Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.587
Filter
1.
Front Microbiol ; 15: 1427606, 2024.
Article in English | MEDLINE | ID: mdl-38966393

ABSTRACT

Peste des petits ruminants (PPR), a disease of socioeconomic importance has been a serious threat to small ruminants. The causative agent of this disease is PPR virus (PPRV) which belongs to the genus Morbillivirus. Hemagglutinin (H) is a PPRV coded transmembrane protein embedded in the viral envelope and plays a vital role in mediating the entry of virion particle into the cell. The infected host mounts an effective humoral response against H protein which is important for host to overcome the infection. In the present study, we have investigated structural, physiological and functional properties of hemagglutinin protein using various computational tools. The sequence analysis and structure prediction analysis show that hemagglutinin protein comprises of beta sheets as the predominant secondary structure, and may lack neuraminidase activity. PPRV-H consists of several important domains and motifs that form an essential scaffold which impart various critical roles to the protein. Comparative modeling predicted the protein to exist as a homo-tetramer that binds to its cognate cellular receptors. Certain amino acid substitutions identified by multiple sequence alignment were found to alter the predicted structure of the protein. PPRV-H through its predicted interaction with TLR-2 molecule may drive the expression of CD150 which could further propagate the virus into the host. Together, our study provides new insights into PPRV-H protein structure and its predicted functions.

2.
Acta Trop ; 257: 107292, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897314

ABSTRACT

BACKGROUND: Influenza infection is highly contagious respiratory illness triggered by the influenza virus, bearing substantial implications for global health. Influenza B viruses, specifically the Victoria and Yamagata lineages, have contributed to the disease burden, and the mismatch between circulating strains and vaccine strains has led to increased mortality and economic costs. Understanding the global epidemiology, seasonal variations, and genetic characteristics of influenza B is crucial for effective prevention and control strategies. METHODS: The study investigated influenza B viruses in Shiraz, Iran during the Oct 2017 to Jan 2018. Throat swabs were collected from 235 individuals under 15 with influenza-like symptoms including fever and cough. Samples were stored at -80°C and transported to the lab for further analysis. Viral RNA was extracted and analyzed using Real-time PCR. The hemagglutinin (HA) gene of positive samples was sequenced, and phylogenetic trees were constructed. Amino acids indicative of adaptive mutations were identified using global sequence data. RESULTS: 23 of 235 samples (9.7 %) were positive for influenza B virus. The most common clinical manifestations were rhinorrhea and myalgia, with 20 individuals (87 % of the 23 infected people) each showing these symptoms. The phylogenetic analysis of the HA gene showed that the Victoria isolates were close to the B/Brisbane/60/2008 strain (12.5 % of the positive samples) and belonged to clade-1A, while the Yamagata isolates were close to the B/Phuket/3037/2013 strain (87.5 % of the positive samples) and belonged to clade-3. CONCLUSION: The study highlights the need for importance vaccine coverage in the Shiraz region to address limited genetic diversity and strain mismatch. Continuous surveillance of mutations in the HA gene resulting in amino acid substitutions and their impact on vaccine efficacy is crucial. This study showed that the circulation of influenza B in Shiraz matched with the recommended Yamagata vaccine strain. These findings contribute to the understanding of influenza B dynamics and emphasize the importance of region-specific prevention and control strategies.

3.
Emerg Microbes Infect ; 13(1): 2364736, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38847071

ABSTRACT

Since 2007, h9.4.2.5 has emerged as the most predominant branch of H9N2 avian influenza viruses (AIVs) that affects the majority of the global poultry population. The spread of this viral branch in vaccinated chicken flocks has not been considerably curbed despite numerous efforts. The evolutionary fitness of h9.4.2.5-branched AIVs must consequently be taken into consideration. The glycosylation modifications of hemagglutinin (HA) play a pivotal role in regulating the balance between receptor affinity and immune evasion for influenza viruses. Sequence alignment showed that five major HA glycosylation patterns have evolved over time in h9.4.2.5-branched AIVs. Here, we compared the adaptive phenotypes of five virus mutants with different HA glycosylation patterns. According to the results, the mutant with 6 N-linked glycans displayed the best acid and thermal stability and a better capacity for multiplication, although having a relatively lower receptor affinity than 7 glycans. The antigenic profile between the five mutants revealed a distinct antigenic distance, indicating that variations in glycosylation level have an impact on antigenic drift. These findings suggest that changes in the number of glycans on HA can not only modulate the receptor affinity and antigenicity of H9N2 AIVs, but also affect their stability and multiplication. These adaptive phenotypes may underlie the biological basis for the dominant strain switchover of h9.4.2.5-branched AIVs. Overall, our study provides a systematic insight into how changes in HA glycosylation patterns regulate the evolutionary fitness and epidemiological dominance drift of h9.4.2.5-branched H9N2 AIVs, which will be of great benefit for the glycosylation-dependent vaccine design.


Subject(s)
Chickens , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Glycosylation , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/immunology , Influenza A Virus, H9N2 Subtype/metabolism , Animals , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Influenza in Birds/virology , Chickens/virology , Mutation , Polysaccharides/metabolism , Virus Replication , Madin Darby Canine Kidney Cells , Poultry Diseases/virology
4.
Viruses ; 16(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38932120

ABSTRACT

A gene delivery system utilizing lentiviral vectors (LVs) requires high transduction efficiency for successful application in human gene therapy. Pseudotyping allows viral tropism to be expanded, widening the usage of LVs. While vesicular stomatitis virus G (VSV-G) single-pseudotyped LVs are commonly used, dual-pseudotyping is less frequently employed because of its increased complexity. In this study, we examined the potential of phenotypically mixed heterologous dual-pseudotyped LVs with VSV-G and Sendai virus hemagglutinin-neuraminidase (SeV-HN) glycoproteins, termed V/HN-LV. Our findings demonstrated the significantly improved transduction efficiency of V/HN-LV in various cell lines of mice, cynomolgus monkeys, and humans compared with LV pseudotyped with VSV-G alone. Notably, V/HN-LV showed higher transduction efficiency in human cells, including hematopoietic stem cells. The efficient incorporation of wild-type SeV-HN into V/HN-LV depended on VSV-G. SeV-HN removed sialic acid from VSV-G, and the desialylation of VSV-G increased V/HN-LV infectivity. Furthermore, V/HN-LV acquired the ability to recognize sialic acid, particularly N-acetylneuraminic acid on the host cell, enhancing LV infectivity. Overall, VSV-G and SeV-HN synergistically improve LV transduction efficiency and broaden its tropism, indicating their potential use in gene delivery.


Subject(s)
Genetic Vectors , HN Protein , Lentivirus , Sendai virus , Transduction, Genetic , Viral Envelope Proteins , Animals , Humans , Genetic Vectors/genetics , Lentivirus/genetics , Sendai virus/genetics , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Mice , HN Protein/genetics , HN Protein/metabolism , Cell Line , Macaca fascicularis , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Viral Tropism , HEK293 Cells , Gene Transfer Techniques , Genetic Therapy/methods
5.
Int J Biol Macromol ; 273(Pt 2): 132901, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38848854

ABSTRACT

H5-subtype avian influenza virus (AIV) is globally prevalent and undergoes frequent antigenic drift, necessitating regular updates to vaccines. One of the many influencing elements that cause incompatibility between vaccinations and epidemic strains is the dynamic alteration of glycosylation sites. However, the biological significance of N-glycosylation in the viral evolution and antigenic changes is unclear. Here, we performed a systematic analysis of glycosylation sites on the HA1 subunit of H5N1, providing insights into the changes of primary glycosylation sites, including 140 N, 156 N, and 170 N within the antigenic epitopes of HA1 protein. Multiple recombinant viruses were then generated based on HA genes of historical vaccine strains and deactivated for immunizing SPF chickens. Inactivated recombinant strains showed relatively closer antigenicity compared to which has identical N-glycosylation patterns. The N-glycosylation modification discrepancy highlights the inter-branch antigenic diversity of H5-subtype viruses in avian influenza and serves as a vital foundation for improving vaccination tactics.


Subject(s)
Antigenic Variation , Chickens , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Glycosylation , Animals , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Chickens/virology , Influenza in Birds/immunology , Influenza in Birds/virology , Influenza in Birds/prevention & control , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza Vaccines/immunology , Epitopes/immunology , Epitopes/chemistry , Antigens, Viral/immunology , Antigens, Viral/genetics
6.
Front Immunol ; 15: 1361323, 2024.
Article in English | MEDLINE | ID: mdl-38835763

ABSTRACT

Introduction: Swine influenza viruses (SIVs) pose significant economic losses to the pig industry and are a burden on global public health systems. The increasing complexity of the distribution and evolution of different serotypes of influenza strains in swine herds escalates the potential for the emergence of novel pandemic viruses, so it is essential to develop new vaccines based on swine influenza. Methods: Here, we constructed a self-assembling ferritin nanoparticle vaccine based on the hemagglutinin (HA) extracellular domain of swine influenza A (H1N1) virus using insect baculovirus expression vector system (IBEVS), and after two immunizations, the immunogenicities and protective efficacies of the HA-Ferritin nanoparticle vaccine against the swine influenza virus H1N1 strain in mice and piglets were evaluated. Results: Our results demonstrated that HA-Ferritin nanoparticle vaccine induced more efficient immunity than traditional swine influenza vaccines. Vaccination with the HA-Ferritin nanoparticle vaccine elicited robust hemagglutinin inhibition titers and antigen-specific IgG antibodies and increased cytokine levels in serum. MF59 adjuvant can significantly promote the humoral immunity of HA-Ferritin nanoparticle vaccine. Furthermore, challenge tests showed that HA-Ferritin nanoparticle vaccine conferred full protection against lethal challenge with H1N1 virus and significantly decreased the severity of virus-associated lung lesions after challenge in both BALB/c mice and piglets. Conclusion: Taken together, these results indicate that the hemagglutinin extracellular-based ferritin nanoparticle vaccine may be a promising vaccine candidate against SIVs infection.


Subject(s)
Antibodies, Viral , Ferritins , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Mice, Inbred BALB C , Nanoparticles , Orthomyxoviridae Infections , Animals , Influenza A Virus, H1N1 Subtype/immunology , Ferritins/immunology , Influenza Vaccines/immunology , Swine , Mice , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Swine Diseases/prevention & control , Swine Diseases/immunology , Swine Diseases/virology , Female , Nanovaccines
7.
Virology ; 597: 110138, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38880069

ABSTRACT

The hemagglutinin-esterase-fusion (HEF) protein binds 9-O-acetylated sialic acids-containing glycans on the cell surface and drives influenza D virus (IDV) entry. The HEF is a primary determinant of the exceptional thermal and acid stability observed in IDV infection biology. Here, we expressed and purified the receptor binding domain (RBD) of the IDV HEF protein in Escherichia coli and characterized its receptor binding and antigenic properties. The data from these experiments indicate that (i) the RBD can bind with specificity to turkey red blood cells (RBC), and its binding can be specifically inhibited by IDV antibody; (ii) the RBD efficiently binds to the cell surface of MDCK cells expressing the receptor of IDV; and (iii) anti-RBD antibodies are capable of blocking RBD attachment to MDCK cells as well as of inhibiting the virus from agglutinating RBCs. These observations support the utility of this RBD in future receptor and entry studies of IDV.

8.
Cell Host Microbe ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38889725

ABSTRACT

Avian influenza A virus (IAV) surveillance in Northern California, USA, revealed unique IAV hemagglutinin (HA) genome sequences in cloacal swabs from lesser scaups. We found two closely related HA sequences in the same duck species in 2010 and 2013. Phylogenetic analyses suggest that both sequences belong to the recently discovered H19 subtype, which thus far has remained uncharacterized. We demonstrate that H19 does not bind the canonical IAV receptor sialic acid (Sia). Instead, H19 binds to the major histocompatibility complex class II (MHC class II), which facilitates viral entry. Unlike the broad MHC class II specificity of H17 and H18 from bat IAV, H19 exhibits a species-specific MHC class II usage that suggests a limited host range and zoonotic potential. Using cell lines overexpressing MHC class II, we rescued recombinant H19 IAV. We solved the H19 crystal structure and identified residues within the putative Sia receptor binding site (RBS) that impede Sia-dependent entry.

9.
mBio ; : e0108524, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899870

ABSTRACT

Monoclonal antibodies (mAbs) are an attractive therapeutic platform for the prevention and treatment of influenza virus infection. There are two major glycoproteins on the influenza virion surface: hemagglutinin (HA), which is responsible for viral attachment and entry, and neuraminidase (NA), which mediates viral egress by enzymatically cleaving sialic acid to release budding particles from the host cell surface. Broadly neutralizing antibodies (bNAbs) that target the conserved HA central stalk region, such as CR9114, can inhibit both viral entry and egress. More recently, broadly binding mAbs that engage and inhibit the NA active site, such as 1G01, have been described to prevent viral egress. Here, we engineered bispecific antibodies (bsAbs) that combine the variable domains of CR9114 and 1G01 into a single molecule and evaluated if simultaneous targeting of two different glycoproteins improved antiviral properties in vitro and in vivo. Several CR9114/1G01 bsAbs were generated with various configurations of the two sets of the variable domains ("bsAb formats"). We found that combinations employing the addition of a single-chain variable fragment in the hinge region of an IgG scaffold had the best properties in terms of expression, stability, and binding. Further characterization of selected bsAbs showed potent neutralizing and egress-inhibiting activity. One such bsAb ("hSC_CR9114_1G01") provided higher levels of prophylactic protection from mortality and morbidity upon challenge with H1N1 than either of the parental mAbs at low dosing (1 mg/kg). These results highlight the potential use of bsAbs that simultaneously target HA and NA as new influenza immunotherapeutics. IMPORTANCE: Infection by the influenza virus remains a global health burden. The approaches utilized here to augment the activity of broadly protective influenza virus antibodies may lead to a new class of immunotherapies with enhanced activity.

10.
Hum Vaccin Immunother ; 20(1): 2356269, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38826029

ABSTRACT

The influenza viruses cause seasonal respiratory illness that affect millions of people globally every year. Prophylactic vaccines are the recommended method to prevent the breakout of influenza epidemics. One of the current commercial influenza vaccines consists of inactivated viruses that are selected months prior to the start of a new influenza season. In many seasons, the vaccine effectiveness (VE) of these vaccines can be relatively low. Therefore, there is an urgent need to develop an improved, more universal influenza vaccine (UIV) that can provide broad protection against various drifted strains in all age groups. To meet this need, the computationally optimized broadly reactive antigen (COBRA) methodology was developed to design a hemagglutinin (HA) molecule as a new influenza vaccine. In this study, COBRA HA-based inactivated influenza viruses (IIV) expressing the COBRA HA from H1 or H3 influenza viruses were developed and characterized for the elicitation of immediate and long-term protective immunity in both immunologically naïve or influenza pre-immune animal models. These results were compared to animals vaccinated with IIV vaccines expressing wild-type H1 or H3 HA proteins (WT-IIV). The COBRA-IIV elicited long-lasting broadly reactive antibodies that had hemagglutination-inhibition (HAI) activity against drifted influenza variants.


Subject(s)
Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines , Orthomyxoviridae Infections , Vaccines, Inactivated , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Animals , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Antibodies, Viral/blood , Antibodies, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Mice , Female , Mice, Inbred BALB C , Humans , Influenza, Human/prevention & control , Influenza, Human/immunology , Vaccine Efficacy , Hemagglutination Inhibition Tests
11.
PeerJ ; 12: e17523, 2024.
Article in English | MEDLINE | ID: mdl-38846750

ABSTRACT

Background: Influenza A(H3N2) virus evolves continuously. Its hemagglutinin (HA) and neuraminidase (NA) genes have high genetic variation due to the antigenic drift. This study aimed to investigate the characteristics and evolution of HA and NA genes of the influenza A(H3N2) virus in Thailand. Methods: Influenza A positive respiratory samples from 2015 to 2018 were subtyped by multiplex real-time RT-PCR. Full-length HA and NA genes from the positive samples of influenza A(H3N2) were amplified and sequenced. Phylogenetic analysis with the maximum likelihood method was used to investigate the evolution of the virus compared with the WHO-recommended influenza vaccine strain. Homology modeling and N-glycosylation site prediction were also performed. Results: Out of 443 samples, 147 (33.18%) were A(H1N1)pdm09 and 296 (66.82%) were A(H3N2). The A(H3N2) viruses circulating in 2015 were clade 3C.2a whereas sub-clade 3C.2a1 and 3C.2a2 dominated in 2016-2017 and 2018, respectively. Amino acid substitutions were found in all antigenic sites A, B, C, D, and E of HA but the majority of the substitutions were located at antigenic sites A and B. The S245N and N329S substitutions in the NA gene affect the N-glycosylation. None of the mutations associated with resistance to NA inhibitors were observed. Mean evolutionary rates of the HA and NA genes were 3.47 × 10 -3 and 2.98 × 10-3 substitutions per site per year. Conclusion: The influenza A(H3N2) virus is very genetically diverse and is always evolving to evade host defenses. The HA and NA gene features including the evolutionary rate of the influenza A(H3N2) viruses that were circulating in Thailand between 2015 and 2018 are described. This information is useful for monitoring the genetic characteristics and evolution in HA and NA genes of influenza A(H3N2) virus in Thailand which is crucial for predicting the influenza vaccine strains resulting in high vaccine effectiveness.


Subject(s)
Evolution, Molecular , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H3N2 Subtype , Influenza, Human , Neuraminidase , Phylogeny , Thailand/epidemiology , Neuraminidase/genetics , Influenza A Virus, H3N2 Subtype/genetics , Humans , Influenza, Human/virology , Influenza, Human/epidemiology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Amino Acid Substitution
12.
Virology ; 597: 110119, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38850895

ABSTRACT

Highly pathogenic avian influenza (HPAI) viruses remain a major threat to both the poultry industry and human public health, and these viruses continue to spread worldwide. In this study, mice were vaccinated with COBRA H2, H5, and H7 hemagglutinin (HA) and two neuraminidase (NA) proteins, N1 and N2. Vaccinated mice were fully protected against lethal challenge with H5N6 influenza virus. Sera collected after vaccination showed cross-reactive IgG antibodies against a panel of wild-type H2, H5, and H7 HA proteins, and N1 and N2 NA proteins. Mice with pre-existing immunity to H1N1 and H3N2 influenza viruses that were subsequently vaccinated with COBRA HA/NA vaccines had enhanced anti-HA stem antibodies compared to vaccinated mice without pre-existing immunity. In addition, sera collected after vaccination had hemagglutinin inhibitory activity against a panel of H2Nx, H5Nx, and H7Nx influenza viruses. These protective antibodies were maintained up for up to 4 months after vaccination.

13.
Gene ; 926: 148559, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38740352

ABSTRACT

The most prevalent glycoprotein on the influenza virus envelope is called hemagglutinin (HA), yet little is known about its involvement in the pathophysiology and etiology of severe influenza pneumonia. Here, after stimulating human bronchial epithelial cells (16-HBE) and mice with HA of H1N1 for 12 h, we investigated the proliferation, migration, inflammatory cytokines expression, and apoptosis in 16-HBE and the pathological damage in mouse lung tissue. The expression of inflammatory cytokines plasminogen activator inhibitor 1(PAI-1), urokinase-type (uPA) and tissue-type (tPA) plasminogen activators, and apoptosis were all enhanced by HA, which also prevented the proliferation and migration of bronchial epithelial cells. HA enhanced up-regulated PAI-1, uPA, and tPA protein expression within mouse lung tissue and caused lung injury. In conclusion, HA alone, but not the whole H1N1 virus, induces lung tissue injury by inhibiting cell proliferation and migration, while promoting the expression of inflammatory cytokines and apoptosis.


Subject(s)
Apoptosis , Cell Proliferation , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Animals , Humans , Mice , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Cell Movement , Cytokines/metabolism , Epithelial Cells/metabolism , Epithelial Cells/virology , Lung/metabolism , Lung/virology , Lung/pathology , Cell Line , Pneumonia, Viral/virology , Pneumonia, Viral/metabolism , Pneumonia, Viral/pathology , Influenza, Human/metabolism , Influenza, Human/virology , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Plasminogen Activator Inhibitor 1/metabolism , Plasminogen Activator Inhibitor 1/genetics , Pneumonia/metabolism , Pneumonia/virology
14.
Cell Rep ; 43(5): 114171, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38717904

ABSTRACT

Influenza A virus subtype H2N2, which caused the 1957 influenza pandemic, remains a global threat. A recent phase 1 clinical trial investigating a ferritin nanoparticle vaccine displaying H2 hemagglutinin (HA) in H2-naive and H2-exposed adults enabled us to perform comprehensive structural and biochemical characterization of immune memory on the breadth and diversity of the polyclonal serum antibody response elicited. We temporally map the epitopes targeted by serum antibodies after vaccine prime and boost, revealing that previous H2 exposure results in higher responses to the variable HA head domain. In contrast, initial responses in H2-naive participants are dominated by antibodies targeting conserved epitopes. We use cryoelectron microscopy and monoclonal B cell isolation to describe the molecular details of cross-reactive antibodies targeting conserved epitopes on the HA head, including the receptor-binding site and a new site of vulnerability deemed the medial junction. Our findings accentuate the impact of pre-existing influenza exposure on serum antibody responses post-vaccination.


Subject(s)
Antibodies, Viral , Immunologic Memory , Influenza A Virus, H2N2 Subtype , Influenza Vaccines , Vaccination , Humans , Antibodies, Viral/immunology , Influenza Vaccines/immunology , Influenza A Virus, H2N2 Subtype/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Antibody Formation/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Epitopes/immunology , Adult , B-Lymphocytes/immunology
15.
Virus Res ; 345: 199402, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772446

ABSTRACT

H1N1 influenza virus is a significant global public health concern. Monoclonal antibodies (mAbs) targeting specific viral proteins such as hemagglutinin (HA) have become an important therapeutic strategy, offering highly specific targeting to block viral transmission and infection. This study focused on the development of mAbs targeting HA of the A/Victoria/2570/2019 (H1N1pdm09, VIC-19) strain by utilizing hybridoma technology to produce two mAbs with high binding capacity. Notably, mAb 2B2 has demonstrated a strong affinity for HA proteins in recent H1N1 influenza vaccine strains. In vitro assessments showed that both mAbs exhibited broad-spectrum hemagglutination inhibition and potent neutralizing effects against various vaccine strains of H1N1pdm09 viruses. 2B2 was also effective in animal models, offering both preventive and therapeutic protection against infections caused by recent H1N1 strains, highlighting its potential for clinical application. By individually co-cultivating each of the aforementioned mAbs with the virus in chicken embryos, four amino acid substitution sites in HA (H138Q, G140R, A141E/V, and D187E) were identified in escape mutants, three in the antigenic site Ca2, and one in Sb. The identification of such mutations is pivotal, as it compels further investigation into how these alterations could undermine the binding efficacy and neutralization capacity of antibodies, thereby impacting the design and optimization of mAb therapies and influenza vaccines. This research highlights the necessity for continuous exploration into the dynamic interaction between viral evolution and antibody response, which is vital for the formulation of robust therapeutic and preventive strategies against influenza.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Mice, Inbred BALB C , Orthomyxoviridae Infections , Animals , Influenza A Virus, H1N1 Subtype/immunology , Antibodies, Monoclonal/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Antibodies, Viral/immunology , Mice , Antibodies, Neutralizing/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Hemagglutination Inhibition Tests , Humans , Chick Embryo , Female , Influenza, Human/immunology , Influenza, Human/virology , Influenza, Human/prevention & control
16.
Vet Microbiol ; 294: 110108, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729093

ABSTRACT

H7N9 subtype avian influenza virus (AIV) poses a great challenge to poultry industry. Virus-like particle (VLP) is a prospective alternative for the traditional egg-based influenza vaccines. N-linked glycosylation (NLG) regulates the efficacy of influenza vaccines, whereas the impact of NLG modifications on the efficacy of influenza VLP vaccines remains unclear. Here, H7N9 VLPs were assembled in insect cells through co-infection with the baculoviruses expressing the NLG-modified hemagglutinin (HA), neuraminidase and matrix proteins, and the VLP vaccines were assessed in chickens and mice. NLG modifications significantly enhanced hemagglutination-inhibition and virus neutralization antibody responses in mice, rather than in chickens, because different immunization strategies were used in these animal models. The presence of dual NLG at residues 133 and 158 significantly elevated HA-binding IgG titers in chickens and mice. The VLP vaccines conferred complete protection and significantly suppressed virus replication and lung pathology post challenge with H7N9 viruses in chickens and mice. VLP immunization activated T cell immunity-related cytokine response and inhibited inflammatory cytokine response in mouse lung. Of note, the presence of dual NLG at residues 133 and 158 optimized the capacity of the VLP vaccine to stimulate interleukin-4 expression, inhibit virus shedding or alleviate lung pathology in chickens or mice. Intriguingly, the VLP vaccine with NLG addition at residue 133 provided partial cross-protection against the H5Nx subtype AIVs in chickens and mice. In conclusion, dual NLG at residues 133 and 158 in HA can be potentially used to enhance the efficacy of H7N9 VLP vaccines in chickens and mammals.


Subject(s)
Antibodies, Viral , Chickens , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza in Birds , Mice, Inbred BALB C , Vaccines, Virus-Like Particle , Animals , Chickens/immunology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Mice , Influenza A Virus, H7N9 Subtype/immunology , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Glycosylation , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Influenza in Birds/virology , Antibodies, Viral/blood , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Female , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Cytokines , Poultry Diseases/prevention & control , Poultry Diseases/virology , Poultry Diseases/immunology
17.
Proc Natl Acad Sci U S A ; 121(22): e2310677121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38753503

ABSTRACT

Seasonal and pandemic-associated influenza strains cause highly contagious viral respiratory infections that can lead to severe illness and excess mortality. Here, we report on the optimization of our small-molecule inhibitor F0045(S) targeting the influenza hemagglutinin (HA) stem with our Sulfur-Fluoride Exchange (SuFEx) click chemistry-based high-throughput medicinal chemistry (HTMC) strategy. A combination of SuFEx- and amide-based lead molecule diversification and structure-guided design led to identification and validation of ultrapotent influenza fusion inhibitors with subnanomolar EC50 cellular antiviral activity against several influenza A group 1 strains. X-ray structures of six of these compounds with HA indicate that the appended moieties occupy additional pockets on the HA surface and increase the binding interaction, where the accumulation of several polar interactions also contributes to the improved affinity. The compounds here represent the most potent HA small-molecule inhibitors to date. Our divergent HTMC platform is therefore a powerful, rapid, and cost-effective approach to develop bioactive chemical probes and drug-like candidates against viral targets.


Subject(s)
Antiviral Agents , Hemagglutinin Glycoproteins, Influenza Virus , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Chemistry, Pharmaceutical/methods , High-Throughput Screening Assays/methods , Influenza, Human/drug therapy , Influenza, Human/virology , Crystallography, X-Ray/methods , Click Chemistry/methods , Animals , Influenza A virus/drug effects , Madin Darby Canine Kidney Cells , Viral Fusion Protein Inhibitors/pharmacology , Viral Fusion Protein Inhibitors/chemistry , Dogs
18.
Acta Biochim Pol ; 71: 12289, 2024.
Article in English | MEDLINE | ID: mdl-38721309

ABSTRACT

The aim of the study was to determine the level of anti-hemagglutinin antibodies in the serum of patients during the 2021/2022 epidemic season in Poland. A total of 700 sera samples were tested, divided according to the age of the patients into 7 age groups: 0-4 years of age, 5-9 years of age, 10-14 years of age, 15-25 years of age, 26-44 years of age, 45-64 years of age and ≥65 years of age, 100 samples were collected from each age group. Anti-hemagglutinin antibody levels was determined using the haemagglutination inhibition assay (OZHA). The results obtained confirm the presence of anti-hemagglutinin antibodies for the antigens A/Victoria/2570/2019 (H1N1) pdm09, A/Cambodia/e0826360/2020 (H3N2), B/Washington/02/2019 and B/Phuket/3073/2013 recommended by World Health Organization (WHO) for the 2021/2022 epidemic season. The analysis of the results shows differences in the levels of individual anti-hemagglutinin antibodies in the considered age groups. In view of very low percentage of the vaccinated population in Poland, which was 6.90% in the 2021/2022 epidemic season, the results obtained in the study would have to be interpreted as the immune system response in patients after a previous influenza virus infection.


Subject(s)
Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza, Human , Humans , Poland/epidemiology , Adult , Middle Aged , Adolescent , Influenza, Human/immunology , Influenza, Human/epidemiology , Influenza, Human/blood , Influenza, Human/virology , Child , Aged , Child, Preschool , Antibodies, Viral/blood , Antibodies, Viral/immunology , Young Adult , Infant , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Male , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Female , Infant, Newborn , Hemagglutination Inhibition Tests , Influenza B virus/immunology , Seasons , Epidemics , Prevalence
19.
Mol Oral Microbiol ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696249

ABSTRACT

BACKGROUND: Arg-gingipain A (RgpA) is the primary virulence factor of Porphyromonas gingivalis and contains hemagglutinin adhesin (HA), which helps bacteria adhere to cells and proteins. Hemagglutinin's functional domains include cleaved adhesin (CA), which acts as a hemagglutination and hemoglobin-binding actor. Here, we confirmed that the HA and CA genes are immunogenic, and using adjuvant chemokine to target dendritic cells (DCs) enhanced protective autoimmunity against P. gingivalis-induced periodontal disease. METHODS: C57 mice were immunized prophylactically with pVAX1-CA, pVAX1-HA, pVAX1, and phosphate-buffered saline (PBS) through intramuscular injection every 2 weeks for a total of three administrations before P. gingivalis-induced periodontitis. The DCs were analyzed using flow cytometry and ribonucleic acid sequencing (RNA-seq) transcriptomic assays following transfection with CA lentivirus. The efficacy of the co-delivered molecular adjuvant CA DNA vaccine was evaluated in vivo using flow cytometry, immunofluorescence techniques, and micro-computed tomography. RESULTS: After the immunization, both the pVAX1-CA and pVAX1-HA groups exhibited significantly elevated P. gingivalis-specific IgG and IgG1, as well as a reduction in bone loss around periodontitis-affected teeth, compared to the pVAX1 and PBS groups (p < 0.05). The expression of CA promoted the secretion of HLA, CD86, CD83, and DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) in DCs. Furthermore, the RNA-seq analysis revealed a significant increase in the chemokine (C-C motif) ligand 19 (p < 0.05). A notable elevation in the quantities of DCs co-labeled with CD11c and major histocompatibility complex class II, along with an increase in interferon-gamma (IFN-γ) cells, was observed in the inguinal lymph nodes of mice subjected to CCL19-CA immunization. This outcome effectively illustrated the preservation of peri-implant bone mass in rats afflicted with P. gingivalis-induced peri-implantitis (p < 0.05). CONCLUSIONS: The co-administration of a CCL19-conjugated CA DNA vaccine holds promise as an innovative and targeted immunization strategy against P. gingivalis-induced periodontitis and peri-implantitis.

20.
Open Vet J ; 14(4): 1019-1028, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38808294

ABSTRACT

Background: Canine distemper (CD) is a worldwide spread disease that has been described in 12 families of mammals, especially in the Carnivora order, being better studied in domestic canines where vaccination represents the best means of control. CD is controlled by vaccination, but many cases of the disease still occur in vaccinated animals. Aim: The aim of this work was to study antigen-specific epitopes that can subsidize the development of a new vaccine approach. Methods: Mapping of T cell reactive epitopes for CD virus (CDV) was carried out through enzyme-linked immunospot assays using 119 overlapped synthetic peptides from the viral hemagglutinin protein, grouped in 22 pools forming a matrix to test the immune response of 32 animals. Results: Evaluations using the criteria established to identify reactive pools, demonstrated that 26 animals presented at least one reactive pool, that one pool was not reactive to any animal, and six pools were the most frequent among the reactive peptides. The crisscrossing of the most reactive pools in the matrix revealed nine peptides considered potential candidate epitopes for T cell stimulation against the CDV and those were used to design an in-silico protein, containing also predicted epitopes for B cell stimulation, and further analyzed using immune epitope databases to ensure protein quality and stability. Conclusion: The final in silico optimized protein presents characteristics that qualify it to be used to develop a new prototype epitope-based anti-CDV vaccine.


Subject(s)
Distemper Virus, Canine , Distemper , Epitope Mapping , Viral Vaccines , Distemper Virus, Canine/immunology , Animals , Distemper/prevention & control , Distemper/immunology , Dogs , Viral Vaccines/immunology , Epitopes, T-Lymphocyte/immunology , Enzyme-Linked Immunospot Assay/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...