Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
J Nutr Biochem ; 93: 108626, 2021 07.
Article in English | MEDLINE | ID: mdl-33705953

ABSTRACT

Protein malnutrition causes anemia and leukopenia as it reduces hematopoietic precursors and impairs the production of mediators that regulate hematopoiesis. Hematopoiesis occurs in distinct bone marrow niches that modulate the processes of differentiation, proliferation and self-renewal of hematopoietic stem cells (HSCs). Mesenchymal stem cells (MSCs) contribute to the biochemical composition of bone marrow niches by the secretion of several growth factors and cytokines, and they play an important role in the regulation of HSCs and hematopoietic progenitors. In this study, we investigated the effect of protein malnutrition on the hematopoietic regulatory function of MSCs. C57BL/6NTaq mice were divided into control and protein malnutrition groups, which received, respectively, a normal protein diet (12% casein) and a low protein diet (2% casein). The results showed that protein malnutrition altered the synthesis of SCF, TFG-ß, Angpt-1, CXCL-12, and G-CSF by MSCs. Additionally, MSCs from the protein malnutrition group were not able to maintain the lymphoid, granulocytic and megakaryocytic-erythroid differentiation capacity compared to the MSCs of the control group. In this way, the comprehension of the role of MSCs on the regulation of the hematopoietic cells, in protein malnutrition states, is for the first time showed. Therefore, we infer that hematopoietic alterations caused by protein malnutrition are due to multifactorial alterations and, at least in part, the MSCs' contribution to hematological impairment.


Subject(s)
Bone Marrow Cells/drug effects , Dietary Proteins/administration & dosage , Hematopoiesis/drug effects , Mesenchymal Stem Cells/metabolism , Protein Deficiency/metabolism , Animals , Bone Marrow Cells/physiology , Coculture Techniques , Culture Media, Conditioned , Hematopoiesis/physiology , Leukocytes, Mononuclear/physiology , Mice , Proto-Oncogene Proteins c-kit/metabolism , RNA/drug effects , RNA/genetics , RNA/metabolism
2.
Clin Nutr ; 39(5): 1551-1559, 2020 05.
Article in English | MEDLINE | ID: mdl-31326233

ABSTRACT

BACKGROUND & AIMS: Protein malnutrition (PM) affects hematopoiesis leading to bone marrow (BM) hypoplasia and arrests hematopoietic stem cells (HSC) in G0/G1 cell cycle phases, which cause anemia and leukopenia. Hematopoiesis is mainly regulated by BM niches where endothelial cells (EC) present a key regulatory role. Thus, our objective is to evaluate whether PM affects the modulatory capacity of EC on hematopoiesis. METHODS: C57BL/6 male mice received for 5 weeks a normal protein diet (12% casein) or a low protein diet (2% casein). MSC were isolated and differentiated in vitro into EC and the synthesis of SCF, Ang-1, CXCL-12, IL-11, TGF-ß and G-CSF were evaluated. The HSC and hematopoietic progenitors were quantified and the EC capacity to modulate the hematopoietic system was also evaluated. Moreover, the ability of PM bone marrow to support hematopoieisis was assessed by proliferation of infused leukemic myelo-monoblasts cells. RESULTS: PM decreases HSC and hematopoietic progenitor pool and promotes cell cycle arrest and a lower proliferation rate of leukemic myelo-monoblasts. PM also committed hematopoietic regulatory characteristics from EC, resulting in the modification of both cell cycle pattern and hematopoietic differentiation. CONCLUSION: BM microenvironment is compromised in PM, and since PM disturbs EC, it becomes one of the factors responsible for the hematopoietic cell cycle arrest and impairment of HSC differentiation.


Subject(s)
Bone Marrow Cells/drug effects , Dietary Proteins/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/physiology , Hematopoiesis/drug effects , Protein Deficiency , Anemia , Animal Nutritional Physiological Phenomena , Animals , Cell Differentiation , Cell Line , Coculture Techniques , Diet , Leukopenia , Male , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/physiology , Mice , Mice, Inbred C57BL
3.
São Paulo; s.n; s.n; 2019. 148 p. graf, tab.
Thesis in English | LILACS | ID: biblio-996797

ABSTRACT

Protein malnutrition (PM) causes anemia and leukopenia by reduction of hematopoietic precursors and impaired production of mediators that induce hematopoiesis, as well as structural and ultrastructural changes in the bone marrow (BM) extracellular matrix. Hematopoiesis occurs in the bone marrow (BM) in distinct regions called niches, which modulate the processes of differentiation, proliferation and self-renewal of the hematopoietic stem cell (HSC). The perivascular niche, composed mainly by mesenchymal stem cells (MSC) and endothelial cells (EC), is the major modulator of HSC and its function extends to the migration of mature hematopoietic cells into the peripheral blood through the production of cytokines and growth factors. Thus, our hypothesis is that PM changes the perivascular niche and our objective is to evaluate whether PM affects the modulatory capacity of MSC and EC on hematopoiesis. C57BL/6 male mice were divided into Control and Malnourished groups, which received for 5 weeks, respectively, a normal protein diet (12% casein) and a low protein diet (2% casein). After this period, animals were euthanized, nutritional and hematological evaluations were performed, featuring the PM. We performed leukemic myelo-monoblasts cells transplantation and observed that these cells have a lower proliferation rate and are rather in the cell cycle G0/G1 phases in malnourished mice, indicating that the BM microenvironment is compromised in PM. MSC were isolated, characterized and differentiated in vitro into EC cells, which were evidenced by CD31 and CD144 markers. We performed the quantification of HSC and hematopoietic progenitors, as well as some regulators of proliferation and differentiation, ex vivo and after cultures with MSC or EC. We observed that PM reduces HSC and hematopoietic progenitors ex vivo. In PM, MSC promote increase in HSC and suppress hematopoietic differentiation, whereas ECs induce cell cycle arrest. Additionally, we verified that PM affects granulopoesis by decreasing the expression of G-CSFr in granule-monocytic progenitors. Thus, we conclude that PD compromises hematopoiesis due to intrinsic alterations in HSC, as well as alterations in the medullary perivascular niche


A desnutrição proteica (DP) provoca anemia e leucopenia decorrente da redução de precursores hematopoéticos e comprometimento da produção de mediadores indutores da hematopoese. A hematopoese ocorre na medula óssea (MO) em regiões distintas chamadas de nichos, que modulam os processos de diferenciação, proliferação e auto renovação da célula tronco hematopoiética (CTH). O microambiente perivascular, composto principalmente por células tronco mesenquimais (CTM) e células endoteliais (CE), é o principal modulador das CTH e sua função se estende até a migração das células hematopoiéticas maduras para o sangue periférico, através da produção de citocinas e fatores de crescimento. Dessa forma, nossa hipótese é que a DP altera o microambiente perivascular e objetivamos avaliar se a DP afeta a capacidade modulatória das CTM e CE sobre a hematopoese. Utilizamos camundongos C57BL/6 machos, divididos em grupos Controle e Desnutrido, sendo que o grupo Controle recebeu ração normoproteica (12% caseína) e o grupo Desnutrido recebeu ração hipoproteica (2% caseína), ambos durante 5 semanas. Após este período, os animais foram eutanasiados, foi realizada a avaliação nutricional e hematológica, caracterizando a DP. Realizamos transplantes de mielomonoblastos leucêmicos e observamos que estas células apresentam menor taxa de proliferação e se encontram em maior quantidade nas fases G0/G1 do ciclo celular em camundongos desnutridos, indicando que o microambiente medular está comprometido. Isolamos CTM, que foram caracterizadas e diferenciadas in vitro em CE, o que foi evidenciado pelos marcadores CD31 e CD144. Quantificamos CTH e progenitores hematopoéticos, bem como reguladores de proliferação e diferenciação, ex vivo e após culturas com CTM ou CE. Observamos que a DP reduz CTH e progenitores hematopoéticos ex vivo. Na DP, as CTM promovem incremento de CTH e suprimem a diferenciação hematopoética, enquanto que as CE induzem parada no ciclo celular. Adicionalmente, observamos que a DP afeta a granulopoese por diminuição da expressão de G-CSFr nos progenitores grânulo-monocíticos. Dessa forma, concluímos que a DP compromete a hematopoese por alterações intrínsecas na CTH, como também por alterações ocasionadas no microambiente perivascular medular


Subject(s)
Animals , Male , Mice , Protein Deficiency/complications , Hematopoiesis , Endothelial Cells/classification , Tumor Microenvironment
4.
Dev Comp Immunol ; 72: 37-43, 2017 07.
Article in English | MEDLINE | ID: mdl-28163091

ABSTRACT

The golden apple snail Pomacea canaliculata is an invasive pest originating from South America. It has already been found in Asia, the southern United States and more recently in the EU. Aiming to target the immune system of the snail as a way to control its spreading, we have developed organ-specific transcriptomes and looked for molecules controlling replication and differentiation of snail hemocytes. The prokineticin domain-containing protein Astakine 1 is the only cytokine known thus far capable of regulating invertebrate hematopoiesis, and we analyzed the transcriptomes looking for molecules containing a prokineticin domain. We have identified a prokineticin-like protein (PlP), that we called Pc-plp and we analyzed by real-time PCR (qPCR) its expression. In control snails, highest levels of Pc-plp were detected in the digestive gland, the ampulla (i.e., a hemocyte reservoir) and the pericardial fluid (i.e., the hematopoietic district). We tested Pc-plp expression after triggering hematopoiesis via multiple hemolymph withdrawals, or during bacterial challenge through LPS injection. In both cases a reduction of Pc-plp mRNA was observed. The multiple hemolymph withdrawals caused a significant decrease of Pc-plp mRNA in pericardial fluid and circulating hemocytes, while the LPS injection promoted the Pc-plp mRNA drop in anterior kidney, mantle and gills, organs that may act as immune barrier in molluscs. Our data indicate an important role for prokineticin domain-containing proteins as immunomodulators also in gastropods and their dynamic expression may serve as a biosensor to gauge the effectiveness of immunological interventions aimed at curtailing the spreading of the gastropod pest P. canaliculata.


Subject(s)
Cytokines/metabolism , Gastropoda/immunology , Hemocytes/immunology , Vascular Endothelial Growth Factor, Endocrine-Gland-Derived/metabolism , Animals , Cytokines/genetics , Down-Regulation , Hematopoiesis , Hemolymph , Immunity, Innate , Immunomodulation , Lipopolysaccharides/immunology , Transcriptome , Vascular Endothelial Growth Factor, Endocrine-Gland-Derived/genetics
5.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-576457

ABSTRACT

Objective To observe the effect of chronic aplastic anemia patients treated with promoting kidney and tonifing bone herbs on the expression of hematopoiesis regulation factors,and discuss the mechanism of kidney-promoting herbs. Methods 120 cases of chronic aplastic anemia were randomly divided into two groups,90 cases treated with promote kidney and tonify bone method,and 30 cases treated with western medicine. Besides these,10 cases of volunteers’ bone marrow were collected as normal control. Hematopoiesis regulation factors such as SCF,IL-3,TNF-? and IFN-? mRNA semi-quantitative expression were observed by RT-PCR. Results The expression level of SCF and IL-3 mRNA in two groups was lower obviously than normal control(P

SELECTION OF CITATIONS
SEARCH DETAIL
...