Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 314
Filter
1.
Front Public Health ; 12: 1409563, 2024.
Article in English | MEDLINE | ID: mdl-38962759

ABSTRACT

The increasingly frequent occurrence of urban heatwaves has become a significant threat to human health. To quantitatively analyze changes in heatwave characteristics and to investigate the return periods of future heatwaves in Wuhan City, China, this study extracted 9 heatwave definitions and divided them into 3 mortality risk levels to identify and analyze historical observations and future projections of heatwaves. The copula functions were employed to derive the joint distribution of heatwave severity and duration and to analyze the co-occurrence return periods. The results demonstrate the following. (1) As the concentration of greenhouse gas emissions increases, the severity of heatwaves intensifies, and the occurrence of heatwaves increases significantly; moreover, a longer duration of heatwaves correlated with higher risk levels in each emission scenario. (2) Increasing concentrations of greenhouse gas emissions result in significantly shorter heatwave co-occurrence return periods at each level of risk. (3) In the 3 risk levels under each emission scenario, the co-occurrence return periods for heatwaves become longer as heatwave severity intensifies and duration increases. Under the influence of climate change, regional-specific early warning systems for heatwaves are necessary and crucial for policymakers to reduce heat-related mortality risks in the population, especially among vulnerable groups.


Subject(s)
Climate Change , China/epidemiology , Humans , Risk Assessment/methods , Extreme Heat/adverse effects , Cities , Hot Temperature/adverse effects , Mortality/trends , Environmental Monitoring
2.
Data Brief ; 55: 110553, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38948403

ABSTRACT

Within the study of the urban heat island (UHI) in Echirolles and Grenoble (France, the eastern part of the alpine arc), two temperature measurement networks have been deployed. The aim is to measure the temperature gradients associated with the UHI in summer. A total of 62 measurement points has been installed in the various neighborhoods on 3-meter-high streetlights, starting in summer 2019. The preliminary classification of the different neighborhood typologies according to ``Local Climate Zone'' guided the choice of location for the temperature sensors. These urban observations respond to a dual challenge: firstly, to observe temperature located in complex topographical situations with valleys, and secondly, to observe the urban climate in neighborhoods where social considerations are important. Municipalities of Echirolles and Grenoble were involved in the investigation. The ADEME-funded (The French Agency for Ecological Transition) CASSANDRE research program analyzes and processes these observations to study the vulnerability of inhabitants to heat waves and more generally to summer heat stress.

3.
Sci Total Environ ; 947: 174650, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986701

ABSTRACT

The escalating health risks posed by warm weather in urban areas have become a pressing global public health issue. This study undertakes a meta-analysis to evaluate the impact of warm weather on health in urban settings. We comprehensively searched PubMed, Embase, Scopus, and Web of Science for literature published before September 6, 2023, evaluating evidence quality using the Navigation Guide Criteria. We included original studies utilizing high temperatures or heatwaves as exposure metrics and employing observational designs. A meta-analysis was carried out to assess the relative risk (RR) of the association between high temperatures (or heatwaves) and disease outcomes. Out of 12,893 studies identified, 188 met the inclusion criteria for meta-analysis. Results demonstrate a statistically significant association between a 1 °C temperature increase and a 2.1 % elevation in disease-related mortality (RR 1.021 [95 % CI 1.018-1.023]), alongside a 1.1 % increase in morbidity (RR 1.011 [95 % CI 1.007-1.016]). Heatwaves also showed associations with increased total mortality (RR 1.224 [95 % CI 1.186-1.264]) and morbidity (RR 1.038 [95 % CI 1.010-1.066]). Subgroup analyses for diseases, sex, age, climatic zones, countries, and time periods consistently indicated heightened disease-related mortality and morbidity linked to high temperatures. Notably, China's urban population faced an elevated mortality risk (RR 1.027 [95 % CI 1.018-1.036]) compared to other countries (RR 1.021 [95 % CI 1.019-1.024]). Mortality associated with high temperatures after 2007 (RR 1.022 [95 % CI 1.015-1.029]) was higher than before 2007 (RR 1.017 [95 % CI 1.013-1.021]), reflecting increased health risks as the global warming accelerates. Our findings underscore the positive association between rising temperatures and/or heatwaves and adverse health outcomes in urban populations. The widespread exposure to high temperatures amplifies health risks across various diseases, demographics, climates, and countries, with potential exacerbation under ongoing global warming. Further research is imperative to delineate factors influencing altered heat exposure impacts.

4.
Sci Total Environ ; : 174722, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004358

ABSTRACT

Communities in stream ecosystems often respond asymmetrically to increase and release of stressors, as indicated by slow and incomplete recovery. The Asymmetric Response Concept (ARC) posits that this is due to a shift in the relative importance of three mechanisms: tolerance, dispersal, and biotic interactions. In complex natural communities, these mechanisms may produce alternative outcomes through poorly understood indirect effects. To understand how the three mechanisms respond to different temporal stressor scenarios, we studied multiple scenarios using a stream food web model. We asked the following questions: Do groups of species decline as expected on the basis of individual tolerance rankings derived from laboratory experiments when they are embedded in a complex dynamic food web? Does the response of ecosystem function match that of communities? To address these questions, we aggregated data on individual tolerances at the level of functional groups and studied how single and multiple stressors affect food web dynamics and nutrient cycling. Multiple stressor scenarios involved different intensities of salt and temperature increase. Functional groups exhibited a different relative tolerance ranking between the laboratory and dynamic food web contexts. Salt as a single stressor had only minor and transient effects at low level but led to the loss of one or more functional groups at high level. In contrast, high temperature, alone or in combination with salt, caused the loss of functional groups at all tested levels. Patterns often differed between the response of communities and ecosystem function. We discuss our findings with respect to the ARC.

5.
Glob Chang Biol ; 30(6): e17358, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822590

ABSTRACT

Human activities and climate change cause abiotic factors to fluctuate through time, sometimes passing thresholds for organismal reproduction and survival. Multiple stressors can independently or interactively impact organisms; however, few studies have examined how they interact when they overlap spatially but occur asynchronously. Fluctuations in salinity have been found in freshwater habitats worldwide. Meanwhile, heatwaves have become more frequent and extreme. High salinity pulses and heatwaves are often decoupled in time but can still collectively impact freshwater zooplankton. The time intervals between them, during which population growth and community recovery could happen, can influence combined effects, but no one has examined these effects. We conducted a mesocosm experiment to examine how different recovery times (0-, 3-, 6-week) between salt treatment and heatwave exposure influence their combined effects. We hypothesized that antagonistic effects would appear when having short recovery time, because previous study found that similar species were affected by the two stressors, but effects would become additive with longer recovery time since fully recovered communities would respond to heatwave similar to undisturbed communities. Our findings showed that, when combined, the two-stressor joint impacts changed from antagonistic to additive with increased recovery time between stressors. Surprisingly, full compositional recovery was not achieved despite a recovery period that was long enough for population growth, suggesting legacy effects from earlier treatment. The recovery was mainly driven by small organisms, such as rotifers and small cladocerans. As a result, communities recovering from previous salt exposure responded differently to heatwaves than undisturbed communities, leading to similar zooplankton communities regardless of the recovery time between stressors. Our research bolsters the understanding and management of multiple-stressor issues by revealing that prior exposure to one stressor has long-lasting impacts on community recovery that can lead to unexpected joint effects of multiple stressors.


Subject(s)
Climate Change , Salinity , Stress, Physiological , Zooplankton , Animals , Zooplankton/physiology , Time Factors , Fresh Water , Hot Temperature/adverse effects , Ecosystem
6.
Int J Biometeorol ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850441

ABSTRACT

Riparian corridors often act as low-land climate refugia for temperate tree species in their southern distribution range. A plausible mechanism is the buffering of regional climate extremes by local physiographic and biotic factors. We tested this idea using a 3-year-long microclimate dataset collected along the Ciron river, a refugia for European beech (Fagus sylvatica) in southwestern France. Across the whole network, canopy gap fraction was the main predictor for spatial microclimatic variations, together with two other landscape features (elevation above the river and woodland fraction within a 300m radius). However, within the riparian forest only (canopy gap fraction < 25%, distance to the river < 150m), variations of up to -4°C and + 15% in summertime daily maximum air temperature and minimum relative humidity, respectively, were still found from the plateau to the cooler, moister river banks, only ~ 5-10m below. Elevation above the river was then identified as the main predictor, and explained the marked variations from the plateau to the banks much better than canopy gap fraction. The microclimate measured near the river is as cool but moister than the macroclimate encountered at 700-1000m asl further east in F. sylvatica's main distribution range. Indeed, at all locations, we found that air relative humidity was higher than expected from a temperature-only effect, suggesting that extra moisture is brought by the river. Our results explain well why beech trees in this climate refugium are restricted to the river gorges where microtopographic variations are the strongest and canopy gaps are rare.

7.
Mar Environ Res ; 198: 106570, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38834375

ABSTRACT

Marine heatwaves (MHWs) have been reported often throughout the world, producing severe effects on marine ecosystems. However, the spatial pattern and trend of MHWs in the Gulf of Thailand (GOT) is still unknown. Based on high-resolution daily satellite data over a 40-year period from 1982 to 2021, changes in annual mean SST and MHW occurrences across the GOT are explored here. The results demonstrate that during a warming hiatus (1998-2009), annual mean SST in the GOT encountered a dropping trend, followed by an increasing trend during a warming reacceleration period (2010-2021). Although a warming hiatus and a warming reacceleration occurred in the annual mean SST after 1998, regional averaged SSTs were still 0.18 °C-0.42 °C higher than that for 1982-1997. Statistical distributions reveal that there was a significant shift in both annual mean SSTs and annual extreme hot SSTs. These changes have the potential to increase the frequency of MHWs. Further analysis reveals that MHW frequency has increased at a rate of 1.11 events per decade from 1982 to 2021, which is 2.5 times the global mean rate. For the period 2010-2021, the frequency and intensity of MHWs in the GOT have never dropped, but have instead been more frequent, longer lasting and extreme than those metrics of MHWs between 1982 and 2009. Furthermore, the findings highlight significant changes in the SST over the GOT that may lead us to change or modify the reference period of the MHW definition. The findings also suggest that heat transport and redistribution mechanisms in the GOT sea are changing. This study contributes to our understanding of MHW features in the GOT and the implications for marine ecosystems.


Subject(s)
Global Warming , Thailand , Environmental Monitoring , Ecosystem , Hot Temperature , Seawater , Climate Change
8.
Physiol Rep ; 12(11): e16107, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38849294

ABSTRACT

July 2023 has been confirmed as Earth's hottest month on record, and it was characterized by extraordinary heatwaves across southern Europe. Field data collected under real heatwave periods could add important evidence to understand human adaptability to extreme heat. However, field studies on human physiological responses to heatwave periods remain limited. We performed field thermo-physiological measurements in a healthy 37-years male undergoing resting and physical activity in an outdoor environment in the capital of Sicily, Palermo, during (July 21; highest level of local heat-health alert) and following (August 10; lowest level of local heat-health alert) the peak of Sicily's July 2023 heatwave. Results indicated that ~40 min of outdoor walking and light running in 33.8°C Wet Bulb Globe Temperature (WBGT) conditions (July 21) resulted in significant physiological stress (i.e., peak heart rate: 209 bpm; core temperature: 39.13°C; mean skin temperature: 37.2°C; whole-body sweat losses: 1.7 kg). Importantly, significant physiological stress was also observed during less severe heat conditions (August 10; WBGT: 29.1°C; peak heart rate: 190 bpm; core temperature: 38.48°C; whole-body sweat losses: 2 kg). These observations highlight the physiological strain that current heatwave conditions pose on healthy young individuals. This ecologically-valid empirical evidence could inform more accurate heat-health planning.


Subject(s)
Extreme Heat , Heart Rate , Humans , Male , Adult , Sicily , Heart Rate/physiology , Extreme Heat/adverse effects , Sweating/physiology , Body Temperature/physiology , Body Temperature Regulation/physiology , Skin Temperature/physiology , Hot Temperature/adverse effects
9.
Health Rep ; 35(6): 3-15, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896416

ABSTRACT

Background: Extreme heat has significant impacts on mortality. In Canada, past research has analyzed the degree to which non-accidental mortality increases during single extreme heat events; however, few studies have considered multiple causes of death and the impacts of extreme heat events on mortality over longer time periods. Data and methods: Daily death counts attributable to non-accidental, cardiovascular, and respiratory causes were retrieved for the 12 most populous cities in Canada from 2000 to 2020. Generalized additive models were applied to quantify daily mortality risks for people aged younger than 65 years and for those aged 65 years and older in each city and for each cause of death. Model results were used to calculate the change in mortality risks and the number of excess deaths attributable to extreme heat during extreme heat events. Results: Elevated mortality risks were observed during extreme heat events in most cities for non-accidental and respiratory causes. The impacts of extreme heat on non-accidental mortality were typically greater for people aged 65 and older than for those aged younger than 65. Significantly higher non-accidental mortality risks were observed during extreme heat events for people aged 65 and older in Montréal, the city of Québec, Surrey, and Toronto. For cardiovascular and respiratory causes, people aged 65 and older had significantly higher mortality risks during extreme heat events in Montréal, and both Montréal and Toronto, respectively. In the 12 cities, approximately 670 excess non-accidental deaths, 115 excess cardiovascular deaths, and 115 excess respiratory deaths were attributable to extreme heat events during the study period. Mortality risks during extreme heat events were generally higher in cities with larger proportions of renter households and fewer extreme heat events. Interpretation: This study estimates the longer-term impacts of extreme heat events on three mortality outcomes in a set of large Canadian cities. As climate change causes more frequent and intense extreme heat events, and as policy makers aim to reduce the health impacts of heat, it is important to understand how and where extreme heat affects health.


Subject(s)
Cardiovascular Diseases , Cause of Death , Cities , Extreme Heat , Respiratory Tract Diseases , Humans , Cardiovascular Diseases/mortality , Canada/epidemiology , Aged , Cities/epidemiology , Respiratory Tract Diseases/mortality , Extreme Heat/adverse effects , Middle Aged , Male , Female , Adult , Child, Preschool , Infant , Adolescent , Young Adult , Child
10.
Sci Total Environ ; 944: 173728, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38866167

ABSTRACT

Given their multifold benefits, green roofs are often considered to mitigate the urban heat island (UHI) effect. Most mesoscale studies consider 100 % green roof fraction or the same green roof fraction in each urban land use category while analysing the influence of green roofs on the UHI effect, which can overestimate their impact on UHI. Consequently, the impact of green roofs evaluated in these studies may not be suitable for informing policy decisions. Furthermore, the effect of morphologies on temperature reduction due to green roofs has not been previously studied. To address this gap, in this paper, we evaluate the impact of a realistic fraction of green roofs specific to the respective local climate zones (LCZ) on the UHI effect during a heatwave in Liège, Belgium, employing a high-resolution WRF study using the BEP-BEM parameterisation with LCZ land use classification. The realistic fraction is estimated for every LCZ class based on the average percentage of flat roofs observed in each LCZ class in Liège. Accordingly, distinct realistic fractions of green roofs are assigned to each LCZ class in WRF. We run the WRF simulation for the base scenario (without green roofs), extreme scenario (100 % green roof fraction), and realistic scenario. The results indicate a limited reduction in near-surface air and surface temperature in a realistic scenario, with a nighttime increase in temperature. Additionally, in the extreme scenario, the temperature reduction largely depends on the morphology. However, in a realistic scenario, it depends on the green roof fraction. Other indicators like heat index and UHI intensity also are not reduced considerably with realistic greening. Therefore, realistic roof greening alone will not be sufficient to achieve an impact on a city-scale.

11.
Aquat Toxicol ; 273: 106988, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38875955

ABSTRACT

Freshwater ecosystems are increasingly exposed to anthropogenic eutrophication, including high nitrogen. In addition, climate change is leading to more intense and frequent heatwaves, which have enormous impacts on all trophic levels of the ecosystem. Any change in the lower trophic levels, e.g., the phytoplankton, also introduces stress to higher trophic levels e.g., the zooplankton crustacean Daphnia. Individual effects of heatwaves, high nitrate, and changing feed quality have been studied in daphnia, but less is known about their interactive effects. This study used a 3 × 3 × 2 factorial design in which daphnia were exposed to combinations of ecologically relevant nitrate concentrations (0, 50, or 200 mg/L) and different heatwave scenarios (no, short-moderate, or long-intense) in which individuals were either fed with microalgae (P. subcapitata and C. reinhardtii) grown at 20 °C and 50 mg/L nitrate (control feed) or the same conditions as daphnia was exposed to (experimental feed). Throughout the experiment, the interactive effects of high nitrate, heatwave, and feed on mortality, maturation, offspring, and body size were evaluated. In general, heatwaves shorten the lifespan of daphnia. Exposing daphnia to a long-intense heatwave combined with high nitrate resulted in poor performance. In the nitrate-limited condition, however, the restricted proliferation of microalgae reduced feed availability, which also had a major impact on daphnia's life history traits. Daphnia cultured in high nitrate and fed control feed performed better than when fed experimental feed, suggesting that in a high nitrate condition, the microalgae grown under the same experimental conditions was either unable to meet energy requirements or introduced extra stress for the daphnia. Most importantly, the effect of nitrate and heatwave as stressors on the availability and quality of the feed had a greater impact on daphnia than its direct impact. Interestingly, a transgenerational adaptation to nitrate was observed which may help to maintain ecological balance in the long run.

12.
Int J Biometeorol ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819444

ABSTRACT

The study aimed to estimate economic losses associated with heat stress in the eight dairy production regions (DPR), defined by the Dairy Chilean Consortium, using two comfort thermal indices, namely, the temperature-humidity index (THI) and the THI adjusted for solar radiation and wind speed (THIa). Hourly records from 19 weather stations (Nov - Mar 2017-2022) were collected to estimate the comfort thermal indices. The economic impact was estimated considering a critical threshold of 65 for both indices and the effect of higher values on loss in milk yield, days open, culling rate, and deaths. There were differences in the number of hours above the threshold among DPRs, independent of the thermal index used (P < 0.01). The greatest values were observed in DPRs I, II, and VIII, which concentrate most dairy cows. Average losses in milk yield were between 2.0 and 6.4 times higher when THIa was used instead of THI, which also depends on the DPR (P < 0.01). These estimations coincide with those observed empirically by producers. The lowest average economic losses per cow during the summer season (5 seasons average) occurred in DPR VI (US $ 91.5), and the highest losses were observed in DPR I (US $ 184.2) both using THIa. At the country level, economic losses fluctuate between US $ 29.0 and 108.4 million per summer season, depending on the comfort thermal index used. Finally, heat stress impacts negatively and significantly the Chilean dairy sector, which is highly dependent on the DPR.

13.
GMS Hyg Infect Control ; 19: Doc22, 2024.
Article in English | MEDLINE | ID: mdl-38766634

ABSTRACT

Background: The major heatwave in Europe in August 2003 resulted in 70,000 excess deaths. In Frankfurt am Main, a city with 767,000 inhabitants in the south-west of Germany, around 200 more people died in August 2003 than expected. Soon afterwards, the city introduced adaptation measures to prevent heat-related health problems and subsequently established further mitigation measures to limit climate change. Frankfurt is rated as being one of the cities in Germany to have implemented the best climate adaptation and mitigation measures. This study addressed the following questions: is there already a downward trend in mortality from heat and can this be attributed to the measures taken? Materials and methods: The age-standardized mortality rate (ASR) was calculated for the months of June to August and for calendar weeks 23 to 34 of the individual years on the basis of population data and deaths of the inhabitants of Frankfurt am Main for the years 2000 to 2023. This was related to the meteorological data from the Frankfurt measuring station of the German National Meteorological Service. For four different heat exposure indicators (heat days, days in heat weeks, days in heatwaves and days with heat warnings), the incidence rate (death cases per 1 million person days) (IR) was calculated for days with and without exposure, and the incidence rate difference and the incidence rate ratio (IRR) were estimated to compare days with vs days without exposure. Results: Over the years, the mean daily temperatures tended to increase, and the standardized mortality rate decreased. An increase in ASR was observed during heatwaves up to 2015, but no longer in the later ones. In the summer of 2003, the incidence rate was 16.0 (95% confidence interval (CI) 12.2-19.9) per 1 million person days greater on heat days than on days not classified as heat days, and the corresponding incidence rate ratio was 1.64 (95% CI 1.48-1.82). Although the weather data for the summers of 2018 and 2022 were comparable with the record-breaking heat summer of 2003, the incidence rate differences (2018: 3.8, 95% CI 0.9-6.7; 2022: 2.3, 95% CI -0.3-4.9) and the IRR (2018: 1.20, 95% CI 1.05-1.37; 2022: 1.12, 95% CI 0.99-1.26) were considerably lower. Similar results were also obtained when comparing mortality in heat weeks and heatwaves as well as on days with heat warnings. Discussion: In summary, our study in Frankfurt am Main not only showed a decrease in heat-related mortality in the population as a whole over the years, but also a decrease in excess mortality during various heat periods (day, week, wave, warning), especially in comparison with the years with very high heat stress and drought (2003, 2018 and 2022). However, whether this development represents success of the intensive prevention measures that have been implemented in the city for years or merely describes a general trend cannot be answered with certainty by the present study. To answer this question, a comparative study should be carried out in various municipalities in the Rhine-Main region with different levels of intensity in dealing with the heat problem.

14.
Am J Epidemiol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38775282

ABSTRACT

Defining the effect of exposure of interest and selecting an appropriate estimation method are prerequisite for causal inference. Understanding the ways in which association between heatwaves (i.e., consecutive days of extreme high temperature) and an outcome depends on whether adjustment was made for temperature and how such adjustment was conducted, is limited. This paper aims to investigate this dependency, demonstrate that temperature is a confounder in heatwave-outcome associations, and introduce a new modeling approach to estimate a new heatwave-outcome relation: E[R(Y)|HW=1, Z]/E[R(Y)|T=OT, Z], where HW is a daily binary variable to indicate the presence of a heatwave; R(Y) is the risk of an outcome, Y; T is a temperature variable; OT is optimal temperature; and Z is a set of confounders including typical confounders but also some types of T as a confounder. We recommend characterization of heatwave-outcome relations and careful selection of modeling approaches to understand the impacts of heatwaves under climate change. We demonstrate our approach using real-world data for Seoul, which suggests that the total effect of heatwaves may be larger than what may be inferred from the extant literature. An R package, HEAT (Heatwave effect Estimation via Adjustment for Temperature), was developed and made publicly available.

15.
Environ Int ; 188: 108760, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788419

ABSTRACT

Previous studies have demonstrated health impacts of climate change, but evidence on heatwaves' associations with road traffic injury (RTI) is limited. In this study, individual information of RTI cases in May-September during 2006-2021 in China were obtained from the National Injury Surveillance System. Daily maximum temperatures (TMmax) during 2006-2021 were collected from the ERA-5 reanalysis, and the projected daily TMmax during 2020-2099 were obtained from the latest Coupled Model Intercomparison Project Phase 6 Shared Socioeconomic Pathways scenarios (SSPs). We used a time-stratified case-crossover analysis to investigate the association between short-term exposure (lag01 days) to heatwaves (exceeding the 92.5th percentile of daily TMmax for ≥ three consecutive days) and RTI, and to project heatwave-related RTI until 2099 across China. Finally, a total of 1 031 082 RTI cases were included in the analyses. Compared with non-heatwaves, the risks of RTI increased by 3.61 % during heatwaves. Greater associations were found in people aged 15-64 years, in people with transportation occupation, for non-motor traffic vehicle injuries, for severe RTI cases, and in Western China particularly in Qinghai province. We projected substantial increases in attributable fraction (AF) of heatwave-related RTI in the future, particularly in Western and Southwest China. The national average increase in AF (per decade) during 2020s-2090s was 0.036 % for SSP1-2.6 scenario, and 0.267 % for SSP5-8.5 scenario. This study provided evidence on the associations of heatwaves with RTI, and the heatwave-related RTI will substantially increase in the future.


Subject(s)
Accidents, Traffic , China/epidemiology , Humans , Accidents, Traffic/statistics & numerical data , Adult , Adolescent , Middle Aged , Young Adult , Male , Female , Child , Aged , Hot Temperature/adverse effects , Child, Preschool , Climate Change , Wounds and Injuries/epidemiology , Infant , Extreme Heat/adverse effects
16.
Mar Environ Res ; 197: 106475, 2024 May.
Article in English | MEDLINE | ID: mdl-38569399

ABSTRACT

Research cruises were conducted to sample the invertebrate community along the shelf off the central coast of Oregon from 2010 to 2018. A large marine heatwave (MHW) hit the northeast Pacific in fall 2014 and persisted locally through 2015. Here, we assessed the caloric content changes of Crangon alaskensis (a common sandy shrimp) before, during, and after the 2014-2015 MHW. We found significant reductions in the caloric density of shelf populations of C. alaskensis during summer 2015. Oceanographic indices like the Biologically Effective Upwelling Transport Index (BEUTI) and the Pacific Decadal Oscillation (PDO) had greater predictive power for caloric density and biomass than in situ conditions, although bottom temperature and dissolved oxygen were also significantly correlated with caloric density. Caloric density of C. alaskensis was highest in 2018, indicating favorable conditions after the intense MHW of 2014-2015 allowed the caloric density to rebound.


Subject(s)
Crangonidae , Animals , Pacific Ocean , Seasons , Invertebrates , Temperature
17.
Front Plant Sci ; 15: 1323665, 2024.
Article in English | MEDLINE | ID: mdl-38469326

ABSTRACT

Climate change is expected to increase soil salinity and heat-wave intensity, duration, and frequency. These stresses, often present in combination, threaten food security as most common crops do not tolerate them. The African eggplant (Solanum aethiopicum L.) is a nutritious traditional crop found in sub-Saharan Africa and adapted to local environments. Its wider use is, however, hindered by the lack of research on its tolerance. This project aimed to describe the effects of salinity (100 mM NaCl solution) combined with elevated temperatures (27/21°C, 37/31°C, and 42/36°C). High temperatures reduced leaf biomass while cell membrane stability was reduced by salinity. Chlorophyll levels were boosted by salinity only at the start of the stress with only the different temperatures significantly impacted the levels at the end of the experiment. Other fluorescence parameters such as maximum quantum yield and non-photochemical quenching were only affected by the temperature change. Total antioxidants were unchanged by either stress despite a decrease of phenols at the highest temperature. Leaf sodium concentration was highly increased by salinity but phosphorus and calcium were unchanged by this stress. These findings shed new light on the tolerance mechanisms of the African eggplant under salinity and heat. Further research on later developmental stages is needed to understand its potential in the field in areas affected by these abiotic stresses.

18.
PeerJ ; 12: e17135, 2024.
Article in English | MEDLINE | ID: mdl-38529302

ABSTRACT

Climate change is currently considered one of the major threats to biodiversity and is associated with an increase in the frequency and intensity of extreme weather events, such as heatwaves. Heatwaves create acutely stressful conditions that may lead to disruption in the performance and survival of ecologically and economically important organisms, such as insect pollinators. In this study, we investigated the impact of simulated heatwaves on the performance of queenless microcolonies of Bombus terrestris audax under laboratory conditions. Our results indicate that heatwaves can have significant impacts on bumblebee performance. However, contrary to our expectations, exposure to heatwaves did not affect survival. Exposure to a mild 5-day heatwave (30-32 °C) resulted in increased offspring production compared to those exposed to an extreme heatwave (34-36 °C) and to the control group (24 °C). We also found that brood-care behaviours were impacted by the magnitude of the heatwave. Wing fanning occurred occasionally at temperatures of 30-32 °C, whereas at 34-36 °C the proportion of workers engaged in this thermoregulatory behaviour increased significantly. Our results provide insights into the effects of heatwaves on bumblebee colony performance and underscore the use of microcolonies as a valuable tool for studying the effects of extreme weather events. Future research, especially field-based studies replicating natural foraging conditions, is crucial to complement laboratory-based studies to comprehend how heatwaves compromise the performance of pollinators. Such studies may potentially help to identify those species more resilient to climate change, as well as those that are most vulnerable.


Subject(s)
Climate Change , Unmanned Aerial Devices , Animals , Bees , Biodiversity , Insecta , Temperature
19.
Proc Biol Sci ; 291(2018): 20232710, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38471560

ABSTRACT

Heatwaves are increasing in frequency and intensity due to climate change, pushing animals beyond physiological limits. While most studies focus on survival limits, sublethal effects on fertility tend to occur below lethal thresholds, and consequently can be as important for population viability. Typically, male fertility is more heat-sensitive than female fertility, yet direct comparisons are limited. Here, we measured the effect of experimental heatwaves on tsetse flies, Glossina pallidipes, disease vectors and unusual live-bearing insects of sub-Saharan Africa. We exposed males or females to a 3-day heatwave peaking at 36, 38 or 40°C for 2 h, and a 25°C control, monitoring mortality and reproduction over six weeks. For a heatwave peaking at 40°C, mortality was 100%, while a 38°C peak resulted in only 8% acute mortality. Females exposed to the 38°C heatwave experienced a one-week delay in producing offspring, whereas no such delay occurred in males. Over six weeks, heatwaves resulted in equivalent fertility loss in both sexes. Combined with mortality, this lead to a 10% population decline over six weeks compared to the control. Furthermore, parental heatwave exposure gave rise to a female-biased offspring sex ratio. Ultimately, thermal limits of both survival and fertility should be considered when assessing climate change vulnerability.


Subject(s)
Tsetse Flies , Male , Female , Animals , Hot Temperature , Fertility , Reproduction , Climate Change
20.
Mar Environ Res ; 196: 106418, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38402777

ABSTRACT

Marine heatwaves (MHW) threaten marine organisms and tend to increase in frequency and intensity. We exposed the blue mussel Mytilus edulis to a MHW lasting 23 days, including two 10-d periods of thermal intensity increase of +5 °C (20 °C-25 °C) interspersed by 1 day back to 20 °C, followed by a 4-d recovery period. We investigated behaviour responses of mussels and gene expression changes relative to the circadian rhythm (Per), oxidative stress (SOD), cellular apoptosis (CASP3), energy production (ATPs), and general stress response (hsp70). Results showed that the MHW disturbed the valve activity of mussels. Particularly, mussels increased the number of valve micro-closures, showing a stressful state of organisms. Mussels also decreased Per, CASP3, ATPs, and Hsp70 gene expression. Some behavioural and molecular effects persisted after the MHW, suggesting a limited recovery capacity of individuals. This work highlighted the vulnerability of M. edulis to a realistic MHW.


Subject(s)
Mytilus edulis , Mytilus , Water Pollutants, Chemical , Humans , Animals , Caspase 3 , Mytilus edulis/physiology , Aquatic Organisms , Oxidative Stress , Seafood , Mytilus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...