Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 489
Filter
1.
Res Sq ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38978592

ABSTRACT

The year of 2023 displayed the highest average global temperatures since it has been recorded-the duration and severity of extreme heat are projected to increase. Rising global temperatures represent a major public health threat, especially to occupations exposed to hot environments, such as construction and agricultural workers, and first responders. Despite efforts of the scientific community, there is still a need to characterize the pathophysiological processes leading to heat related illness and develop biomarkers that can predict its onset. Here, we performed a plasma lipidomic analysis on male and female subjects who underwent heat tolerance testing (HTT), consisting of a 2-h treadmill walk at 5 km/h with 2% inclination at a controlled temperature of 40°C. We identified 995 lipids from 27 classes, with nearly half of all detected lipids being responsive to HTT. Lipid classes related to substrate utilization were predominantly affected by HTT, with a downregulation of triacylglycerols and upregulation of free fatty acids and acyl-carnitines (CARs). We additionally examined correlations between changes in plasma lipids by using the physiological strain index (PSI). Here, even chain CAR 4:0, 14:0 and 16:1, suggested by-products of incomplete beta oxidation, and diacylglycerols displayed the highest correlation to PSI. PSI did not correlate with plasma lactate levels, suggesting that correlations between even chain CARs and PSI is related to metabolic efficiency versus physical exertion. Overall, our results show that HTT has a strong impact on the plasma lipidome and that metabolic inefficiencies may underlie heat intolerance.

2.
Sci Rep ; 14(1): 15193, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956145

ABSTRACT

Birds maintain some of the highest body temperatures among endothermic animals. Often deemed a selective advantage for heat tolerance, high body temperatures also limits birds' thermal safety margin before reaching lethal levels. Recent modelling suggests that sustained effort in Arctic birds might be restricted at mild air temperatures, which may require reductions in activity to avoid overheating, with expected negative impacts on reproductive performance. We measured within-individual changes in body temperature in calm birds and then in response to an experimental increase in activity in an outdoor captive population of Arctic, cold-specialised snow buntings (Plectrophenax nivalis), exposed to naturally varying air temperatures (- 15 to 36 °C). Calm buntings exhibited a modal body temperature range from 39.9 to 42.6 °C. However, we detected a significant increase in body temperature within minutes of shifting calm birds to active flight, with strong evidence for a positive effect of air temperature on body temperature (slope = 0.04 °C/ °C). Importantly, by an ambient temperature of 9 °C, flying buntings were already generating body temperatures ≥ 45 °C, approaching the upper thermal limits of organismal performance (45-47 °C). With known limited evaporative heat dissipation capacities in these birds, our results support the recent prediction that free-living buntings operating at maximal sustainable rates will increasingly need to rely on behavioural thermoregulatory strategies to regulate body temperature, to the detriment of nestling growth and survival.


Subject(s)
Cold Temperature , Songbirds , Animals , Arctic Regions , Songbirds/physiology , Body Temperature Regulation/physiology , Body Temperature/physiology , Breeding , Reproduction/physiology , Female , Male , Temperature
3.
J Agric Food Chem ; 72(28): 15586-15600, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38949485

ABSTRACT

Multiprotein bridging factor 1 (MBF1) is a very important transcription factor (TF) in plants, whose members influence numerous defense responses. Our study found that MBF1c in Cucurbitaceae was highly conserved. CsMBF1c expression was induced by temperature, salt stress, and abscisic acid (ABA) in cucumber. Overexpressed CsMBF1c enhanced the heat resistance of a cucumber, and the Csmbf1c mutant showed decreased resistance to high temperatures (HTs). CsMBF1c played an important role in stabilizing the photosynthetic system of cucumber under HT, and its expression was significantly associated with heat-related TFs and genes related to protein processing in the endoplasmic reticulum (ER). Protein interaction showed that CsMBF1c interacted with dehydration-responsive element binding protein 2 (CsDREB2) and nuclear factor Y A1 (CsNFYA1). Overexpression of CsNFYA1 in Arabidopsis improved the heat resistance. Transcriptional activation of CsNFYA1 was elevated by CsMBF1c. Therefore, CsMBF1c plays an important regulatory role in cucumber's resistance to high temperatures.


Subject(s)
Cucumis sativus , Gene Expression Regulation, Plant , Plant Proteins , Thermotolerance , Transcription Factors , Cucumis sativus/genetics , Cucumis sativus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Thermotolerance/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Hot Temperature , Arabidopsis/genetics , Arabidopsis/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
4.
J Exp Biol ; 227(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38841879

ABSTRACT

Female Pacific salmon often experience higher mortality than males during their once-in-a-lifetime up-river spawning migration, particularly when exposed to secondary stressors (e.g. high temperatures). However, the underlying mechanisms remain unknown. One hypothesis is that female Pacific salmon hearts are more oxygen-limited than those of males and are less able to supply oxygen to the body's tissues during this demanding migration. Notably, female hearts have higher coronary blood flow, which could indicate a greater reliance on this oxygen source. Oxygen limitations can develop from naturally occurring coronary blockages (i.e. coronary arteriosclerosis) found in mature salmon hearts. If female hearts rely more heavily on coronary blood flow but experience similar arteriosclerosis levels as males, they will have disproportionately impaired aerobic performance. To test this hypothesis, we measured resting (RMR) and maximum metabolic rate (MMR), aerobic scope (AS) and acute upper thermal tolerance in coho salmon (Oncorhynchus kisutch) with an intact or artificially blocked coronary oxygen supply. We also assessed venous blood oxygen and chemistry (cortisol, ions and metabolite concentrations) at different time intervals during recovery from exhaustive exercise. We found that coronary blockage impaired MMR, AS and the partial pressure of oxygen in venous blood (PvO2) during exercise recovery but did not differ between sexes. Coronary ligation lowered acute upper thermal tolerance by 1.1°C. Although we did not find evidence of enhanced female reliance on coronary supply, our findings highlight the importance of coronary blood supply for mature wild salmon, where migration success may be linked to cardiac performance, particularly during warm water conditions.


Subject(s)
Coronary Circulation , Oncorhynchus kisutch , Animals , Female , Coronary Circulation/physiology , Male , Oncorhynchus kisutch/physiology , Oxygen Consumption/physiology , Basal Metabolism
5.
Temperature (Austin) ; 11(2): 110-122, 2024.
Article in English | MEDLINE | ID: mdl-38846522

ABSTRACT

Seasonal acclimatization is known to result in adaptations that can improve heat tolerance. Staff who operate on burn injuries are exposed to thermally stressful conditions and seasonal acclimatization may improve their thermoeffector responses during surgery. Therefore, the aim of this study was to assess the physiological and perceptual responses of staff who operate on burn injuries during summer and winter, to determine whether they become acclimatized to the heated operating theater. Eight staff members had physiological and perceptual responses compared during burn surgeries conducted in thermoneutral (CON: 24.1 ± 1.2°C, 45 ± 7% relative humidity [RH]) and heated (HOT: 31.3 ± 1.6°C, 44 ± 7% RH) operating theaters, in summer and winter. Physiological parameters that were assessed included core temperature, heart rate, total sweat loss, sweat rate, and urinary specific gravity. Perceptual responses included ratings of thermal sensation and comfort. In summer, CON compared to winter CON, baseline (85 ± 15 bpm VS 94 ± 18 bpm), mean (84 ± 16 bpm VS 93 ± 18 bpm), and peak HR (94 ± 17 bpm VS 105 ± 19 bpm) were lower (p < 0.05), whereas core temperature was not different between seasons in either condition (p > 0.05). In HOT, ratings of discomfort were higher in summer (15 ± 3) than winter (13 ± 3; p > 0.05), but ratings of thermal sensation and sweat rate were similar between seasons (p > 0.05). The surgical team in burns in Western Australia can obtain some of the physiological adaptations that result from seasonal acclimatization, but not all. That is most likely due to a lower than required amount of outdoor heat exposure in summer, to induce all physiological and perceptual adaptations.

6.
Proc Biol Sci ; 291(2025): 20240256, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38889786

ABSTRACT

Classical theories predict that relatively constant environments should generally favour specialists, while fluctuating environments should be selected for generalists. However, theoretical and empirical results have pointed out that generalist organisms might, on the contrary, perform poorly under fluctuations. In particular, if generalism is underlaid by phenotypic plasticity, performance of generalists should be modulated by the temporal characteristics of environmental fluctuations. Here, we used experiments in microcosms of Tetrahymena thermophila ciliates and a mathematical model to test whether the period or autocorrelation of thermal fluctuations mediate links between the level of generalism and the performance of organisms under fluctuations. In the experiment, thermal fluctuations consistently impeded performance compared with constant conditions. However, the intensity of this effect depended on the level of generalism: while the more specialist strains performed better under fast or negatively autocorrelated fluctuations, plastic generalists performed better under slow or positively autocorrelated fluctuations. Our model suggests that these effects of fluctuations on organisms' performance may result from a time delay in the expression of plasticity, restricting its benefits to slow enough fluctuations. This study points out the need to further investigate the temporal dynamics of phenotypic plasticity to better predict its fitness consequences under environmental fluctuations.


Subject(s)
Phenotype , Tetrahymena thermophila , Tetrahymena thermophila/physiology , Temperature , Adaptation, Physiological
7.
Plant J ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864847

ABSTRACT

Plants continuously endure unpredictable environmental fluctuations that upset their physiology, with stressful conditions negatively impacting yield and survival. As a contemporary threat of rapid progression, global warming has become one of the most menacing ecological challenges. Thus, understanding how plants integrate and respond to elevated temperatures is crucial for ensuring future crop productivity and furthering our knowledge of historical environmental acclimation and adaptation. While the canonical heat-shock response and thermomorphogenesis have been extensively studied, evidence increasingly highlights the critical role of regulatory epigenetic mechanisms. Among these, the involvement under heat of heterochromatic suppression mediated by transcriptional gene silencing (TGS) remains the least understood. TGS refers to a multilayered metabolic machinery largely responsible for the epigenetic silencing of invasive parasitic nucleic acids and the maintenance of parental imprints. Its molecular effectors include DNA methylation, histone variants and their post-translational modifications, and chromatin packing and remodeling. This work focuses on both established and emerging insights into the contribution of TGS to the physiology of plants under stressful high temperatures. We summarized potential roles of constitutive and facultative heterochromatin as well as the most impactful regulatory genes, highlighting events where the loss of epigenetic suppression has not yet been associated with corresponding changes in epigenetic marks.

8.
Plant Direct ; 8(6): e595, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38855127

ABSTRACT

Comparative measurements of four Vitis vinifera cultivars were undertaken to assess assimilation tolerance to the high growth temperatures currently pervading Australian and other wine growing regions. The cultivars, cvs. Chardonnay, Merlot, Semillon, and Shiraz, were all grown in common growth conditions, and an hypothesis promulgated genotypic variation in assimilation and in the leaf temperature dependency. Assimilation responses to varying light intensity and to varying chloroplast CO2 at a range of leaf temperatures (15-45°C) were measured in leaves of each cultivar in mid-summer. Light response curves revealed marked genotype differences in maximum assimilation, but temperature effects also varied. Semillon leaves were most sensitive to temperature, with marked and steep differences in assimilation at different temperatures while Chardonnay and Merlot were least sensitive, with relatively flat responses. There were also marked cultivar differences in response to CO2 and significant effects of leaf temperature. CO2-saturated assimilation varied markedly, with Semillon and Merlot leaves most responsive to temperature, although there were differences in optimum temperatures and maximum rates. Chardonnay leaves remained least tolerant, with lowest rates of assimilation across most temperatures. Assimilation at 45°C also separated the cultivars and two cultivars had higher rates than at 15°C while Chardonnay and Merlot leaves had higher rates at 15°C. There were no cultivar differences in the temperature dependency of Ribulose 1,5-bisphosphate (RuBP) carboxylation, but Semillon had a much steeper temperature dependency on RuBP regeneration than the other cultivars. All these responses confirmed the hypothesis and concluded the high-temperature tolerance of Semillon and Shiraz and the poor adaptability of Chardonnay and possibly Merlot to perform in the current high-temperature growth conditions.

9.
Poult Sci ; 103(7): 103827, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801811

ABSTRACT

Chick's susceptibility to heat stress often leads to growth retardation, immune function impairment, disease, and mortality. This thesis explores the potential ameliorative effect of 0.8% Eucommia ulmoides extract (EUE) into the diet of heat-stressed chicks in a 15-d feeding trial. The investigation reveals that feeding EUE significantly enhances the BW, ADG, AFI, and F/G of chicks experiencing heat stress. Additionally, the EUE groups exhibited higher levels of T-AOC (at 7 and 15d), SOD (at 15 d), GSH-Px (at 15 d), as well as lower MDA concentrations (at 7 and 15d) in chick serum. Pathological changes and H&E staining revealed that EUE effectively improved tissue damage in the duodenum, heart, and stomach induced by heat stress in the chicks. The EUE groups also showed higher levels of IgA (at 7 d), IgG and IgM (at 7 and 15 d). RNA-seq and WGCNA analysis revealed that EUE mitigates cellular damage and losses in heat-stressed chicks primarily through pathways involving signal transduction, protein synthesis and degradation, as well as cell cycle regulation, particularly the latter. This investigation serves as a fundamental and cognitive framework for the development and application of Eucommia ulmoides feed additives aimed at safeguarding the well-being of chicks in adverse environmental conditions.


Subject(s)
Animal Feed , Chickens , Diet , Dietary Supplements , Eucommiaceae , Plant Extracts , Animals , Chickens/physiology , Eucommiaceae/chemistry , Animal Feed/analysis , Diet/veterinary , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Dietary Supplements/analysis , Hot Temperature/adverse effects , Male , Heat-Shock Response/drug effects , Random Allocation , Poultry Diseases/prevention & control
10.
Sci Total Environ ; 944: 173070, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38734087

ABSTRACT

Despite the increasing evidence for rapid thermal evolution in natural populations, evolutionary rescue under global warming may be constrained by the presence of other stressors. Highly relevant in our polluted planet, is the largely ignored evolutionary trade-off between heat tolerance and tolerance to pollutants. By using two subpopulations (separated 40 years in time) from a resurrected natural population of the water flea Daphnia magna that experienced a threefold increase in heat wave frequency during this period, we tested whether rapid evolution of heat tolerance resulted in reduced tolerance to the widespread metal zinc and whether this would affect heat tolerance upon exposure to the pollutant. Our results revealed rapid evolution of increased heat tolerance in the recent subpopulation. Notably, the sensitivity to the metal tended to be stronger (reduction in net energy budget) or was only present (reductions in heat tolerance and in sugar content) in the recent subpopulation. As a result, the rapidly evolved higher heat tolerance of the recent subpopulation was fully offset when exposed to zinc. Our results highlight that the many reports of evolutionary rescue to global change stressors may give a too optimistic view as our warming planet is polluted by metals and other pollutants.


Subject(s)
Daphnia , Thermotolerance , Animals , Daphnia/physiology , Biological Evolution , Water Pollutants, Chemical , Global Warming , Zinc , Hot Temperature/adverse effects
11.
Metabolites ; 14(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38786760

ABSTRACT

The tomato is a fruit vegetable rich in nutritional and medicinal value grown in greenhouses and fields worldwide. It is severely sensitive to heat stress, which frequently occurs with rising global warming. Predictions indicate a 0.2 °C increase in average surface temperatures per decade for the next three decades, which underlines the threat of austere heat stress in the future. Previous studies have reported that heat stress adversely affects tomato growth, limits nutrient availability, hammers photosynthesis, disrupts reproduction, denatures proteins, upsets signaling pathways, and damages cell membranes. The overproduction of reactive oxygen species in response to heat stress is toxic to tomato plants. The negative consequences of heat stress on the tomato have been the focus of much investigation, resulting in the emergence of several therapeutic interventions. However, a considerable distance remains to be covered to develop tomato varieties that are tolerant to current heat stress and durable in the perspective of increasing global warming. This current review provides a critical analysis of the heat stress consequences on the tomato in the context of global warming, its innate response to heat stress, and the elucidation of domains characterized by a scarcity of knowledge, along with potential avenues for enhancing sustainable tolerance against heat stress through the involvement of diverse advanced technologies. The particular mechanism underlying thermotolerance remains indeterminate and requires further elucidatory investigation. The precise roles and interplay of signaling pathways in response to heat stress remain unresolved. The etiology of tomato plants' physiological and molecular responses against heat stress remains unexplained. Utilizing modern functional genomics techniques, including transcriptomics, proteomics, and metabolomics, can assist in identifying potential candidate proteins, metabolites, genes, gene networks, and signaling pathways contributing to tomato stress tolerance. Improving tomato tolerance against heat stress urges a comprehensive and combined strategy including modern techniques, the latest apparatuses, speedy breeding, physiology, and molecular markers to regulate their physiological, molecular, and biochemical reactions.

12.
Plants (Basel) ; 13(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38732486

ABSTRACT

In alpine ecosystems, elevation broadly functions as a steep thermal gradient, with plant communities exposed to regular fluctuations in hot and cold temperatures. These conditions lead to selective filtering, potentially contributing to species-level variation in thermal tolerance and population-level genetic divergence. Few studies have explored the breadth of alpine plant thermal tolerances across a thermal gradient or the underlying genetic variation thereof. We measured photosystem heat (Tcrit-hot) and cold (Tcrit-cold) thresholds of ten Australian alpine species across elevation gradients and characterised their neutral genetic variation. To reveal the biogeographical drivers of present-day genetic signatures, we also reconstructed temporal changes in habitat suitability across potential distributional ranges. We found intraspecific variation in thermal thresholds, but this was not associated with elevation, nor underpinned by genetic differentiation on a local scale. Instead, regional population differentiation and considerable homozygosity within populations may, in part, be driven by distributional contractions, long-term persistence, and migrations following habitat suitability. Our habitat suitability models suggest that cool-climate-distributed alpine plants may be threatened by a warming climate. Yet, the observed wide thermal tolerances did not reflect this vulnerability. Conservation efforts should seek to understand variations in species-level thermal tolerance across alpine microclimates.

13.
Conserv Biol ; : e14266, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578127

ABSTRACT

Survival of the immobile embryo in response to rising temperature is important to determine a species' vulnerability to climate change. However, the collective effects of 2 key thermal characteristics associated with climate change (i.e., rising average temperature and acute heat events) on embryonic survival remain largely unexplored. We used empirical measurements and niche modeling to investigate how chronic and acute heat stress independently and collectively influence the embryonic survival of lizards across latitudes. We collected and bred lizards from 5 latitudes and incubated their eggs across a range of temperatures to quantify population-specific responses to chronic and acute heat stress. Using an embryonic development model parameterized with measured embryonic heat tolerances, we further identified a collective impact of embryonic chronic and acute heat tolerances on embryonic survival. We also incorporated embryonic chronic and acute heat tolerance in hybrid species distribution models to determine species' range shifts under climate change. Embryos' tolerance of chronic heat (T-chronic) remained consistent across latitudes, whereas their tolerance of acute heat (T-acute) was higher at high latitudes than at low latitudes. Tolerance of acute heat exerted a more pronounced influence than tolerance of chronic heat. In species distribution models, climate change led to the most significant habitat loss for each population and species in its low-latitude distribution. Consequently, habitat for populations across all latitudes will shift toward high latitudes. Our study also highlights the importance of considering embryonic survival under chronic and acute heat stresses to predict species' vulnerability to climate change.


Efectos colectivos del aumento de las temperaturas promedio y los eventos de calor en embriones ovíparos Resumen La supervivencia de los embriones inmóviles en respuesta al incremento de temperatura es importante para determinar la vulnerabilidad de las especies al cambio climático. Sin embargo, los efectos colectivos de dos características térmicas claves asociadas con el cambio climático (i. e., aumento de temperatura promedio y eventos de calor agudo) sobre la supervivencia embrionaria permanecen en gran parte inexplorados. Utilizamos mediciones empíricas y modelos de nicho para investigar cómo el estrés térmico crónico y agudo influye de forma independiente y colectiva en la supervivencia embrionaria de los lagartos en todas las latitudes. Recolectamos y criamos lagartos de cinco latitudes e incubamos sus huevos en un rango de temperaturas para cuantificar las respuestas específicas de la población al estrés por calor crónico y agudo. Posteriormente, mediante un modelo de desarrollo embrionario parametrizado con mediciones de tolerancia embrionaria al calor, identificamos un impacto colectivo de las tolerancias embrionarias al calor agudo y crónico en la supervivencia embrionaria. También incorporamos la tolerancia embrionaria crónica y aguda al calor en modelos de distribución de especies híbridas para determinar los cambios de distribución de las especies bajo el cambio climático. La tolerancia embrionaria al calor crónico (T­crónico) permaneció constante, mientras que la tolerancia al calor agudo (T­agudo) fue mayor en latitudes altas que en latitudes bajas. La tolerancia al calor agudo ejerció una influencia más pronunciada que la tolerancia al calor crónico. En los modelos de distribución de especies, el cambio climático provocó la pérdida de hábitat más significativa para cada población y especie en su distribución de latitudes bajas. En consecuencia, el hábitat para poblaciones en todas las latitudes se desplazará a latitudes altas. Nuestro estudio también resalta la importancia de considerar la supervivencia embrionaria bajo estrés térmico crónico y agudo para predecir la vulnerabilidad de las especies al cambio climático.

14.
Sci Rep ; 14(1): 9224, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649406

ABSTRACT

Chocolate spot and heat stress devastatingly impact the production of faba bean, particularly under prevailing climatic changes and rising drastic environmental conditions. Hence, the adaptability of faba bean performance is a decisive objective of plant breeders to ensure its sustainable production. The present study aimed to evaluate the agronomic performance and stability of diverse eleven faba bean genotypes for yield characters, chocolate spot, and heat stress in eight different growing environments. The faba bean genotypes were evaluated at two sowing dates in two different locations during two growing seasons. The evaluated eleven faba bean genotypes were sown timely in autumn (25 October) and late sowing in early winter (25 November) in Bilbeis and Elkhatara during 2020 and 2021 growing seasons. The results exhibited substantial differences among the evaluated sowing dates, locations, and faba bean genotypes for all studied characters. The genotypes Sakha-3, Nubaria-3, Nubaria-5, Misr-3, and Wadi-1 were able to produce acceptable yield and quality characters under timely sowing in autumn and late sowing in early winter in all tested environments. Moreover, the genotypes Nubaria-3, Nubaria-4, Nubaria-5, Sakha-4, Giza-3, and Triple White exhibited better resistance to chocolate spot. The assessed faba bean genotypes were evaluated under late sowing to expose the plants to high temperature stress at flowering and throughout the anthesis and seed-filling stages. The genotypes Nubaria-5, Nubaria-3, Nubaria-4, Sakha-3, Sakha-4, Wadi-1, and Misr-3 possessed tolerance to heat stress more than the other genotypes. Different statistical methods were applied to study the stability of assessed genotypes such as joint regression, Additive Main Effect and Multiplicative Interaction (AMMI) analysis, AMMI stability value, Wricke's and Ecovalence values. The estimated stability parameters were consistent in depicting the stability of the assessed faba bean genotypes. The findings revealed that Sakha-1, Misr-3, Nubaria-4, and Nubaria-5 demonstrated stable and desirable performance across all tested environments. The heatmap was employed to classify the assessed faba bean genotypes into different groups based on agronomic performance, chocolate spot resistance and heat stress tolerance. Nubaria-3, Nubaria-4, Nubaria-5, and Misr-3 had the best performance for agronomic performance, chocolate spot resistance, and heat stress tolerance. The obtained results provide evidence of employing promising faba bean genotypes for improving the stability of agronomic performance, chocolate spot resistance, and heat stress tolerance in breeding programs principally under unprecedented climate fluctuations.


Subject(s)
Genotype , Thermotolerance , Vicia faba , Vicia faba/genetics , Thermotolerance/genetics , Plant Breeding , Seasons , Plant Diseases/genetics
15.
bioRxiv ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38585904

ABSTRACT

Climate change is expected to profoundly affect mosquito distributions and their ability to serve as vectors for disease, specifically with the anticipated increase in heat waves. The rising temperature and frequent heat waves can accelerate mosquito life cycles, facilitating higher disease transmission. Conversely, higher temperatures could increase mosquito mortality as a negative consequence. Warmer temperatures are associated with increased human density, suggesting a need for anthropophilic mosquitoes to adapt to be more hardy to heat stress. Mosquito eggs provide an opportunity to study the biological impact of climate warming as this stage is stationary and must tolerate temperatures at the site of female oviposition. As such, egg thermotolerance is critical for survival in a specific habitat. In nature, Aedes mosquitoes exhibit different behavioral phenotypes, where specific populations prefer depositing eggs in tree holes and prefer feeding non-human vertebrates. In contrast, others, particularly human-biting specialists, favor laying eggs in artificial containers near human dwellings. This study examined the thermotolerance of eggs, along with adult stages, for Aedes aegypti and Ae. albopictus lineages associated with known ancestry and shifts in their relationship with humans. Mosquitoes collected from areas with higher human population density, displaying increased human preference, and having a human-associated ancestry profile have increased egg viability following high-temperature stress. Unlike eggs, thermal tolerance among adults showed no significant correlation based on the area of collection or human-associated ancestry. This study highlights that the egg stage is likely critical to mosquito survival when associated with humans and needs to be accounted when predicting future mosquito distribution.

16.
Plants (Basel) ; 13(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38592815

ABSTRACT

Rice production is threatened by climate change, particularly heat stress (HS). Nonstructural carbohydrates (NSCs) remobilization is a key physiological mechanism that allows rice plants to cope with HS. To investigate the impact of short-term HS on the remobilization of nonstructural carbohydrates (NSCs) in rice, two cultivars (Huaidao-5 and Wuyunjing-24) were subjected to varying temperature regimes: 32/22/27 °C as the control treatment, alongside 40/30/35 °C and 44/34/39 °C, for durations of 2 and 4 days during the booting, flowering, and combined stages (booting + flowering) within phytotrons across the years 2016 and 2017. The findings revealed that the stem's NSC concentration increased, while the panicle's NSCs concentration, the efficiency of NSCs translocation from the stem, and the stem NSC contribution to grain yield exhibited a consistent decline. Additionally, sugar and starch concentrations increased in leaves and stems during late grain filling and maturity stages, while in panicles, the starch concentration decreased and sugar concentration increased. The heat-tolerant cultivar, Wuyunjing-24, exhibited higher panicle NSC accumulation under HS than the heat-sensitive cultivar, Huaidao-5, which had more stem NSC accumulation. The flowering stage was the most vulnerable to HS, followed by the combined and booting stages. Heat degree days (HDDs) were utilized to quantify the effects of HS on NSC accumulation and translocation, revealing that the flowering stage was the most affected. These findings suggest that severe HS makes the stem the primary carbohydrate storage sink, and alleviation under combined HS aids in evaluating NSC accumulation, benefiting breeders in developing heat-tolerant rice varieties.

17.
Plant Biol (Stuttg) ; 26(4): 495-498, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38477075

ABSTRACT

There is growing concern about the fate of tropical forests in the face of rising global temperatures. Doughty et al. (2023) suggest that an increase in air temperature beyond ∼4 °C will result in massive death of tropical forest leaves and potentially tree death. However, this prediction relies on assumptions that likely underestimate the heat tolerance of tropical leaves.


Subject(s)
Forests , Plant Leaves , Trees , Tropical Climate , Plant Leaves/physiology , Trees/physiology , Temperature , Climate Change , Thermotolerance/physiology , Global Warming , Hot Temperature
18.
Ecology ; 105(5): e4279, 2024 May.
Article in English | MEDLINE | ID: mdl-38501232

ABSTRACT

The role of atmospheric humidity in the evolution of endotherms' thermoregulatory performance remains largely unexplored, despite the fact that elevated humidity is known to impede evaporative cooling capacity. Using a phylogenetically informed comparative framework, we tested the hypothesis that pronounced hyperthermia tolerance among birds occupying humid lowlands evolved to reduce the impact of humidity-impeded scope for evaporative heat dissipation by comparing heat tolerance limits (HTLs; maximum tolerable air temperature), maximum body temperatures (Tbmax), and associated thermoregulatory variables in humid (19.2 g H2O m-3) versus dry (1.1 g H2O m-3) air among 30 species from three climatically distinct sites (arid, mesic montane, and humid lowland). Humidity-associated decreases in evaporative water loss and resting metabolic rate were 27%-38% and 21%-27%, respectively, and did not differ significantly between sites. Decreases in HTLs were significantly larger among arid-zone (mean ± SD = 3.13 ± 1.12°C) and montane species (2.44 ± 1.0°C) compared to lowland species (1.23 ± 1.34°C), with more pronounced hyperthermia among lowland (Tbmax = 46.26 ± 0.48°C) and montane birds (Tbmax = 46.19 ± 0.92°C) compared to arid-zone species (45.23 ± 0.24°C). Our findings reveal a functional link between facultative hyperthermia and humidity-related constraints on evaporative cooling, providing novel insights into how hygric and thermal environments interact to constrain avian performance during hot weather. Moreover, the macrophysiological patterns we report provide further support for the concept of a continuum from thermal specialization to thermal generalization among endotherms, with adaptive variation in body temperature correlated with prevailing climatic conditions.


Subject(s)
Biological Evolution , Birds , Humidity , Thermotolerance , Animals , Thermotolerance/physiology , Birds/physiology , Body Temperature Regulation/physiology , Atmosphere , Hot Temperature
19.
Int J Biol Macromol ; 267(Pt 2): 131256, 2024 May.
Article in English | MEDLINE | ID: mdl-38556243

ABSTRACT

Given the detrimental impact of global warming on crop production, it is particularly important to understand how plants respond and adapt to higher temperatures. Using the non-invasive micro-test technique and laser confocal microscopy, we found that the cascade process of early signals (K+, H2O2, H+, and Ca2+) ultimately resulted in an increase in the cytoplasmic Ca2+ concentration when Arabidopsis was exposed to heat stress. Quantitative real-time PCR demonstrated that heat stress significantly up-regulated the expression of CAM1, CAM3 and HSFA2; however, after CAM1 and CAM3 mutation, the upregulation of HSFA2 was reduced. In addition, heat stress affected the expression of LOX3 and OPR3, which was not observed when HSFA2 was mutated. Luciferase reporter gene expression assay and electrophoretic mobility shift assay showed that HSFA2 regulated the expression of both genes. Determination of jasmonic acid (JA) content showed that JA synthesis was promoted by heat stress, but was damaged when HSFA2 and OPR3 were mutated. Finally, physiological experiments showed that JA reduced the relative electrical conductivity of leaves, enhanced chlorophyll content and relative water content, and improved the survival rate of Arabidopsis under heat stress. Together, our results reveal a new pathway for Arabidopsis to sense and transmit heat signals; HSFA2 is involved in the JA synthesis, which can act as a defensive compound improving Arabidopsis heat tolerance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cyclopentanes , Gene Expression Regulation, Plant , Heat Shock Transcription Factors , Heat-Shock Response , Oxylipins , Signal Transduction , Thermotolerance , Arabidopsis/genetics , Arabidopsis/metabolism , Oxylipins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cyclopentanes/metabolism , Thermotolerance/genetics , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics , Calcium/metabolism , Mutation
20.
Animals (Basel) ; 14(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38473160

ABSTRACT

Hainan yellow cattle are indigenous Zebu cattle from southern China known for their tolerance of heat and strong resistance to disease. Generations of adaptation to the tropical environment of southern China and decades of artificial breeding have left identifiable selection signals in their genomic makeup. However, information on the selection signatures of Hainan yellow cattle is scarce. Herein, we compared the genomes of Hainan yellow cattle with those of Zebu, Qinchuan, Nanyang, and Yanbian cattle breeds by the composite likelihood ratio method (CLR), Tajima's D method, and identifying runs of homozygosity (ROHs), each of which may provide evidence of the genes responsible for heat tolerance in Hainan yellow cattle. The results showed that 5210, 1972, and 1290 single nucleotide polymorphisms (SNPs) were screened by the CLR method, Tajima's D method, and ROH method, respectively. A total of 453, 450, and 325 genes, respectively, were identified near these SNPs. These genes were significantly enriched in 65 Gene Ontology (GO) functional terms and 11 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (corrected p < 0.05). Five genes-Adenosylhomocysteinase-like 2, DnaJ heat shock protein family (Hsp40) member C3, heat shock protein family A (Hsp70) member 1A, CD53 molecule, and zinc finger and BTB domain containing 12-were recognized as candidate genes associated with heat tolerance. After further functional verification of these genes, the research results may benefit the understanding of the genetic mechanism of the heat tolerance in Hainan yellow cattle, which lay the foundation for subsequent studies on heat stress in this breed.

SELECTION OF CITATIONS
SEARCH DETAIL
...