coli is often used as a factory to produce recombinant proteins. In many cases, the recombinant protein needs disulfide bonds to fold and function correctly. These proteins are genetically fused to a signal peptide so that they are secreted to the oxidizing environment of the periplasm (where the enzymes required for disulfide bond formation exist). Currently, it is difficult to determine in vivo whether a recombinant protein is efficiently secreted from the cytoplasm and folded in the periplasm or if there is a bottleneck in one of these steps because cellular capacity has been exceeded. To address this problem, we have developed a biosensor that detects cellular stress caused by (1) inefficient secretion of proteins from the cytoplasm and (2) aggregation of proteins in the periplasm. We demonstrate how the fluorescence fingerprint obtained from the biosensor can be used to identify induction conditions that do not exceed the capacity of the cell and therefore do not cause cellular stress. These induction conditions result in more effective biomass and in some cases higher titers of soluble recombinant proteins.


Subject(s)
Biosensing Techniques , Escherichia coli , Periplasmic Proteins , Biosensing Techniques/methods , Escherichia coli/metabolism , Escherichia coli/genetics , Periplasmic Proteins/metabolism , Periplasmic Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Periplasm/metabolism , Stress, Physiological , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics
14.
Plant J ; 119(1): 300-331, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38613336

ABSTRACT

Much progress has been made in understanding the molecular mechanisms of plant adaptation to heat stress. However, the great diversity of models and stress conditions, and the fact that analyses are often limited to a small number of approaches, complicate the picture. We took advantage of a liquid culture system in which Arabidopsis seedlings are arrested in their development, thus avoiding interference with development and drought stress responses, to investigate through an integrative approach seedlings' global response to heat stress and acclimation. Seedlings perfectly tolerate a noxious heat shock (43°C) when subjected to a heat priming treatment at a lower temperature (38°C) the day before, displaying a thermotolerance comparable to that previously observed for Arabidopsis. A major effect of the pre-treatment was to partially protect energy metabolism under heat shock and favor its subsequent rapid recovery, which was correlated with the survival of seedlings. Rapid recovery of actin cytoskeleton and mitochondrial dynamics were another landmark of heat shock tolerance. The omics confirmed the role of the ubiquitous heat shock response actors but also revealed specific or overlapping responses to priming, heat shock, and their combination. Since only a few components or functions of chloroplast and mitochondria were highlighted in these analyses, the preservation and rapid recovery of their bioenergetic roles upon acute heat stress do not require extensive remodeling of the organelles. Protection of these organelles is rather integrated into the overall heat shock response, thus allowing them to provide the energy required to elaborate other cellular responses toward acclimation.


Subject(s)
Acclimatization , Arabidopsis , Heat-Shock Response , Seedlings , Arabidopsis/physiology , Arabidopsis/genetics , Seedlings/physiology , Seedlings/genetics , Heat-Shock Response/physiology , Energy Metabolism , Thermotolerance/physiology , Chloroplasts/metabolism , Chloroplasts/physiology , Mitochondria/metabolism , Gene Expression Regulation, Plant , Organelles/physiology , Organelles/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Hot Temperature , Mitochondrial Dynamics/physiology
15.
Sci Rep ; 14(1): 8241, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589452

ABSTRACT

Female breast cancer is the most diagnosed cancer worldwide. Triple negative breast cancer (TNBC) is the most aggressive type and there is no existing endocrine or targeted therapy. Modulated electro-hyperthermia (mEHT) is a non-invasive complementary cancer therapy using an electromagnetic field generated by amplitude modulated 13.56 MHz frequency that induces tumor cell destruction. However, we have demonstrated a strong induction of the heat shock response (HSR) by mEHT, which can result in thermotolerance. We hypothesized that inhibition of the heat shock factor 1 (HSF1) can synergize with mEHT and enhance tumor cell-killing. Thus, we either knocked down the HSF1 gene with a CRISPR/Cas9 lentiviral construct or inhibited HSF1 with a specific small molecule inhibitor: KRIBB11 in vivo. Wild type or HSF1-knockdown 4T1 TNBC cells were inoculated into the mammary gland's fat pad of BALB/c mice. Four mEHT treatments were performed every second day and the tumor growth was followed by ultrasound and caliper. KRIBB11 was administrated intraperitoneally at 50 mg/kg daily for 8 days. HSF1 and Hsp70 expression were assessed. HSF1 knockdown sensitized transduced cancer cells to mEHT and reduced tumor growth. HSF1 mRNA expression was significantly reduced in the KO group when compared to the empty vector group, and consequently mEHT-induced Hsp70 mRNA upregulation diminished in the KO group. Immunohistochemistry (IHC) confirmed the inhibition of Hsp70 upregulation in mEHT HSF1-KO group. Demonstrating the translational potential of HSF1 inhibition, combined therapy of mEHT with KRIBB11 significantly reduced tumor mass compared to either monotherapy. Inhibition of Hsp70 upregulation by mEHT was also supported by qPCR and IHC. In conclusion, we suggest that mEHT-therapy combined with HSF1 inhibition can be a possible new strategy of TNBC treatment with great translational potential.


Subject(s)
Aminopyridines , Hyperthermia, Induced , Indazoles , Triple Negative Breast Neoplasms , Animals , Humans , Mice , Female , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/therapy , Cell Line, Tumor , Disease Models, Animal , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Response , RNA, Messenger , Heat Shock Transcription Factors/genetics
16.
World J Gastrointest Oncol ; 16(4): 1578-1595, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38660660

ABSTRACT

BACKGROUND: Heat shock proteins (HSPs) are molecular chaperones that play an important role in cellular protection against stress events and have been reported to be overexpressed in many cancers. The prognostic significance of HSPs and their regulatory factors, such as heat shock factor 1 (HSF1) and CHIP, are poorly understood. AIM: To investigate the relationship between HSP expression and prognosis in esophageal and esophagogastric cancer. METHODS: A systematic review was conducted in accordance with PRISMA recommendations (PROSPERO: CRD42022370653), on Embase, PubMed, Cochrane, and LILACS. Cohort, case-control, and cross-sectional studies of patients with esophagus or esophagogastric cancer were included. HSP-positive patients were compared with HSP-negative, and the endpoints analyzed were lymph node metastasis, tumor depth, distant metastasis, and overall survival (OS). HSPs were stratified according to the HSP family, and the summary risk difference (RD) was calculated using a random-effect model. RESULTS: The final selection comprised 27 studies, including esophageal squamous cell carcinoma (21), esophagogastric adenocarcinoma (5), and mixed neoplasms (1). The pooled sample size was 3465 patients. HSP40 and 60 were associated with a higher 3-year OS [HSP40: RD = 0.22; 95% confidence interval (CI): 0.09-0.35; HSP60: RD = 0.33; 95%CI: 0.17-0.50], while HSF1 was associated with a poor 3-year OS (RD = -0.22; 95%CI: -0.32 to -0.12). The other HSP families were not associated with long-term survival. HSF1 was associated with a higher probability of lymph node metastasis (RD = -0.16; 95%CI: -0.29 to -0.04). HSP40 was associated with a lower probability of lymph node dissemination (RD = 0.18; 95%CI: 0.03-0.33). The expression of other HSP families was not significantly related to tumor depth and lymph node or distant metastasis. CONCLUSION: The expression levels of certain families of HSP, such as HSP40 and 60 and HSF1, are associated with long-term survival and lymph node dissemination in patients with esophageal and esophagogastric cancer.

17.
Plant Physiol ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668629

ABSTRACT

Excessive soil salinity not only hampers plant growth and development but can also lead to plant death. Previously, we found that heat shock factor A4 (CmHSFA4) enhances the tolerance of chrysanthemum (Chrysanthemum morifolium) to salt. However, the underlying molecular mechanism remains unclear. In this study, we identified a candidate MYB transcription factor, CmMYB121, which responded to salt stress. We observed that the CmMYB121 transcription is suppressed by CmHSFA4. Moreover, overexpression of CmMYB121 exacerbated chrysanthemum sensitivity to salt stress. CmHSFA4 directly bound to the promoter of CmMYB121 at the heat shock element (HSE). Protein-protein interaction assays identified an interaction between CmHSFA4 and CmMYBS3, a transcriptional repressor, and recruited the corepressor TOPLESS (CmTPL) to inhibit CmMYB121 transcription by impairing the H3 and H4 histone acetylation levels of CmMYB121. Our study demonstrated that a CmHSFA4-CmMYBS3-CmTPL complex modulates CmMYB121 expression, consequently regulating the tolerance of chrysanthemum to salt. The findings shed light on the responses of plants to salt stress.

18.
Environ Toxicol Pharmacol ; 108: 104428, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570150

ABSTRACT

An investigation of the effects of anthropogenic stress on terrestrial ecosystems is urgently needed. In this work, we explored how exposure to heat, desiccation, and chemical stress alters the expression of genes that encode heat shock proteins (HSPs), an enzyme that responds to oxidative stress (CAT), hypoxia-related proteins (HIF1 and HYOU), and a DNA repair-related protein (PARP1) in the earthworm Eisenia fetida. Exposure to heat (31°C) for 24 h upregulated HSPs and hypoxia-related genes, suggesting possible acquired thermotolerance. Desiccation showed a similar expression profile; however, the HSP response was activated to a lesser extent. Heat and desiccation activated the small HSP at 24 h, suggesting that they may play a role in adaptation. Simultaneous exposure to endosulfan and temperature for 7 h upregulated all of the evaluated genes, implicating a coordinated response involving multiple biological processes to ensure survival and acclimation. These results highlight the relevance of multistress analysis in terrestrial invertebrates.


Subject(s)
Heat-Shock Proteins , Hot Temperature , Oligochaeta , Animals , Oligochaeta/genetics , Oligochaeta/drug effects , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Desiccation , Gene Expression Regulation/drug effects , Stress, Physiological/drug effects , Oxidative Stress/drug effects , Soil Pollutants/toxicity
19.
Cell Stress Chaperones ; 29(3): 437-439, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641046

ABSTRACT

The heat shock transcription factors heat shock transcription factor 1 and Hsf2 have been studied for many years, mainly in the context of stress response and in malignant cells. Their physiological function in nonmalignant human cells under nonstress conditions is still largely unknown. To approach this important issue, Joutsen et al. present immunohistochemical staining data on Hsf1 and Hsf2 in 80 nonpathological human tissue samples. The wealth of these data elicits many interesting questions that will spur many future research projects.


Subject(s)
Heat Shock Transcription Factors , Immunohistochemistry , Humans , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Immunohistochemistry/methods , Transcription Factors/metabolism , DNA-Binding Proteins/metabolism , Heat-Shock Proteins/metabolism
20.
Cell Stress Chaperones ; 29(1): 143-157, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38311120

ABSTRACT

Preserving and regulating cellular homeostasis in the light of changing environmental conditions or developmental processes is of pivotal importance for single cellular and multicellular organisms alike. To counteract an imbalance in cellular homeostasis transcriptional programs evolved, called the heat shock response, unfolded protein response, and integrated stress response, that act cell-autonomously in most cells but in multicellular organisms are subjected to cell-nonautonomous regulation. These transcriptional programs downregulate the expression of most genes but increase the expression of heat shock genes, including genes encoding molecular chaperones and proteases, proteins involved in the repair of stress-induced damage to macromolecules and cellular structures. Sixty-one years after the discovery of the heat shock response by Ferruccio Ritossa, many aspects of stress biology are still enigmatic. Recent progress in the understanding of stress responses and molecular chaperones was reported at the 12th International Symposium on Heat Shock Proteins in Biology, Medicine and the Environment in the Old Town Alexandria, VA, USA from 28th to 31st of October 2023.


Subject(s)
Heat-Shock Proteins , Medicine , Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Heat-Shock Response/genetics , Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...