Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Saudi J Biol Sci ; 28(4): 2229-2235, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33935565

ABSTRACT

Cheeseweed mallow (Malva parviflora L.) was used to biosynthesize silver nanoparticles. The biosynthesized silver nanoparticles were classified by UV-vis Spectroscopy and Fourier-Transform Infrared Spectroscopy (FT-IR). The shape and size distribution were visualized by Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FE-SEM), and Zeta potential analysis. The chemical composition of M. parviflora leaf extract was identified by Gas Chromatography and Mass Spectroscopy (GC/MS). Finally, in vitro antifungal assay was done to assess the potential of biosynthesized silver nanoparticles and crude leaf extract of M. parviflora for inhibiting the mycelial growth of phytopathogenic fungi. The UV-vis analysis manifests the formation of silver nanoparticles. FTIR analysis established that chemicals of the leaf extract stabilized the biosynthesized silver nanoparticles by binding with the free silver ions. The TEM, FE-SEM and zeta potential analyzer confirmed that the biosynthesized silver nanoparticles were mostly spherical with an average diameter of 50.6 nm. The biosynthesized silver nanoparticles and leaf extract of M. parviflora effectively mitigate the mycelial growth of Helminthosporium rostratum, Fusarium solani, Fusarium oxysporum, and Alternaria alternata. The maximum reduction in mycelial growth by biosynthesized nanoparticles was observed against H. rostratum (88.6%). Whereas, the leaf extract of M. parviflora was most effective against F. solani (65.3%). Thus, the biosynthesis of nanoparticle assisted by M. parviflora is a feasible and eco-friendly method for the synthesis of silver nanoparticles. Further the silver nanoparticles and leaf extract of M. parviflora could be explored for the development of the fungicide.

2.
Front Cell Infect Microbiol ; 11: 584899, 2021.
Article in English | MEDLINE | ID: mdl-33777829

ABSTRACT

Wheat is among the ten top and most widely grown crops in the world. Several diseases cause losses in wheat production in different parts of the world. Bipolaris sorokiniana (teleomorph, Cochliobolus sativus) is one of the wheat pathogens that can attack all wheat parts, including seeds, roots, shoots, and leaves. Black point, root rot, crown rot and spot blotch are the main diseases caused by B. sorokiniana in wheat. Seed infection by B. sorokiniana can result in black point disease, reducing seed quality and seed germination and is considered a main source of inoculum for diseases such as common root rot and spot blotch. Root rot and crown rot diseases, which result from soil-borne or seed-borne inoculum, can result in yield losses in wheat. Spot blotch disease affects wheat in different parts of the world and cause significant losses in grain yield. This review paper summarizes the latest findings on B. sorokiniana, with a specific emphasis on management using genetic, chemical, cultural, and biological control measures.


Subject(s)
Ascomycota , Bipolaris , Plant Diseases
3.
Mycologia ; 112(5): 921-931, 2020.
Article in English | MEDLINE | ID: mdl-32703099

ABSTRACT

Environmentally damaging invasive plants can also serve as reservoir hosts for agricultural pathogens. Microstegium vimineum is an invasive C4 annual grass that is present throughout the midwestern and eastern United States. It can reach high densities in disturbed areas such as crop-forest interfaces, which creates the potential for pathogen spillover from M. vimineum to agricultural crops and native plants. A previous study that surveyed disease on M. vimineum found a large-spored Bipolaris species that was widespread on M. vimineum and also isolated from co-occurring native grasses. Here, we report that the large-spored fungus isolated from M. vimineum and the native grass Elymus virginicus is Drechslera gigantea, based on comparison with published descriptions of morphological traits, and establish that D. gigantea is a pathogen of M. vimineum and E. virginicus. We review the phylogenetic placement and taxonomic history of D. gigantea and propose that it be reassigned to the genus Bipolaris as Bipolaris gigantea.


Subject(s)
Ascomycota/classification , Ascomycota/cytology , Ascomycota/genetics , Bipolaris/classification , Bipolaris/genetics , Introduced Species , Poaceae/microbiology , Ascomycota/pathogenicity , Bipolaris/cytology , Bipolaris/pathogenicity , Phylogeny , Plant Diseases/classification , Plant Diseases/genetics , Sequence Analysis, DNA , United States
4.
Microorganisms ; 8(5)2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32365626

ABSTRACT

Seedling rot disease in rice leads to significant loss in the production of seedlings. This research was conducted to explore yeasts that could be used as biological control agents against rice seedling rot disease caused by Curvularia lunata and Helminthosporium oryzae. In total, 167 epiphytic yeast strains were evaluated, revealing that 13 of these yeast strains demonstrated antagonistic activities against fungal pathogens and either C. lunata DOAC 2313 or H. oryzae DOAC 2293. The volatile organic compounds (VOCs) and biofilm produced were possible antagonistic mechanisms in vitro for all the antagonistic yeast strains. Using nursery trays in a greenhouse, this study evaluated the control of rice seedling rot disease caused by these two fungal pathogens using antagonistic yeasts, identified in the present study and from our previous study. Torulaspora indica DMKU-RP31 and Wickerhamomyces anomalus YE-42 were found to completely control rice seedling rot disease caused by both of these fungal pathogens. Furthermore, W. anomalus DMKU-RP04 revealed 100% disease control when the disease was caused by H. oryzae. This is the first report on using antagonistic yeasts to control rice seedling rot disease caused by C. lunata and H. oryzae. These three antagonistic yeasts also showed promising potential for development as biocontrol agents against rice seedling rot disease caused by fungi.

5.
Vavilovskii Zhurnal Genet Selektsii ; 24(4): 363-375, 2020 Jul.
Article in Russian | MEDLINE | ID: mdl-33659819

ABSTRACT

The active expansion of foreign potato cultivars on the territory of the Russian Federation has led to a change in the dominant pathogen species and to the emergence of new pathotypes of causal agents of harmful potato diseases. The aim of the study was to evaluate resistance to Phytophthora infestans and Globodera rostochiensis of modern potato cultivars and determine the distribution of fungal and oomycetic diseases on potato cultivars in various agroclimatic zones of Russia. The resistance of 41 foreign cultivars was evaluated to pathotype Ro1 G. rostochiensis and to isolate VZR17 P. infestans with virulence genes 1.2.3.4.5.6.7.8.9.10.11. Resistant to G. rostochiensis were 38 cultivars. 57R marker of the H1 gene conferring resistance to the Ro1 pathotype of G. rostochiensis was detected in 96.6 % of the nematode resistant cultivars studied; susceptible varieties did not possess this marker. Absolute resistance to the causative agent of late blight was demonstrated by the cultivars Alouette and Sarpo Mira (score 9); high levels of resistance (score 6 and 7) were determined for the cultivars Evolution, Red Fantasy and Ricarda. The cultivars Baltic Rose, Damaris, Desiree, Gala, Labella, Laperla, Mia, Sanibel, Zekura, Queen Anne, Red Lady and '7 for 7' were classified as susceptible, although the characteristics of originators indicated average resistance to late blight. A phytopathological test was conducted on 92 samples of 39 varieties of seed potatoes from four federal districts of the Russian Federation: Volga, NorthWest, Central and North Caucasus. Rhizoctonia solani, Fusarium spp. and Helminthosporium solani are most common on all varieties. 100 % defeat of tubers by H. solani was recorded in various regions on the cultivars Red Scarlett, Evolution, Labella, Colombo, Gala and Nevsky. Widespread Colletotrichum coccodes on tubers of the elite and 2nd reproductions of the potato cultivar Red Scarlett (50.0-71.4 %) was recorded in the Central District.

6.
Electron. j. biotechnol ; 40: 65-70, July. 2019. ilus
Article in English | LILACS | ID: biblio-1053486

ABSTRACT

Background: In Saccharomyces cerevisiae, Msn2, which acts as a key transcription factor downstream the MAPKHOG cascade pathway, also regulates the expression of genes related to stress responses. However, little is known about the regulation mechanisms of the transcription factor in Setosphaeria turcica. Results: In this study, a zinc finger DNA-binding protein, designated as StMSN2, was cloned from S. turcica. Sequencing results showed that StMSN2 had a 1752 bp open reading frame (ORF), which was interrupted by an intron (135 bp) and encoded a putative 538-amino acid protein. Phylogenetic analysis further revealed that StMsn2 was more closely related to Msn2 of Aspergillus parasiticus. StMSN2 was cloned into the pET-28a vector with His (Histidine) tags and induced with 1 mM IPTG (isopropyl-ß-D-thiogalactoside) at 37°C. The recombinant His-tagged StMsn2 was purified, and a band of size approximately 58.8 kDa was obtained. The high specificity of the polyclonal antibody Msn2-2 was detected with the StMsn2 protein from S. turcica and prokaryotic expression system, respectively. Conclusions: A new gene, named StMSN2, with 1617 bp ORF was cloned from S. turcica and characterized using bioinformatics methods. StMsn2 was expressed and purified in a prokaryotic system. A polyclonal antibody, named Msn2-2, against StMsn2 with high specificity was identified.


Subject(s)
Plant Diseases , Ascomycota/genetics , Ascomycota/pathogenicity , Transcription Factors/isolation & purification , Ascomycota/metabolism , Stress, Physiological , Transcription Factors/genetics , Transcription Factors/metabolism , Carrier Proteins , Gene Expression , Blotting, Western , Open Reading Frames , Zinc Fingers , Cloning, Molecular , Zea mays , Escherichia coli , Helminthosporium , Epitopes
7.
Stud Mycol ; 92: 47-133, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29997401

ABSTRACT

This paper represents the second contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information regarding the pathology, distribution, hosts and disease symptoms for the treated genera. In addition, primary and secondary DNA barcodes for the currently accepted species are included. This second paper in the GOPHY series treats 20 genera of phytopathogenic fungi and their relatives including: Allantophomopsiella, Apoharknessia, Cylindrocladiella, Diaporthe, Dichotomophthora, Gaeumannomyces, Harknessia, Huntiella, Macgarvieomyces, Metulocladosporiella, Microdochium, Oculimacula, Paraphoma, Phaeoacremonium, Phyllosticta, Proxypiricularia, Pyricularia, Stenocarpella, Utrechtiana and Wojnowiciella. This study includes the new genus Pyriculariomyces, 20 new species, five new combinations, and six typifications for older names.

8.
Annu Rev Virol ; 5(1): 1-32, 2018 09 29.
Article in English | MEDLINE | ID: mdl-30265631

ABSTRACT

My long career in virology has been a continuous learning exercise with a very modest start. Virology and related pertinent fields have changed significantly during my lifetime. Sometimes I wish that my career had just started and I could apply all available and state of the art technology to solving problems and explaining intriguing observations. I was always convinced that visiting growers' fields is essential for researchers to get firsthand observations and knowledge of virus disease problems under field conditions. I never thought I would pursue so many avenues of research, yet it is true that research never ends. I enjoyed dissecting strain diversity in a very important plant pathogen like bean pod mottle virus (BPMV) and using BPMV-based vectors to address fundamental virology questions. Lastly, solving the enigma of the transmissible disease of Helminthosporium victoriae and attempting to gain an understanding of the molecular basis of disease in a plant pathogenic fungus were thrilling.


Subject(s)
Comovirus/genetics , Comovirus/pathogenicity , Helminthosporium/growth & development , Helminthosporium/pathogenicity , Host-Pathogen Interactions , Plant Diseases/microbiology , Plant Diseases/virology , History, 20th Century , History, 21st Century
9.
Mol Plant Pathol ; 19(2): 432-439, 2018 02.
Article in English | MEDLINE | ID: mdl-28093843

ABSTRACT

Bipolaris sorokiniana is the causal agent of multiple diseases on wheat and barley and is the primary constraint to cereal production throughout South Asia. Despite its significance, the molecular basis of disease is poorly understood. To address this, the genomes of three Australian isolates of B. sorokiniana were sequenced and screened for known pathogenicity genes. Sequence analysis revealed that the isolate BRIP10943 harboured the ToxA gene, which has been associated previously with disease in the wheat pathogens Parastagonospora nodorum and Pyrenophora tritici-repentis. Analysis of the regions flanking ToxA within B. sorokiniana revealed that it was embedded within a 12-kb genomic element nearly identical to the corresponding regions in P. nodorum and P. tritici-repentis. A screen of 35 Australian B. sorokiniana isolates confirmed that ToxA was present in 12 isolates. Sequencing of the ToxA genes within these isolates revealed two haplotypes, which differed by a single non-synonymous nucleotide substitution. Pathogenicity assays showed that a B. sorokiniana isolate harbouring ToxA was more virulent on wheat lines that contained the sensitivity gene when compared with a non-ToxA isolate. This work demonstrates that proteins that confer host-specific virulence can be horizontally acquired across multiple species. This acquisition can dramatically increase the virulence of pathogenic strains on susceptible cultivars, which, in an agricultural setting, can have devastating economic and social impacts.


Subject(s)
Ascomycota/pathogenicity , Fungal Proteins/metabolism , Hordeum/microbiology , Triticum/microbiology , Fungal Proteins/genetics , Gene Transfer, Horizontal/genetics , Virulence
10.
Mol Plant Pathol ; 19(6): 1523-1536, 2018 06.
Article in English | MEDLINE | ID: mdl-29045052

ABSTRACT

Wheat is one of the primary staple foods throughout the planet. Significant yield gains in wheat production over the past 40 years have resulted in a steady balance of supply versus demand. However, predicted global population growth rates and dietary changes mean that substantial yield gains over the next several decades will be needed to meet this escalating demand. A key component to meeting this challenge is better management of fungal incited diseases, which can be responsible for 15%-20% yield losses per annum. Prominent diseases of wheat that currently contribute to these losses include the rusts, blotches and head blight/scab. Other recently emerged or relatively unnoticed diseases, such as wheat blast and spot blotch, respectively, also threaten grain production. This review seeks to provide an overview of the impact, distribution and management strategies of these diseases. In addition, the biology of the pathogens and the molecular basis of their interaction with wheat are discussed.


Subject(s)
Helminthosporium/pathogenicity , Magnaporthe/pathogenicity , Triticum/microbiology , Disease Resistance/genetics , Disease Resistance/physiology , Plant Diseases/genetics , Plant Diseases/microbiology
11.
J Gen Virol ; 99(1): 19-20, 2018 01.
Article in English | MEDLINE | ID: mdl-29251589

ABSTRACT

The Chrysoviridae is a family of small, isometric, non-enveloped viruses (40 nm in diameter) with segmented dsRNA genomes (typically four segments). The genome segments are individually encapsidated and together comprise 11.5-12.8 kbp. The single genus Chrysovirus includes nine species. Chrysoviruses lack an extracellular phase to their life cycle; they are transmitted via intracellular routes within an individual during hyphal growth, in asexual or sexual spores, or between individuals via hyphal anastomosis. There are no known natural vectors for chrysoviruses. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Chrysoviridae, which is available at www.ictv.global/report/chrysoviridae.


Subject(s)
Genome, Viral , Phylogeny , RNA Viruses/genetics , RNA, Double-Stranded/genetics , RNA, Viral/genetics , Virion/genetics , Ascomycota/virology , Basidiomycota/virology , Hyphae/virology , RNA Viruses/classification , RNA Viruses/ultrastructure , Spores, Fungal/virology , Terminology as Topic , Virion/ultrastructure , Virus Replication
12.
Persoonia ; 41: 71-108, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30728600

ABSTRACT

Exserohilum includes a number of plant pathogenic, saprobic and clinically relevant fungi. Some of these species are of great importance in human activities, but the genus has never been revised in a phylogenetic framework. In this study, we revise Exserohilum based on available ex-type cultures from worldwide collections, observation of the holotypes and/or protologues, and additional isolates from diverse substrates and geographical origins. Based on nine nuclear loci, i.e., ITS, LSU, act, tub2, cam, gapdh, his, tef1 and rpb2, as well as phenotypic data, the genus and species boundaries are assessed for Exserohilum. Three species, i.e., E. novae-zelandiae, E. paspali and E. sorghicola, are excluded from the genus and reallocated in Sporidesmiella and Curvularia, respectively, whereas E. heteropogonicola and E. inaequale are confirmed as members of Curvularia. Exserohilum rostratum is revealed as conspecific with species previously described in Exserohilum such as E. antillanum, E. gedarefense, E. leptochloae, E. longirostratum, E. macginnisii and E. prolatum. Additionally, E. curvatum is revealed as synonym of E. holmii, and E. fusiforme of E. oryzicola. A total of 11 Exserohilum phylogenetic species are described, illustrated and discussed, including one novel taxon, E. corniculatum. The placements of 15 other doubtful species are discussed, and E. elongatum is validated.

13.
Stud Mycol ; 86: 99-216, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28663602

ABSTRACT

Genera of Phytopathogenic Fungi (GOPHY) is introduced as a new series of publications in order to provide a stable platform for the taxonomy of phytopathogenic fungi. This first paper focuses on 21 genera of phytopathogenic fungi: Bipolaris, Boeremia, Calonectria, Ceratocystis, Cladosporium, Colletotrichum, Coniella, Curvularia, Monilinia, Neofabraea, Neofusicoccum, Pilidium, Pleiochaeta, Plenodomus, Protostegia, Pseudopyricularia, Puccinia, Saccharata, Thyrostroma, Venturia and Wilsonomyces. For each genus, a morphological description and information about its pathology, distribution, hosts and disease symptoms are provided. In addition, this information is linked to primary and secondary DNA barcodes of the presently accepted species, and relevant literature. Moreover, several novelties are introduced, i.e. new genera, species and combinations, and neo-, lecto- and epitypes designated to provide a stable taxonomy. This first paper includes one new genus, 26 new species, ten new combinations, and four typifications of older names.

14.
Stud Mycol ; 87: 43-76, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28649153

ABSTRACT

Molecular phylogenetic analyses of a multigene matrix of partial nuSSU-ITS-LSU rDNA, rpb2 and tef1 sequences were performed to investigate the phylogenetic relationships of Corynespora, Exosporium and Helminthosporium species. Based on phylogenetic analyses and morphology, the genus Exosporium is synonymised with Helminthosporium, and the genus Corynespora is revealed as polyphyletic. Corynespora smithii is confirmed to be closely related to the generic type C. cassiicola and its morphology is described and illustrated. Exosporium tiliae, Corynespora caespitosa, C. endiandrae, C. leucadendri and C. olivacea are recognised in Helminthosporium, and Splanchnonema quercicola and S. kalakadense are combined in Helminthosporium. Based on pure culture studies and DNA sequence data, Massaria heterospora and Massarinula italica are shown to be the sexual morphs of Helminthosporium tiliae and H. microsorum, respectively. European accessions of Splanchnonema quercicola are recognised to differ from the North American type and are described as Helminthosporium quercinum. The sexual morph of H. oligosporum is recorded and described for the first time. The generic type of Helminthosporium, H. velutinum, is epitypified with a recent collection from the type host, Fagus sylvatica. Based on sequence data, Helminthosporium genistae is recognised as a distinct species. Several species for which subperidermal stromata have been reported are shown to be fungicolous on Diaporthales, the "stromata" representing aborted and transformed host stromata or conidiomata: H. caespitosum, H. microsorum, H. quercicola and H. quercinum on Coryneum spp.; H. hispanicum on conidiomata of Juglanconis juglandina; H. juglandinum on conidiomata of Diaporthe sp.; H. oligosporum and H. tiliae on Hercospora tiliae. The newly described H. austriacum is fungicolous on Amphisphaeria cf. millepunctata (Xylariales).

15.
Virus Res ; 219: 100-107, 2016 07 02.
Article in English | MEDLINE | ID: mdl-27208849

ABSTRACT

A transmissible disease of the plant pathogenic fungus Helminthosporium victoriae, the causal agent of Victoria blight of oats, was reported more than 50 years ago. Diseased, but not normal, isolates, of H. victoriae contain two distinct viruses designated according to their sedimentation values as victorivirus Helminthosporium victoriae virus 190S (HvV190S) and chrysovirus Helminthosporium victoriae 145S (HvV145S). Although a viral etiology of the disease was previously proposed, conclusive evidence was lacking. Here we present unequivocal evidence based on transfecting virus-free H. victoriae protoplasts with purified virus particles showing that HvV190S is essential for disease development. Furthermore, we show an expansion of the host range of HvV190S to include Cryphonectria parasitica and we also show similarity in a subset of phenotypic traits between HvV190S-infected RNA silencing deficient mutant (Δdcl-2) of C. parasitica and a strain of H. victoriae. In virulence assays on detached American chestnut branches and Red Delicious apple fruits, HvV190S-infected C. parasitica strain Δdcl-2 was markedly less virulent than wild type and virus-free Δdcl-2 C. parasitica strains. Furthermore, the hypovirulent HvV190S-infected C. parasitica Δdcl-2 strain exhibited strong antifungal activity in dual culture with the plant pathogenic fungus Sclerotinia sclerotiorum. No such inhibitory activity was observed in comparable dual cultures with wild type and virus-free Δdcl-2 C. parasitica strains. The discovery that infection with HvV190S induced a hypovirulent phenotype in a heterologous plant pathogenic host is very significant since it might be possible to convert other economically important plant pathogenic fungi to hypovirulence using HvV190S.

16.
Virus Res ; 213: 238-245, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26724750

ABSTRACT

A transmissible disease of the plant pathogenic fungus Helminthosporium victoriae, the causal agent of Victoria blight of oats, was reported more than 50 years ago. Diseased, but not normal, isolates, of H. victoriae contain two distinct viruses designated according to their sedimentation values as victorivirus Helminthosporium victoriae virus 190S (HvV190S) and chrysovirus Helminthosporium victoriae 145S (HvV145S). Although a viral etiology of the disease was previously proposed, conclusive evidence was lacking. Here we present unequivocal evidence based on transfecting virus-free H. victoriae protoplasts with purified virus particles showing that HvV190S is essential for disease development. Furthermore, we show an expansion of the host range of HvV190S to include Cryphonectria parasitica and we also show similarity in a subset of phenotypic traits between HvV190S-infected RNA silencing deficient mutant (Δdcl-2) of C. parasitica and a strain of H. victoriae. In virulence assays on detached American chestnut branches and Red Delicious apple fruits, HvV190S-infected C. parasitica strain Δdcl-2 was markedly less virulent than wild type and virus-free Δdcl-2 C. parasitica strains. Furthermore, the hypovirulent HvV190S-infected C. parasitica Δdcl-2 strain exhibited strong antifungal activity in dual culture with the plant pathogenic fungus Sclerotinia sclerotiorum. No such inhibitory activity was observed in comparable dual cultures with wild type and virus-free Δdcl-2 C. parasitica strains. The discovery that infection with HvV190S induced a hypovirulent phenotype in a heterologous plant pathogenic host is very significant since it might be possible to convert other economically important plant pathogenic fungi to hypovirulence using HvV190S.


Subject(s)
Ascomycota/pathogenicity , Ascomycota/virology , Host Specificity , Plant Diseases/microbiology , Totiviridae/physiology , Aesculus/microbiology , Ascomycota/growth & development , Malus/microbiology , Totiviridae/growth & development , Virulence
17.
Fungal Genet Biol ; 85: 7-13, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26514742

ABSTRACT

Spliceosomal twin introns, "stwintrons", have been defined as complex intervening sequences that carry a second intron ("internal intron") interrupting one of the conserved sequence domains necessary for their correct splicing via consecutive excision events. Previously, we have described and experimentally verified stwintrons in species of Sordariomycetes, where an "internal intron" interrupted the donor sequence of an "external intron". Here we describe and experimentally verify two novel stwintrons of the potato pathogen Helminthosporium solani. One instance involves alternative splicing of an internal intron interrupting the donor domain of an external intron and a second one interrupting the acceptor domain of an overlapping external intron, both events leading to identical mature mRNAs. In the second case, an internal intron interrupts the donor domain of the external intron, while an alternatively spliced intron leads to an mRNA carrying a premature chain termination codon. We thus extend the stwintron concept to the acceptor domain and establish a link of the occurrence of stwintrons with that of alternative splicing.


Subject(s)
Alternative Splicing , Helminthosporium/genetics , Spliceosomes/genetics , Conserved Sequence , Introns/genetics , RNA, Messenger/genetics
18.
Stud Mycol ; 82: 75-136, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26955201

ABSTRACT

We here taxonomically revise the suborder Massarineae (Pleosporales, Dothideomycetes, Ascomycota). Sequences of SSU and LSU nrDNA and the translation elongation factor 1-alpha gene (tef1) are newly obtained from 106 Massarineae taxa that are phylogenetically analysed along with published sequences of 131 taxa in this suborder retrieved from GenBank. We recognise 12 families and five unknown lineages in the Massarineae. Among the nine families previously known, the monophyletic status of the Dictyosporiaceae, Didymosphaeriaceae, Latoruaceae, Macrodiplodiopsidaceae, Massarinaceae, Morosphaeriaceae, and Trematosphaeriaceae was strongly supported with bootstrap support values above 96 %, while the clades of the Bambusicolaceae and the Lentitheciaceae are moderately supported. Two new families, Parabambusicolaceae and Sulcatisporaceae, are proposed. The Parabambusicolaceae is erected to accommodate Aquastroma and Parabambusicola genera nova, as well as two unnamed Monodictys species. The Parabambusicolaceae is characterised by depressed globose to hemispherical ascomata with or without surrounding stromatic tissue, and multi-septate, clavate to fusiform, hyaline ascospores. The Sulcatisporaceae is established for Magnicamarosporium and Sulcatispora genera nova and Neobambusicola. The Sulcatisporaceae is characterised by subglobose ascomata with a short ostiolar neck, trabeculate pseudoparaphyses, clavate asci, broadly fusiform ascospores, and ellipsoid to subglobose conidia with or without striate ornamentation. The genus Periconia and its relatives are segregated from the Massarinaceae and placed in a resurrected family, the Periconiaceae. We have summarised the morphological and ecological features, and clarified the accepted members of each family. Ten new genera, 22 new species, and seven new combinations are described and illustrated. The complete ITS sequences of nrDNA are also provided for all new taxa for use as barcode markers.

19.
Pestic Biochem Physiol ; 114: 67-71, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25175652

ABSTRACT

Natural products have been in focus as alternative, effective and safe materials against the phytopathogens. Investigations show Nepeta oils as effective in controlling the food crops decay. The inhibitory effects of essential oils derived from Nepeta leucophylla, Nepeta ciliaris, Nepeta clarkei and Calamintha umbrosa against five phytopthogenic fungi have been determined. In vitro antifungal activity varied with their constituents and target species. More active being the oils containing oxygenated terpenoids. Helminthosporium maydis was sensitive to the all oils, IC50 values have 43.6-109.3 µg mL(-1). The N. leucophylla oil possessing oxygenated iridoids was more effective against H. maydis (IC50 value of 43.6 µg mL(-1)) while N. ciliaris was more active against Fusarium oxysporum (IC50 value of 219.2 µg mL(-1)). The oils were effective against the spore germination of all the tested plant pathogens.


Subject(s)
Antifungal Agents/pharmacology , Fungi/drug effects , Lamiaceae , Oils, Volatile/pharmacology , Fungi/growth & development , Fungi/physiology , Microbial Sensitivity Tests , Spores, Fungal/drug effects , Spores, Fungal/physiology
20.
J Biosci Bioeng ; 118(4): 396-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24742631

ABSTRACT

The tubers of Bletilla formosana were fermented with eight plant pathogen fungi, respectively, and antioxidant activities and total phenolic content (TPC) of the crude extracts of fermented products and non-fermented products were investigated. The antioxidant activities were evaluated in three different test systems [DPPH, ABTS radical-scavenging activity, and ferric reducing-antioxidant power (FRAP)]. It was found that the extract of Helminthosporium maydis fermented B. formosana (FBF) possessed the highest TPC and exhibited a significant antioxidant activity compared with non-fermented product and other fermented products. Correlation analysis between antioxidant activities and TPC was also investigated. The good correlation between antioxidant activities and TPC revealed that the phenolic compounds might be the major contributors for the high antioxidant activities of the fermented B. formosana. Two phenolic compounds, curvularin and dehydrocurvularin, were isolated from H. maydis FBF, which had never been reported from plant of orchidaceae or H. maydis. Curvularin exhibited significant antioxidant activities, and was also present at a high concentration (0.373 mg/mg extract sample), implying an important role for the antioxidant activity of H. maydis FBF. This study suggested that proper fermentation processing could improve TPC and antioxidant activities of B. formosana.


Subject(s)
Antioxidants/chemistry , Helminthosporium/physiology , Orchidaceae/chemistry , Phenols/chemistry , Antioxidants/isolation & purification , Benzothiazoles/antagonists & inhibitors , Biphenyl Compounds/antagonists & inhibitors , Fermentation , Orchidaceae/microbiology , Oxidation-Reduction , Phenols/isolation & purification , Picrates/antagonists & inhibitors , Plant Extracts/chemistry , Plant Tubers/chemistry , Plant Tubers/microbiology , Sulfonic Acids/antagonists & inhibitors , Zearalenone/analogs & derivatives , Zearalenone/chemistry , Zearalenone/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...