Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.126
Filter
1.
Antioxidants (Basel) ; 13(7)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39061867

ABSTRACT

The exponential growth of the aged population worldwide is followed by an increase in the prevalence of age-related disorders. Oxidative stress plays central role in damage accumulation during ageing and cell senescence. Thus, a major target of today's anti-ageing research has been focused on antioxidants counteracting senescence. In the current work, six novel 5,7,8-trimethyl-1,4-benzoxazine/catechol or resorcinol hybrids were synthesized connected through a methoxymethyl-1,2,3-triazolyl or a 1,2,3-triazoly linker. The compounds were evaluated for their antioxidant capacity in a cell-free system and for their ability to reduce intracellular ROS levels in human skin fibroblasts, both young (early-passage) and senescent. The most efficient compounds were further tested in these cells for their ability to induce the expression of the gene heme oxygenase-1 (ho-1), known to regulate redox homeostasis, and cellular glutathione (GSH) levels. Overall, the two catechol derivatives were found to be more potent than the resorcinol analogues. Furthermore, these two derivatives were shown to act coordinately as radical scavengers, ROS inhibitors, ho-1 gene expression inducers, and GSH enhancers. Interestingly, one of the two catechol derivatives was also found to enhance human skin fibroblast viability. The properties of the synthesized compounds support their potential use in cosmetic applications, especially in products targeting skin ageing.

2.
Antioxidants (Basel) ; 13(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39061924

ABSTRACT

Chemotherapy-provoked peripheral neuropathy and its associated affective disorders are important adverse effects in cancer patients, and its treatment is not completely resolved. A recent study reveals a positive interaction between molecular hydrogen (H2) and a heme oxygenase (HO-1) enzyme inducer, cobalt protoporphyrin IX (CoPP), in the inhibition of neuropathic pain provoked by nerve injury. Nevertheless, the efficacy of CoPP co-administered with hydrogen-rich water (HRW) on the allodynia and emotional disorders related to paclitaxel (PTX) administration has not yet been assessed. Using male C57BL/6 mice injected with PTX, we examined the effects of the co-administration of low doses of CoPP and HRW on mechanical and thermal allodynia and anxiodepressive-like behaviors triggered by PTX. Moreover, the impact of this combined treatment on the oxidative stress and inflammation caused by PTX in the amygdala (AMG) and dorsal root ganglia (DRG) were studied. Our results indicated that the antiallodynic actions of the co-administration of CoPP plus HRW are more rapid and higher than those given by each of them when independently administered. This combination inhibited anxiodepressive-like behaviors, the up-regulation of the inflammasome NLRP3 and 4-hydroxynonenal, as well as the high mRNA levels of some inflammatory mediators. This combination also increased the expression of NRF2, HO-1, superoxide dismutase 1, glutathione S-transferase mu 1, and/or the glutamate-cysteine ligase modifier subunit and decreased the protein levels of BACH1 in the DRG and/or AMG. Thus, it shows a positive interaction among HO-1 and H2 systems in controlling PTX-induced neuropathy by modulating inflammation and activating the antioxidant system. This study recommends the co-administration of CoPP plus HRW as an effective treatment for PTX-provoked neuropathy and its linked emotive deficits.

3.
Redox Rep ; 29(1): 2373657, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39023011

ABSTRACT

OBJECTIVES: Intestinal ischemia-reperfusion (I/R) injury is a multifactorial and complex clinical pathophysiological process. Current research indicates that the pathogenesis of intestinal I/R injury involves various mechanisms, including ferroptosis. Methane saline (MS) has been demonstrated to primarily exert anti-inflammatory and antioxidant effects in I/R injury. In this study, we mainly investigated the effect of MS on ferroptosis in intestinal I/R injury and determined its potential mechanism. METHODS: In vivo and in vitro intestinal I/R injury models were established to validate the relationship between ferroptosis and intestinal I/R injury. MS treatment was applied to assess its impact on intestinal epithelial cell damage, intestinal barrier disruption, and ferroptosis. RESULTS: MS treatment led to a reduction in I/R-induced intestinal epithelial cell damage and intestinal barrier disruption. Moreover, similar to treatment with ferroptosis inhibitors, MS treatment reduced ferroptosis in I/R, as indicated by a decrease in the levels of intracellular pro-ferroptosis factors, an increase in the levels of anti-ferroptosis factors, and alleviation of mitochondrial damage. Additionally, the expression of Nrf2/HO-1 was significantly increased after MS treatment. However, the intestinal protective and ferroptosis inhibitory effects of MS were diminished after the use of M385 to inhibit Nrf2 in mice or si-Nrf2 in Caco-2 cells. DISCUSSION: We proved that intestinal I/R injury was mitigated by MS and that the underlying mechanism involved modulating the Nrf2/HO-1 signaling pathway to decrease ferroptosis. MS could be a promising treatment for intestinal I/R injury.


Subject(s)
Ferroptosis , Heme Oxygenase-1 , Methane , NF-E2-Related Factor 2 , Reperfusion Injury , Signal Transduction , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Animals , Signal Transduction/drug effects , Mice , Heme Oxygenase-1/metabolism , Methane/pharmacology , Male , Humans , Saline Solution/pharmacology , Intestines/drug effects , Intestines/injuries , Mice, Inbred C57BL , Membrane Proteins
4.
J Ethnopharmacol ; 334: 118517, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972525

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The limitations of modern medicine in mitigating the pathological process of diabetic kidney disease (DKD) necessitate novel, precise, and effective prevention and treatment methods. Huangqi, the root of Astragalus membranaceus Fisch. ex Bunge has been used in traditional Chinese medicine for various kidney ailments. Astragaloside IV (AS-IV), the primary pharmacologically active compound in A. membranaceus, is involved in lipid metabolism regulation; however, its potential in ameliorating renal damage in DKD remains unexplored. AIM OF THE STUDY: To elucidate the specific mechanism by which AS-IV moderates DKD progression. MATERIALS AND METHODS: A murine model of DKD and high glucose-induced HK-2 cells were treated with AS-IV. Furthermore, multiomics analysis, molecular docking, and molecular dynamics simulations were performed to elucidate the mechanism of action of AS-IV in DKD, which was validated using molecular biological methods. RESULTS: AS-IV regulated glucose and lipid metabolism in DKD, thereby mitigating lipid deposition in the kidneys. Proteomic analysis identified 12 proteins associated with lipid metabolism regulated by AS-IV in the DKD renal tissue. Additionally, lipid metabolomic analysis revealed that AS-IV upregulated and downregulated 4 beneficial and 79 harmful lipid metabolites, respectively. Multiomics analysis further indicated a positive correlation between the top-ranked differential protein heme oxygenase (HMOX)1 and the levels of various harmful lipid metabolites and a negative correlation with the levels of beneficial lipid metabolites. Furthermore, enrichment of both ferroptosis and hypoxia-inducible factor (HIF)-1 signaling pathways during the AS-IV treatment of DKD was observed using proteomic analysis. Validation results showed that AS-IV effectively reduced ferroptosis in DKD-affected renal tubular epithelial cells by inhibiting HIF-1α/HMOX1 pathway activity, upregulating glutathione peroxidase-4 and ferritin heavy chain-1 expression, and downregulating acyl-CoA synthetase long-chain family member-4 and transferrin receptor-1 expression. Our findings demonstrate the potential of AS-IV in mitigating DKD pathology by downregulating the HIF-1α/HMOX1 signaling pathway, thereby averting ferroptosis in renal tubular epithelial cells. CONCLUSIONS: AS-IV is a promising treatment strategy for DKD via the inhibition of ferroptosis in renal tubular epithelial cells. The findings of this study may help facilitate the development of novel therapeutic strategies.

5.
Redox Biol ; 75: 103247, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-39047636

ABSTRACT

Heme oxygenase-1 (HO-1, HMOX1) degrades heme protecting cells from heme-induced oxidative damage. Beyond its well-established cellular functions, heme has emerged as a stabilizer of G-quadruplexes. These secondary DNA structures interfere with DNA replication. We recently revealed that nuclear HO-1 colocalizes with DNA G-quadruplexes and promotes their removal. Here, we investigate whether HO-1 safeguards cells against replication stress. Experiments were conducted in control and HMOX1-deficient HEK293T cell lines. Immunostaining unveiled that DNA G-quadruplexes accumulated in the absence of HO-1, the effect that was further enhanced in response to δ-aminolevulinic acid (ALA), a substrate in heme synthesis. This was associated with replication stress, as evidenced by an elevated proportion of stalled forks analyzed by fiber assay. We observed the same effects in hematopoietic stem cells isolated from Hmox1 knockout mice and in a lymphoblastoid cell line from an HMOX1-deficient patient. Interestingly, in the absence of HO-1, the speed of fork progression was higher, and the response to DNA conformational hindrance less stringent, indicating dysfunction of the PARP1-p53-p21 axis. PARP1 activity was not decreased in the absence of HO-1. Instead, we observed that HO-1 deficiency impairs the nuclear import and accumulation of p53, an effect dependent on the removal of excess heme. We also demonstrated that administering ALA is a more specific method for increasing intracellular free heme compared to treatment with hemin, which in turn induces strong lipid peroxidation. Our results indicate that protection against replication stress is a universal feature of HO-1, presumably contributing to its widely recognized cytoprotective activity.

6.
Free Radic Biol Med ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39047850

ABSTRACT

Neural stem cells play a crucial role in maintaining brain homeostasis. Neural stem cells senescence can lead to the decline of nerve repair and regeneration, causing brain aging and neurodegenerative diseases. However, the mechanism underlying neural stem cells senescence remains poorly understood. In this study, we report a novel HO-1/PARP1 non-canonical pathway highlighting how oxidative stress triggers the DNA damage response, ultimately leading to premature cellular senescence in neural stem cells. HO-1 acts as a sensor for oxidative stress, while PARP1 functions as a sensor for DNA damage. The simultaneous expression and molecular interaction of these two sensors can initiate a crosstalk of oxidative stress and DNA damage response processes, leading to the vicious cycle. The persistent activation of this pathway contributes to the senescence of neural stem cells, which in turn plays a crucial role in the progression of neurodegenerative diseases. Consequently, targeting this novel signaling pathway holds promise for the development of innovative therapeutic strategies and targets aimed at mitigating neural stem cells senescence-related disorders.

7.
Inflammation ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954261

ABSTRACT

Peroxiredoxin 6 (PRDX6) has a protective effect on pulmonary epithelial cells against cigarette smoke (CS)-induced ferroptosis. This study investigates the role of PRDX6 in the development of chronic obstructive pulmonary disease (COPD) and its possibility as a target. We observed that PRDX6 was downregulated in lung tissues of COPD patients and in CS-stimulated cells. The degradation of PRDX6 could be through the lysosomal pathway. PRDX6 deficiency exacerbated pulmonary inflammation and mucus hypersecretion in vivo. Overexpression of PRDX6 in Beas-2B cells ameliorated CS-induced cell death and inflammation, suggesting its protective role against CS-induced damage. Furthermore, PRDX6 deficiency promoted ferroptosis by adding the content of iron and reactive oxygen species, while iron chelation with deferoxamine mitigated CS-induced ferroptosis, cell death, and inflammatory infiltration both in vitro and in vivo. The critical role of PRDX6 in regulating ferroptosis suggests that targeting PRDX6 or iron metabolism may represent a promising strategy for COPD treatment.

8.
Bioact Mater ; 39: 595-611, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38883313

ABSTRACT

Sepsis, a life-threatening syndrome of organ damage resulting from dysregulated inflammatory response, is distinguished by overexpression of inflammatory cytokines, excessive generation of reactive oxygen/nitrogen species (RONS), heightened activation of pyroptosis, and suppression of autophagy. However, current clinical symptomatic supportive treatment has failed to reduce the high mortality. Herein, we developed self-assembled multifunctional carbon monoxide nanogenerators (Nano CO), as sepsis drug candidates, which can release CO in response to ROS, resulting in clearing bacteria and activating the heme oxygenase-1/CO system. This activation strengthened endogenous protection and scavenged multiple inflammatory mediators to alleviate the cytokine storm, including scavenging RONS and cfDNA, inhibiting macrophage activation, blocking pyroptosis and activating autophagy. Animal experiments show that Nano CO has a good therapeutic effect on mice with LPS-induced sepsis, which is manifested in hypothermia recovery, organ damage repair, and a 50% decrease in mortality rates. Taken together, these results illustrated the efficacy of multifunctional Nano CO to target clearance of multiple mediators in sepsis treatment and act against other refractory inflammation-related diseases.

9.
Front Endocrinol (Lausanne) ; 15: 1380163, 2024.
Article in English | MEDLINE | ID: mdl-38846488

ABSTRACT

Background: Although the importance and benefit of heme oxygenase-1 (HO-1) in diabetes rodent models has been known, the contribution of HO-1 in the pre-diabetic patients with hyperlipidemia risk still remains unclear. This cross-sectional study aims to evaluate whether HO-1 is associated with hyperlipidemia in pre-diabetes. Methods: Serum level of HO-1 was detected using commercially available ELISA kit among 1,425 participants aged 49.3-63.9 with pre-diabetes in a multicenter Risk Evaluation of cAncers in Chinese diabeTic Individuals: A lONgitudinal (REACTION) prospective observational study. Levels of total cholesterol (TC) and triglyceride (TG) were measured and used to defined hyperlipidemia. The association between HO-1 and hyperlipidemia was explored in different subgroups. Result: The level of HO-1 in pre-diabetic patients with hyperlipidemia (181.72 ± 309.57 pg/ml) was obviously lower than that in pre-diabetic patients without hyperlipidemia (322.95 ± 456.37 pg/ml). High level of HO-1 [(210.18,1,746.18) pg/ml] was negatively associated with hyperlipidemia (OR, 0.60; 95% CI, 0.37-0.97; p = 0.0367) after we adjusted potential confounding factors. In subgroup analysis, high level of HO-1 was negatively associated with hyperlipidemia in overweight pre-diabetic patients (OR, 0.50; 95% CI, 0.3-0.9; p = 0.034), especially in overweight women (OR, 0.42; 95% CI, 0.21-0.84; p = 0.014). Conclusions: In conclusion, elevated HO-1 level was negatively associated with risk of hyperlipidemia in overweight pre-diabetic patients, especially in female ones. Our findings provide information on the exploratory study of the mechanism of HO-1 in hyperlipidemia, while also suggesting that its mechanism may be influenced by body weight and gender.


Subject(s)
Heme Oxygenase-1 , Hyperlipidemias , Prediabetic State , Humans , Hyperlipidemias/blood , Hyperlipidemias/epidemiology , Female , Male , Cross-Sectional Studies , Middle Aged , Heme Oxygenase-1/blood , Prediabetic State/blood , Prediabetic State/epidemiology , Prospective Studies , Longitudinal Studies , Risk Factors , China/epidemiology
10.
J Inflamm Res ; 17: 3825-3838, 2024.
Article in English | MEDLINE | ID: mdl-38903877

ABSTRACT

Background: Intervertebral disc degeneration (IDD) underlies the pathogenesis of degenerative diseases of the spine; however, its exact molecular mechanism is unclear. Purpose: To explore the molecular mechanism of mechanical pressure (MP)-induced IDD and to assess the role and mechanism of Rosuvastatin (RSV) inhibits MP-induced IDD. Methods: SD rat nucleus pulposus cells (NPCs) were cultured in vitro and an apoptosis model of NPCs was constructed using MP. Proliferative activity, reactive oxygen species content, apoptosis, and wound healing were detected in each group of NPCs, respectively. The expression of relevant proteins was detected by qPCR and Western Blot techniques. 18 SD rats were randomly divided into control, pressure and RSV groups. Elisa, qPCR, Western Blot and immunohistochemical staining techniques were used to detect changes in the content of related proteins in the intervertebral discs of each group. HE staining and Modified Saffron-O and Fast Green Stain Kit were used to assess IDD in each group. Results: MP treatment at 1.0 MPa could significantly induce apoptosis of NPCs after 24 h. MP could significantly inhibit the proliferative activity and wound healing ability of NPCs, and increase the intracellular reactive oxygen species content and apoptosis rate; pretreatment with RSV could significantly activate the Nrf2/HO-1 signaling pathway and reverse the cellular damage caused by MP; when inhibit the Nrf2/HO-1 signaling pathway activation, the protective effect of RSV was reversed. In vivo MP could significantly increase the content of inflammatory factors within the IVD and promote the degradation of extracellular matrix, leading to IDD. When the intervention of RSV was employed, it could significantly activate the Nrf2/HO-1 signaling pathway and improve the above results. Conclusion: RSV may inhibit MP-induced NPCs damage and IDD by activating the Nrf2/HO-1 signaling pathway.

11.
Skelet Muscle ; 14(1): 13, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867250

ABSTRACT

BACKGROUND: Adult muscle-resident myogenic stem cells, satellite cells (SCs), that play non-redundant role in muscle regeneration, are intrinsically impaired in Duchenne muscular dystrophy (DMD). Previously we revealed that dystrophic SCs express low level of anti-inflammatory and anti-oxidative heme oxygenase-1 (HO-1, HMOX1). Here we assess whether targeted induction of HMOX1 affect SC function and alleviates hallmark symptoms of DMD. METHODS: We generated double-transgenic mouse model (mdx;HMOX1Pax7Ind) that allows tamoxifen (TX)-inducible HMOX1 expression in Pax7 positive cells of dystrophic muscles. Mdx;HMOX1Pax7Ind and control mdx mice were subjected to 5-day TX injections (75 mg/kg b.w.) followed by acute exercise protocol with high-speed treadmill (12 m/min, 45 min) and downhill running to worsen skeletal muscle phenotype and reveal immediate effects of HO-1 on muscle pathology and SC function. RESULTS: HMOX1 induction caused a drop in SC pool in mdx;HMOX1Pax7Ind mice (vs. mdx counterparts), while not exaggerating the effect of physical exercise. Upon physical exercise, the proliferation of SCs and activated CD34- SC subpopulation, was impaired in mdx mice, an effect that was reversed in mdx;HMOX1Pax7Ind mice, however, both in vehicle- and TX-treated animals. This corresponded to the pattern of HO-1 expression in skeletal muscles. At the tissue level, necrotic events of selective skeletal muscles of mdx mice and associated increase in circulating levels of muscle damage markers were blunted in HO-1 transgenic animals which showed also anti-inflammatory cytokine profile (vs. mdx). CONCLUSIONS: Targeted expression of HMOX1 plays protective role in DMD and alleviates dystrophic muscle pathology.


Subject(s)
Heme Oxygenase-1 , Mice, Inbred mdx , Mice, Transgenic , Muscle, Skeletal , Muscular Dystrophy, Duchenne , Satellite Cells, Skeletal Muscle , Animals , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mice , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , Male , Mice, Inbred C57BL , Physical Conditioning, Animal , Membrane Proteins
12.
Fish Shellfish Immunol ; 151: 109703, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878912

ABSTRACT

Heme oxygenase-1 (HO-1), an inducible rate-limiting metabolic enzyme, exerts critical immunomodulatory functions by potential anti-oxidant, anti-inflammatory, and anti-apoptotic activities. Although accumulative studies have focused on the immune functions of HO-1 in mammals, the roles in fish are poorly understood, and the reports on involvement in the defensive and immune response are very limited. In this study, On-HO-1 gene from Oreochromis niloticus was successfully cloned and identified, which contained an open reading frame (ORF) of 816 bp and coded for a protein of 271 amino acids. The On-HO-1 protein phylogenetically shared a high homology with HO-1 in other teleost fish (76.10%-98.89 %) and a lowly homology with HO-1 in mammals (38.98%-41.55 %). The expression levels of On-HO-1 were highest in the liver of healthy tilapias and sharply induced by Streptococcus agalactiae or Aeromonas hydrophila. Besides, On-HO-1 overexpression significantly increased non-specific immunological parameters in serum during bacterial infection, including LZM, SOD, CAT, ACP, and AKP. It also exerted anti-inflammatory and anti-apoptotic effects in response to the immune response of the infection with S. agalactiae or A. hydrophila by upregulating anti-inflammatory factors (IL-10, TGF-ß), autophagy factors (ATG6, ATG8) and immune-related pathway factors (P65, P38), and down-regulating pro-inflammatory factors (IL-1ß, IL-6, TNF-α), apoptotic factors (Caspase3, Caspase9), pyroptosis factor (Caspase1), and inflammasome (NLRP3). These results suggested that On-HO-1 involved in immunomodulatory functions and host defense in Nile tilapia.


Subject(s)
Aeromonas hydrophila , Cichlids , Fish Diseases , Fish Proteins , Gram-Negative Bacterial Infections , Heme Oxygenase-1 , Immunity, Innate , Phylogeny , Animals , Cichlids/immunology , Cichlids/genetics , Fish Diseases/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Aeromonas hydrophila/physiology , Immunity, Innate/genetics , Heme Oxygenase-1/genetics , Heme Oxygenase-1/immunology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Streptococcal Infections/immunology , Streptococcal Infections/veterinary , Streptococcus agalactiae/physiology , Gene Expression Regulation/immunology , Gene Expression Profiling/veterinary , Sequence Alignment/veterinary , Amino Acid Sequence
13.
Ecotoxicol Environ Saf ; 280: 116562, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38850704

ABSTRACT

Diquat dibromide (DQ) is a globally used herbicide in agriculture, and its overuse poses an important public health issue, including male reproductive toxicity in mammals. However, the effects and molecular mechanisms of DQ on testes are limited. In vivo experiments, mice were intraperitoneally injected with 8 or 10 mg/kg/ day of DQ for 28 days. It has been found that heme oxygenase-1 (HO-1) mediates DQ-induced ferroptosis in mouse spermatogonia, thereby damaging testicular development and spermatogenesis. Histopathologically, we found that DQ exposure caused seminiferous tubule disorders, reduced germ cells, and increased sperm malformation, in mice. Reactive oxygen species (ROS) staining of frozen section and transmission electron microscopy (TEM) displayed DQ promoted ROS generation and mitochondrial morphology alterations in mouse testes, suggesting that DQ treatment induced testicular oxidative stress. Subsequent RNA-sequencing further showed that DQ treatment might trigger ferroptosis pathway, attributed to disturbed glutathione metabolism and iron homeostasis in spermatogonia cells in vitro. Consistently, results of western blotting, measurements of MDA and ferrous iron, and ROS staining confirmed that DQ increased oxidative stress and lipid peroxidation, and accelerated ferrous iron accumulation both in vitro and in vivo. Moreover, inhibition of ferroptosis by deferoxamine (DFO) markedly ameliorated DQ-induced cell death and dysfunction. By RNA-sequencing, we found that the expression of HO-1 was significantly upregulated in DQ-treated spermatogonia, while ZnPP (a specific inhibitor of HO-1) blocked spermatogonia ferroptosis by balancing intracellular iron homeostasis. In mice, administration of the ferroptosis inhibitor ferrostatin-1 effectively restored the increase of HO-1 levels in the spermatogonia, prevented spermatogonia death, and alleviated the spermatogenesis disorders induced by DQ. Overall, these findings suggest that HO-1 mediates DQ-induced spermatogonia ferroptosis in mouse testes, and targeting HO-1 may be an effective protective strategy against male reproductive disorders induced by pesticides in agriculture.


Subject(s)
Diquat , Ferroptosis , Heme Oxygenase-1 , Herbicides , Reactive Oxygen Species , Spermatogonia , Testis , Animals , Male , Ferroptosis/drug effects , Mice , Spermatogonia/drug effects , Spermatogonia/pathology , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Testis/drug effects , Testis/pathology , Diquat/toxicity , Herbicides/toxicity , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Spermatogenesis/drug effects , Membrane Proteins
14.
J Mol Med (Berl) ; 102(8): 1001-1007, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38937302

ABSTRACT

The global incidence and prevalence of arrhythmias are continuously increasing. However, the precise mechanisms of underlying arrhythmogenesis and the optimal measures for effective treatment remain incompletely understood. The inducible form of heme oxygenase, known as heme oxygenase-1 (HO-1), is recognized as a potent antioxidant molecule capable of exerting anti-inflammatory and anti-apoptotic effects. Recent research indicates that HO-1 plays a role in preventing arrhythmias by mitigating cardiac remodeling, including electrical remodeling, ion remodeling, and structural remodeling. This review aimed to consolidate current knowledge regarding the involvement of HO-1 in arrhythmias and elucidate its underlying mechanisms of action.


Subject(s)
Arrhythmias, Cardiac , Heme Oxygenase-1 , Humans , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/drug therapy , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Animals
15.
Pharmacol Res Perspect ; 12(4): e1225, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38923404

ABSTRACT

Drug repurposing has gained significant interest in recent years due to the high costs associated with de novo drug development; however, comprehensive pharmacological information is needed for the translation of pre-existing drugs across clinical applications. In the present study, we explore the current pharmacological understanding of the orphan drug, hemin, and identify remaining knowledge gaps with regard to hemin repurposing for the treatment of cardiovascular disease. Originally approved by the United States Food and Drug Administration in 1983 for the treatment of porphyria, hemin has attracted significant interest for therapeutic repurposing across a variety of pathophysiological conditions. Yet, the clinical translation of hemin remains limited to porphyria. Understanding hemin's pharmacological profile in health and disease strengthens our ability to treat patients effectively, identify therapeutic opportunities or limitations, and predict and prevent adverse side effects. However, requirements for the pre-clinical and clinical characterization of biologics approved under the U.S. FDA's Orphan Drug Act in 1983 (such as hemin) differed significantly from current standards, presenting fundamental gaps in our collective understanding of hemin pharmacology as well as knowledge barriers to clinical translation for future applications. Using information extracted from the primary and regulatory literature (including documents submitted to Health Canada in support of hemin's approval for the Canadian market in 2018), we present a comprehensive case study of current knowledge related to hemin's biopharmaceutical properties, pre-clinical/clinical pharmacokinetics, pharmacodynamics, dosing, and safety, focusing specifically on the drug's effects on heme regulation and in the context of acute myocardial infarction.


Subject(s)
Cardiovascular Diseases , Drug Repositioning , Hemin , United States Food and Drug Administration , Humans , Cardiovascular Diseases/drug therapy , United States , Animals , Orphan Drug Production/legislation & jurisprudence , Drug Approval
16.
J Zhejiang Univ Sci B ; 25(6): 513-528, 2024 Jun 15.
Article in English, Chinese | MEDLINE | ID: mdl-38910496

ABSTRACT

Osteoarthritis (OA) is a chronic progressive osteoarthropathy in the elderly. Osteoclast activation plays a crucial role in the occurrence of subchondral bone loss in early OA. However, the specific mechanism of osteoclast differentiation in OA remains unclear. In our study, gene expression profiles related to OA disease progression and osteoclast activation were screened from the Gene Expression Omnibus (GEO) repository. GEO2R and Funrich analysis tools were employed to find differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses demonstrated that chemical carcinogenesis, reactive oxygen species (ROS), and response to oxidative stress were mainly involved in osteoclast differentiation in OA subchondral bone. Furthermore, fourteen DEGs that are associated with oxidative stress were identified. The first ranked differential gene, heme oxygenase 1 (HMOX1), was selected for further validation. Related results showed that osteoclast activation in the pathogenesis of OA subchondral bone is accompanied by the downregulation of HMOX1. Carnosol was revealed to inhibit osteoclastogenesis by targeting HMOX1 and upregulating the expression of antioxidant protein in vitro. Meanwhile, carnosol was found to alleviate the severity of OA by inhibiting the activation of subchondral osteoclasts in vivo. Our research indicated that the activation of osteoclasts due to subchondral bone redox dysplasia may serve as a significant pathway for the advancement of OA. Targeting HMOX1 in subchondral osteoclasts may offer novel insights for the treatment of early OA.


Subject(s)
Heme Oxygenase-1 , Osteoarthritis , Osteoclasts , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Osteoarthritis/pathology , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoclasts/metabolism , Humans , Animals , Oxidative Stress , Cell Differentiation , Osteogenesis , Male , Mice , Reactive Oxygen Species/metabolism
17.
Exp Ther Med ; 28(2): 317, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38939180

ABSTRACT

Inflammation serves as a multifaceted defense mechanism activated by pathogens, cellular damage and irritants, aiming to eliminate primary causes of injury and promote tissue repair. Peperomia dindygulensis Miq. (P. dindygulensis), prevalent in Vietnam and southern China, has a history of traditional use for treating cough, fever and asthma. Previous studies on its phytochemicals have shown their potential as anti-inflammatory agents, yet underlying mechanisms remain to be elucidated. The present study investigated the regulatory effects of P. dindygulensis on the anti-inflammatory pathways. The methanol extracts of P. dindygulensis (PDME) were found to inhibit nitric oxide (NO) production and induce heme oxygenase-1 (HO-1) expression in murine macrophages. While MAPKs inhibitors, such as SP600125, SB203580 and U0126 did not regulate HO-1 expression, the treatment of cycloheximide, a translation inhibitor, reduced HO-1. Furthermore, PDME inhibited lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and TNF-α expression at both the mRNA and protein levels. The activity of NOS and the expression of TNF-α, iNOS and COX-2 decreased in LPS-stimulated Raw 264.7 cells treated with PDME and this effect was regulated by inhibition of HO-1 activity. These findings suggested that PDME functions as an HO-1 inducer and serves as an effective natural anti-inflammatory agent in LPS-induced inflammation.

18.
J Am Heart Assoc ; 13(9): e032067, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38700010

ABSTRACT

BACKGROUND: Doxorubicin and other anthracyclines are crucial cancer treatment drugs. However, they are associated with significant cardiotoxicity, severely affecting patient care and limiting dosage and usage. Previous studies have shown that low carbon monoxide (CO) concentrations protect against doxorubicin toxicity. However, traditional methods of CO delivery pose complex challenges for daily administration, such as dosing and toxicity. To address these challenges, we developed a novel oral liquid drug product containing CO (HBI-002) that can be easily self-administered by patients with cancer undergoing doxorubicin treatment, resulting in CO being delivered through the upper gastrointestinal tract. METHODS AND RESULTS: HBI-002 was tested in a murine model of doxorubicin cardiotoxicity in the presence and absence of lung or breast cancer. The mice received HBI-002 twice daily before doxorubicin administration and experienced increased carboxyhemoglobin levels from a baseline of ≈1% to 7%. Heart tissue from mice treated with HBI-002 had a 6.3-fold increase in CO concentrations and higher expression of the cytoprotective enzyme heme oxygenase-1 compared with placebo control. In both acute and chronic doxorubicin toxicity scenarios, HBI-002 protected the heart from cardiotoxic effects, including limiting tissue damage and cardiac dysfunction and improving survival. In addition, HBI-002 did not compromise the efficacy of doxorubicin in reducing tumor volume, but rather enhanced the sensitivity of breast 4T1 cancer cells to doxorubicin while simultaneously protecting cardiac function. CONCLUSIONS: These findings strongly support using HBI-002 as a cardioprotective agent that maintains the therapeutic benefits of doxorubicin cancer treatment while mitigating cardiac damage.


Subject(s)
Antibiotics, Antineoplastic , Carbon Monoxide , Cardiotoxicity , Doxorubicin , Membrane Proteins , Animals , Doxorubicin/toxicity , Carbon Monoxide/metabolism , Antibiotics, Antineoplastic/toxicity , Female , Administration, Oral , Mice , Heme Oxygenase-1/metabolism , Heart Diseases/chemically induced , Heart Diseases/prevention & control , Heart Diseases/metabolism , Heart Diseases/pathology , Disease Models, Animal , Mice, Inbred C57BL , Carboxyhemoglobin/metabolism , Ventricular Function, Left/drug effects , Humans
19.
Mol Med Rep ; 30(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38785151

ABSTRACT

Periodontal disease is a common infectious disease that can lead to the loss of teeth. Hower how to effectively suppress the inflammation with medication is unclear. The aim of the present study was to investigate the anti­inflammatory effect of Oroxylin A in periodontitis and its potential role through heme oxygenase­1 (HO­1). Primary rat gingival fibroblasts (RGFs) were cultured using the tissue block method and identified by immunofluorescence. Following lipopolysaccharide (LPS) stimulation of RGFs, Oroxylin A was administered at 50, 100, 200 or 400 µg/ml. Reverse transcription­quantitative PCR was used to assess mRNA expression of cyclooxygenase (COX)­2, TNF­α, RANKL and osteoprotegerin (OPG). Western blotting was used to detect protein expression levels of COX ­2, TNF­α, RANKL and OPG. Following HO­1 knockdown, the same treatment was performed. The expression of COX­2 in rat gingival tissue was observed by immunohistochemistry. One­way analysis of variance and Student's t test were used for statistical analysis. Oroxylin A downregulated mRNA expression of COX­2, TNF­α, RANKL and OPG in LPS­induced RGFs. With increase of Oroxylin A dose, the expression of HO­1 was gradually upregulated. When HO­1 was knocked down, Oroxylin A did not downregulate the expression of COX­2, TNF­α, RANKL and OPG in LPS­induced RGFs. Immunohistochemical results showed that expression of COX­2 was downregulated by Oroxylin A, and the expression of TNF­α, RANKL and OPG were also downregulated. Oroxylin A decreased expression of inflammatory cytokines in LPS­induced RGFs and had a good inhibitory effect on periodontitis in rats.


Subject(s)
Cyclooxygenase 2 , Fibroblasts , Flavonoids , Periodontitis , RANK Ligand , Animals , Rats , Flavonoids/pharmacology , Periodontitis/metabolism , Periodontitis/drug therapy , Periodontitis/pathology , RANK Ligand/metabolism , RANK Ligand/genetics , Male , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Fibroblasts/metabolism , Fibroblasts/drug effects , Osteoprotegerin/metabolism , Osteoprotegerin/genetics , Lipopolysaccharides , Gingiva/metabolism , Gingiva/drug effects , Tumor Necrosis Factor-alpha/metabolism , Cytokines/metabolism , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Cells, Cultured , Rats, Sprague-Dawley
20.
Environ Pollut ; 352: 124130, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38729511

ABSTRACT

Particulate matter (PM) has been a dominant contributor to air contamination, which will enter the central nervous system (CNS), causing neurotoxicity. However, the biological mechanism is poorly identified. In this study, C57BL/6J mice were applied to evaluate the neurotoxicity of collected fine particulate matter (PM2.5), via oropharyngeal aspiration at two ambient equivalent concentrations. The Y-maze results showed that PM2.5 exposure in mice would lead to the damage in hippocampal-dependent working memory. In addition, cell neuroinflammation, microglial activation were detected in hippocampus of PM2.5-exposure mice. To confirm the underlying mechanism, the microarray assay was conducted to screen the differentially expressed genes (DEGs) in microglia after PM2.5 exposure, and the results indicated the enrichment of DEGs in ferroptosis pathways. Furthermore, Heme oxygenase-1 (Hmox1) was found to be one of the most remarkably upregulated genes after PM2.5 exposure for 24 h. And PM2.5 exposure induced ferroptosis with iron accumulation through heme degradation by Nrf2-mediated Hmox1 upregulation, which could be eliminated by Nrf2-inhibition. Meanwhile, Hmox1 antagonist zinc protoporphyrin IX (ZnPP) could protect BV2 cells from ferroptosis. The results taken together indicated that PM2.5 resulted in the ferroptosis by causing iron overload through Nrf2/Hmox1 signaling pathway, which could account for the inflammation in microglia.


Subject(s)
Ferroptosis , Heme Oxygenase-1 , Inflammation , Mice, Inbred C57BL , Microglia , NF-E2-Related Factor 2 , Particulate Matter , Signal Transduction , Ferroptosis/drug effects , Animals , Particulate Matter/toxicity , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Microglia/metabolism , Microglia/drug effects , Mice , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Signal Transduction/drug effects , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/genetics , Air Pollutants/toxicity , Male , Membrane Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...