Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 984
Filter
1.
MedComm (2020) ; 5(8): e654, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39040848

ABSTRACT

Liver fibrosis can cause hepatitis B virus (HBV)-associated hepatocellular carcinoma. Menstrual blood-derived mesenchymal stem cells (MenSCs) can ameliorate liver fibrosis through paracrine. Single-cell RNA sequencing (scRNA-seq) may be used to explore the roadmap of activated hepatic stellate cell (aHSC) inactivation to target liver fibrosis. This study established HBV transgenic (HBV-Tg) mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis and demonstrated that MenSCs migrated to the injured liver to improve serological indices and reduce fibrotic accumulation. RNA-bulk analysis revealed that MenSCs mediated extracellular matrix accumulation and cell adhesion. Liver parenchymal cells and nonparenchymal cells were identified by scRNA-seq in the control, CCl4, and MenSC groups, revealing the heterogeneity of fibroblasts/HSCs. A CellChat analysis revealed that diminished intercellular adhesion molecule (ICAM) signaling is vital for MenSC therapy. Specifically, Icam1 in aHSCs acted on Itgal/Itgb2 and Itgam/Itgb2 in neutrophils, causing decreased adhesion. The expression of Itgal, Itgam, and Itgb2 was higher in CCl4 group than in the control group and decreased after MenSC therapy in neutrophil clusters. The Lcn2, Pglyrp1, Wfdc21, and Mmp8 had high expression and may be potential targets in neutrophils. This study highlights interacting cells, corresponding molecules, and underlying targets for MenSCs in treating HBV-associated liver fibrosis.

2.
J Natl Cancer Cent ; 4(1): 25-35, 2024 Mar.
Article in English | MEDLINE | ID: mdl-39036388

ABSTRACT

Hepatic stellate cells (HSCs), a distinct category of non-parenchymal cells in the liver, are critical for liver homeostasis. In healthy livers, HSCs remain non-proliferative and quiescent. However, under conditions of acute or chronic liver damage, HSCs are activated and participate in the progression and regulation of liver diseases such as liver fibrosis, cirrhosis, and liver cancer. Fatty liver diseases (FLD), including nonalcoholic (NAFLD) and alcohol-related (ALD), are common chronic inflammatory conditions of the liver. These diseases, often resulting from multiple metabolic disorders, can progress through a sequence of inflammation, fibrosis, and ultimately, cancer. In this review, we focused on the activation and regulatory mechanism of HSCs in the context of FLD. We summarized the molecular pathways of activated HSCs (aHSCs) in mediating FLD and their role in promoting liver tumor development from the perspectives of cell proliferation, invasion, metastasis, angiogenesis, immunosuppression, and chemo-resistance. We aimed to offer an in-depth discussion on the reciprocal regulatory interactions between FLD and HSC activation, providing new insights for researchers in this field.

3.
J Cell Mol Med ; 28(12): e18458, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39031798

ABSTRACT

Schistosomiasis is a parasitic disease characterized by liver fibrosis, a process driven by the activation of hepatic stellate cells (HSCs) and subsequent collagen production. Previous studies from our laboratory have demonstrated the ability of Schistosoma japonicum protein P40 (SjP40) to inhibit HSCs activation and exert an antifibrotic effect. In this study, we aimed to elucidate the molecular mechanism underlying the inhibitory effect of recombinant SjP40 (rSjP40) on HSCs activation. Using a cell model in which rSjP40 inhibited LX-2 cell activation, we performed RNA-seq analyses and identified ATF3 as the most significantly altered gene. Further investigation revealed that rSjP40 inhibited HSCs activation partly by suppressing ATF3 activation. Knockdown of ATF3 in mouse liver significantly alleviated S. japonicum-induced liver fibrosis. Moreover, our results indicate that ATF3 is a direct target of microRNA-494-3p, a microRNA associated with anti-liver fibrosis effects. rSjP40 was found to downregulate ATF3 expression by upregulating microRNA-494-3p in LX-2 cells. This downregulation led to the inhibition of the expression of liver fibrosis proteins α-SMA and COL1A1, ultimately alleviating liver fibrosis caused by S. japonicum.


Subject(s)
Activating Transcription Factor 3 , Helminth Proteins , Hepatic Stellate Cells , Liver Cirrhosis , MicroRNAs , Schistosoma japonicum , Schistosomiasis japonica , Animals , Activating Transcription Factor 3/metabolism , Activating Transcription Factor 3/genetics , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/parasitology , Schistosomiasis japonica/parasitology , Schistosomiasis japonica/metabolism , Schistosomiasis japonica/genetics , Liver Cirrhosis/parasitology , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Mice , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Helminth Proteins/genetics , Helminth Proteins/metabolism , Actins/metabolism , Actins/genetics , Cell Line , Gene Expression Regulation , Liver/metabolism , Liver/parasitology , Liver/pathology , Disease Models, Animal , Antigens, Helminth
4.
J Zhejiang Univ Sci B ; 25(7): 594-604, 2024 May 17.
Article in English, Chinese | MEDLINE | ID: mdl-39011679

ABSTRACT

Liver fibrosis is a significant health burden, marked by the consistent deposition of collagen. Unfortunately, the currently available treatment approaches for this condition are far from optimal. Lysyl oxidase-like protein 2 (LOXL2) secreted by hepatic stellate cells (HSCs) is a crucial player in the cross-linking of matrix collagen and is a significant target for treating liver fibrosis. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) have been proposed as a potential treatment option for chronic liver disorders. Previous studies have found that MSC-sEV can be used for microRNA delivery into target cells or tissues. It is currently unclear whether microRNA-4465 (miR-4465) can target LOXL2 and inhibit HSC activation. Additionally, it is uncertain whether MSC-sEV can be utilized as a gene therapy vector to carry miR-4465 and effectively inhibit the progression of liver fibrosis. This study explored the effect of miR-4465-modified MSC-sEV (MSC-sEVmiR-4465) on LOXL2 expression and liver fibrosis development. The results showed that miR-4465 can bind specifically to the promoter of the LOXL2 gene in HSC. Moreover, MSC-sEVmiR-4465 inhibited HSC activation and collagen expression by downregulating LOXL2 expression in vitro. MSC-sEVmiR-4465 injection could reduce HSC activation and collagen deposition in the CCl4-induced mouse model. MSC-sEVmiR-4465 mediating via LOXL2 also hindered the migration and invasion of HepG2 cells. In conclusion, we found that MSC-sEV can deliver miR-4465 into HSC to alleviate liver fibrosis via altering LOXL2, which might provide a promising therapeutic strategy for liver diseases.


Subject(s)
Amino Acid Oxidoreductases , Extracellular Vesicles , Hepatic Stellate Cells , Liver Cirrhosis , Mesenchymal Stem Cells , MicroRNAs , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Animals , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , Liver Cirrhosis/therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Extracellular Vesicles/metabolism , Hepatic Stellate Cells/metabolism , Male , Humans , Mice, Inbred C57BL
5.
Mol Biol Rep ; 51(1): 734, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874773

ABSTRACT

BACKGROUND: Liver cirrhosis, a prevalent chronic liver disease, is characterized by liver fibrosis as its central pathological process. Recent advancements highlight the clinical efficacy of umbilical cord mesenchymal stem cell (UC-MSC) therapy in the treatment of liver cirrhosis. METHODS AND RESULTS: We investigated the pharmacodynamic effects of UC-MSCs and MSC conditional medium (MSC-CM) in vivo, utilizing a carbon tetrachloride (CCl4)-induced fibrotic rat model. Concurrently, we assessed the in vitro impact of MSCs and MSC-CM on various cellular process of hepatic stellate cells (HSCs), including proliferation, apoptosis, activation, immunomodulatory capabilities, and inflammatory factor secretion. Our results indicate that both MSCs and MSC-CM significantly ameliorate the pathological extent of fibrosis in animal tissues, reducing the collagen content, serum biochemical indices and fibrosis biomarkers. In vitro, MSC-CM significantly inhibited the activation of the HSC line LX-2. Notably, MSC-CM modulated the expression of type I procollagen and TGFß-1 while increasing MMP1 expression. This modulation restored the MMP1/TIMP1 ratio imbalance and extracellular matrix deposition in TGFß-1 induced fibrosis. Both MSCs and MSC-CM not only induced apoptosis in HSCs but also suppressed proliferation and inflammatory cytokine release from activated HSCs. Furthermore, MSCs and MSC-CM exerted a suppressive effect on total lymphocyte activation. CONCLUSIONS: UC-MSCs and MSC-CM primarily modulate liver fibrosis severity by regulating HSC activation. This study provides both in vivo and in vitro pharmacodynamic evidence supporting the use of MSCs in liver fibrosis treatment.


Subject(s)
Apoptosis , Cell Proliferation , Hepatic Stellate Cells , Liver Cirrhosis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Umbilical Cord , Hepatic Stellate Cells/metabolism , Mesenchymal Stem Cells/metabolism , Animals , Humans , Liver Cirrhosis/pathology , Liver Cirrhosis/therapy , Liver Cirrhosis/metabolism , Umbilical Cord/cytology , Rats , Mesenchymal Stem Cell Transplantation/methods , Male , Carbon Tetrachloride , Disease Models, Animal , Culture Media, Conditioned/pharmacology , Rats, Sprague-Dawley , Tissue Inhibitor of Metalloproteinase-1/metabolism , Cell Line , Cytokines/metabolism
6.
J Hepatol ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908436

ABSTRACT

Chronic liver disease (CLD) leads to hepatocellular injury that triggers a pro-inflammatory state in several parenchymal and non-parenchymal hepatic cell types ultimately resulting in liver fibrosis, cirrhosis, portal hypertension (PH) and liver failure. Thus, an improved understanding of the inflammasomes - as key molecular drivers of liver injury - supports the development of novel diagnostic or prognostic biomarkers and effective therapeutics. In liver disease, innate immune cells respond to hepatic noxes by activating cell-intrinsic inflammasomes via toll-like receptors (TLRs) and nuclear factor kappa-B (NF-κB) and release of pro-inflammatory cytokines (such as IL-1ß, IL-18, TNF-α and IL-6). Subsequently, cells of the adaptive immune system are recruited to fuel hepatic inflammation, and liver parenchymal cells may undergo programmed cell-death mediated by gasdermin D, termed pyroptosis. With liver disease progression, there is a shift towards a type 2 inflammatory response, which promotes tissue repair but also fibrogenesis. Inflammasome activation may also occur at extrahepatic sites, such as the white adipose tissue in metabolic dysfunction-associated steatohepatitis (MASH). In end-stage liver disease, flares of inflammation (e.g., in severe alcohol-related hepatitis) that spark on a dysfunctional immune system, contribute to inflammasome-mediated liver injury and potentially result in organ dysfunctions/failures, as seen in acute-on-chronic liver failure (ACLF). This review provides an overview on current concepts regarding inflammasome activation in liver disease progression and related biomarkers and therapeutic approaches that are being developed for patients with liver disease.

7.
J Pathol ; 263(4-5): 508-519, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38886892

ABSTRACT

The relevance of aberrant serum IgG N-glycosylation in liver fibrosis has been identified; however, its causal effect remains unclear. Because hepatic stellate cells (HSCs) contribute substantially to liver fibrosis, we investigated whether and through which mechanisms IgG N-glycosylation affects the fibrogenic properties of HSCs. Analysis of serum IgG1 N-glycome from 151 patients with chronic hepatitis B or liver cirrhosis revealed a positive correlation between Ishak fibrosis grading and IgG1 with agalactosyl N-glycoforms on the crystallizable fragment (Fc). Fc gamma receptor (FcγR) IIIa was observed in cultured human HSCs and HSCs in human liver tissues, and levels of FcγRIIIa in HSCs correlated with the severity of liver fibrosis. Additionally, agalactosyl IgG treatment caused HSCs to have a fibroblast-like morphology, enhanced migration and invasion capabilities, and enhanced expression of the FcγRIIIa downstream tyrosine-protein kinase SYK. Furthermore, agalactosyl IgG treatment increased fibrogenic factors in HSCs, including transforming growth factor (TGF)-ß1, total collagen, platelet-derived growth factor subunit B and its receptors, pro-collagen I-α1, α-smooth muscle actin, and matrix metalloproteinase 9. These effects were more pronounced in HSCs that stably expressed FCGR3A and were reduced in FCGR3A knockout cells. Agalactosyl IgG and TGF-ß1 each increased FCGR3A in HSCs. Furthermore, serum TGF-ß1 concentrations in patients were positively correlated with agalactosyl IgG1 levels and liver fibrosis severity, indicating a positive feedback loop involving agalactosyl IgG, HSC-FcγRIIIa, and TGF-ß1. In conclusion, agalactosyl IgG promotes fibrogenic characteristics in HSCs through FcγRIIIa. © 2024 The Pathological Society of Great Britain and Ireland.


Subject(s)
Hepatic Stellate Cells , Immunoglobulin G , Liver Cirrhosis , Receptors, IgG , Humans , Receptors, IgG/metabolism , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Immunoglobulin G/metabolism , Immunoglobulin G/pharmacology , Glycosylation , Male , Middle Aged , Female , Cell Movement , Hepatitis B, Chronic/pathology , Hepatitis B, Chronic/metabolism , Signal Transduction , Syk Kinase/metabolism , Adult , Aged , Cells, Cultured
8.
Life Sci ; 351: 122798, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38852802

ABSTRACT

AIMS: The study aims to investigate the role and underlying mechanisms of tricetin in regulating hepatic stellate cells (HSCs) activation. MAIN METHODS: We treated human hepatic stellate cells line LX-2 and freshly isolated primary mouse hepatic stellate cells (mHSCs) with tricetin, pharmacological inhibitors and siRNAs, western blot, immunofluorescence, quantitative PCR were used to evaluate the expression of fibrotic markers, autophagy levels and Nrf2 (nuclear factor E2-related factor 2) signaling. KEY FINDINGS: Herein, we demonstrated that tricetin strongly attenuated the proliferation, migration, lipid droplets (LDs) loss and fibrotic markers Col 1a1 (type I α 1 collagen) and α-SMA (α-smooth muscle actin) expression in LX-2 cells. Moreover, tricetin time- and dose-dependently provoked autophagic formation in LX-2 cells. Autophagy inhibition by pharmacological intervention or genetic ATG5 (autophagy related 5) silencing facilitated tricetin-induced downregulation of profibrotic markers in LX-2 cells. Additionally, tricetin treatment reduced reactive oxygen species (ROS) accumulation, promoted Nrf2 signaling in LX-2 cells and pretreatment with ROS scavenger NAC partially reversed tricetin-induced autophagy and enhanced tricetin-mediated HSCs inactivation. Nrf2 silencing partially reversed tricetin-mediated inhibition of α-SMA expression. Finally, utilizing primary mouse hepatic stellate cells (mHSCs), we demonstrated that tricetin also induced autophagy activation, repressed TGF-ß1-induced LDs loss and fibrotic marker expression and pretreatment with CQ further sensitized these effects. SIGNIFICANCE: Our study indicates that tricetin's actions may represent an effective strategy to treat liver fibrosis and help identify novel therapeutic targets, especially in combination with autophagy inhibitors.


Subject(s)
Autophagy , Hepatic Stellate Cells , Liver Cirrhosis , NF-E2-Related Factor 2 , Signal Transduction , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/pathology , Autophagy/drug effects , NF-E2-Related Factor 2/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/drug therapy , Animals , Humans , Signal Transduction/drug effects , Mice , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Cell Line , Cell Proliferation/drug effects , Male
9.
J Nutr ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945299

ABSTRACT

BACKGROUND: Carnivorous fish have a low carbohydrate utilization ability, and the physiologic and molecular basis of glucose intolerance has not been fully illustrated. OBJECTIVES: This study aimed to use largemouth bass as a model to investigate the possible mechanism of glucose intolerance in carnivorous fish with the help of single-nuclei RNA sequencing (snRNA-seq). METHODS: Two diets were formulated, a low-carbohydrate (LC) diet and a high-carbohydrate (HC) diet. The feeding trial lasted for 6 wk, and then, growth performance, biochemical parameters, liver histology, and snRNA-seq were performed. RESULTS: Growth performance of fish was not affected by the HC diet, while liver glucolipid metabolism disorder and liver injury were observed. A total of 13,247 and 12,848 cells from the liver derived from 2 groups were isolated and sequenced, and 7 major liver cell types were annotated by the marker genes. Hepatocytes and cholangiocytes were lower and hepatic stellate cells (HSCs) and immune cells were higher in the HC group than those in the LC group. Reclustering analysis identified 7 subtypes of hepatocytes and immune cells, respectively. The HSCs showed more cell communication with other cell types, and periportal hepatocytes showed more cell communication with other hepatocyte subtypes. Cell-cell communication mainly focused on cell junction-related signaling pathways. Uncovered by the pseudotime analysis, midzonal hepatocytes were differentiated into 2 major branches-biliary epithelial hepatocytes and hepatobiliary hybrid progenitor. Cell junction and liver fibrosis-related genes were highly expressed in the HC group. HC diet induced the activation of HSCs and, therefore, led to the liver fibrosis of largemouth bass. CONCLUSIONS: HC diet induces liver glucolipid metabolism disorder and liver injury of largemouth bass. The increase and activation of HSCs might be the main reason for the liver injury. In adaption to HC diet, midzonal hepatocytes differentiates into 2 major branches-biliary epithelial hepatocytes and hepatobiliary hybrid progenitors.

10.
Biol Pharm Bull ; 47(5): 1058-1065, 2024.
Article in English | MEDLINE | ID: mdl-38825533

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is characterized by hepatic inflammation and fibrosis due to excessive fat accumulation. Monocyte chemoattractant protein-1 (MCP-1) is a key chemokine that infiltrates inflammatory cells into the liver during the development of NASH. Our previous studies demonstrated that a systemic deficiency of group IVA phospholipase A2 (IVA-PLA2), an enzyme that contributes to the production of lipid inflammatory mediators, protects mice against high-fat diet-induced hepatic fibrosis and markedly suppresses the CCl4-induced expression of MCP-1 in the liver. However, it remains unclear which cell types harboring IVA-PLA2 are involved in the elevated production of MCP-1. Hence, the present study assessed the types of cells responsible for IVA-PLA2-mediated production of MCP-1 using cultured hepatic stellate cells, endothelial cells, macrophages, and hepatocytes, as well as cell-type specific IVA-PLA2 deficient mice fed a high-fat diet. A relatively specific inhibitor of IVA-PLA2 markedly suppressed the expression of MCP-1 mRNA in cultured hepatic stellate cells, but the suppression of MCP-1 expression was partial in endothelial cells and not observed in monocytes/macrophages or hepatocytes. In contrast, a deficiency of IVA-PLA2 in collagen-producing cells (hepatic stellate cells), but not in other types of cells, reduced the high-fat diet-induced expression of MCP-1 and inflammatory cell infiltration in the liver. Our results suggest that IVA-PLA2 in hepatic stellate cells is critical for hepatic inflammation in the high-fat diet-induced development of NASH. This supports a potential therapeutic approach for NASH using a IVA-PLA2 inhibitor targeting hepatic stellate cells.


Subject(s)
Chemokine CCL2 , Diet, High-Fat , Group IV Phospholipases A2 , Hepatic Stellate Cells , Liver , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Up-Regulation , Animals , Diet, High-Fat/adverse effects , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Liver/pathology , Up-Regulation/drug effects , Male , Mice , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Group IV Phospholipases A2/genetics , Group IV Phospholipases A2/metabolism , Group IV Phospholipases A2/antagonists & inhibitors , Hepatocytes/metabolism , Hepatocytes/drug effects , Humans , Mice, Knockout , Collagen/metabolism , Collagen/biosynthesis , Macrophages/metabolism , Macrophages/drug effects , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Cells, Cultured
11.
Biochem Biophys Res Commun ; 721: 150130, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38761750

ABSTRACT

Apigenin (API) is a natural flavonoid compound with antioxidant, anti fibrotic, anti-inflammatory and other effects, but there is limited research on the effect of API on liver fibrosis. This study aims to explore the effect and potential mechanism of API on liver fibrosis induced by CCl4 in mice. The results indicate that API reduces oxidative stress levels, inhibits hepatic stellate cell (HSC) activation, and exerts anti liver fibrosis effects by regulating the PKM2-HIF-1α pathway. We observed that API alleviated liver tissue pathological damage and collagen deposition in CCl4 induced mouse liver fibrosis model, promoting the recovery of liver function in mice with liver fibrosis. In addition, the API inhibits the transition of Pyruvate kinase isozyme type M2 (PKM2) from dimer to tetramer formation by regulating the EGFR-MEK1/2-ERK1/2 pathway, thereby preventing dimer from entering the nucleus and blocking PKM2-HIF-1α access. This change leads to a decrease in malondialdehyde (MDA) and Catalase (CAT) levels and an increase in glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) levels, as well as total antioxidant capacity (T-AOC) in the liver of liver fibrosis mice. At the same time, API downregulated the expression of α-smooth muscle actin (α-SMA), Vimentin and Desmin in the liver tissue of mice with liver fibrosis, inhibited the activation of HSC, and reduced collagen deposition. These results indicate that API can inhibit HSC activation and alleviate CCl4 induced liver fibrosis by inhibiting the PKM2-HIF-1α pathway and reducing oxidative stress, laying an important foundation for the development and clinical application of API as a novel drug for treating liver fibrosis.


Subject(s)
Apigenin , Hypoxia-Inducible Factor 1, alpha Subunit , Liver Cirrhosis , Oxidative Stress , Animals , Oxidative Stress/drug effects , Apigenin/pharmacology , Apigenin/therapeutic use , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Mice , Male , Pyruvate Kinase/metabolism , Mice, Inbred C57BL , Carbon Tetrachloride/toxicity , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/pathology , Thyroid Hormone-Binding Proteins , Liver/metabolism , Liver/drug effects , Liver/pathology , Thyroid Hormones/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , ErbB Receptors
12.
Eur J Cell Biol ; 103(2): 151427, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38820882

ABSTRACT

In the development of chronic liver disease, the hepatic stellate cell (HSC) plays a pivotal role in increasing intrahepatic vascular resistance (IHVR) and inducing portal hypertension (PH) in cirrhosis. Our research demonstrated that HSC contraction, prompted by angiotensin II (Ang II), significantly contributed to the elevation of type I collagen (COL1A1) expression. This increase was intimately associated with enhanced cell tension and YAP nuclear translocation, mediated through α-smooth muscle actin (α-SMA) expression, microfilaments (MF) polymerization, and stress fibers (SF) assembly. Further investigation revealed that the Rho/ROCK signaling pathway regulated MF polymerization and SF assembly by facilitating the phosphorylation of cofilin and MLC, while Ca2+ chiefly governed SF assembly via MLC. Inhibiting α-SMA-MF-SF assembly changed Ang II-induced cell contraction, YAP nuclear translocation, and COL1A1 expression, findings corroborated in cirrhotic mice models. Overall, our study offers insights into mitigating IHVR and PH through cell mechanics, heralding potential breakthroughs.


Subject(s)
Angiotensin II , Hepatic Stellate Cells , Hypertension, Portal , Angiotensin II/pharmacology , Angiotensin II/metabolism , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Animals , Hypertension, Portal/metabolism , Hypertension, Portal/pathology , Mice , Collagen Type I/metabolism , Actins/metabolism , YAP-Signaling Proteins/metabolism , Male , Signal Transduction , Mice, Inbred C57BL , Collagen Type I, alpha 1 Chain/metabolism , Actin Cytoskeleton/metabolism
13.
Article in English | MEDLINE | ID: mdl-38804845

ABSTRACT

BACKGROUND AND AIM: Hydronidone (HDD) is a novel pirfenidone derivative developed initially to reduce hepatotoxicity. Our previous studies in animals and humans have demonstrated that HDD treatment effectively attenuates liver fibrosis, yet the underlying mechanism remains unclear. This study aimed to investigate whether HDD exerts its anti-fibrotic effect by inducing apoptosis in activated hepatic stellate cells (aHSCs) through the endoplasmic reticulum stress (ERS)-associated mitochondrial apoptotic pathway. METHODS: The carbon tetrachloride (CCl4)- and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced liver fibrosis models were used for in vivo studies. In vitro studies were conducted using the human hepatic stellate cell line LX-2. The apoptotic effect of HDD on aHSCs was examined using TUNEL and flow cytometry assays. The small interfering RNA (siRNA) technique was employed to downregulate the expression of interest genes. RESULTS: HDD treatment significantly promoted apoptosis in aHSCs in both the CCl4- and DDC-induced liver fibrosis in mice and LX-2 cells. Mechanistic studies revealed that HDD triggered ERS and subsequently activated the IRE1α-ASK1-JNK pathway. Furthermore, the influx of cytochrome c from the mitochondria into the cytoplasm was increased, leading to mitochondrial dysfunction and ultimately triggering apoptosis in aHSCs. Notably, inhibition of IRE1α or ASK1 by siRNA partially abrogated the pro-apoptotic effect of HDD in aHSCs. CONCLUSIONS: The findings of both in vivo and in vitro studies suggest that HDD induces apoptosis in aHSCs via the ERS-associated mitochondrial apoptotic pathway, potentially contributing to the amelioration of liver fibrosis.

14.
Food Sci Biotechnol ; 33(8): 1939-1946, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38752108

ABSTRACT

Hepatic stellate cell (HSC) activation is a key event in extracellular matrix accumulation, causing hepatic fibrosis. Therefore, identifying chemicals that inhibit HSC activation is an important therapeutic strategy for hepatic fibrosis. The aim of this study was to investigate the therapeutic effects of paeonol on HSC activation. In LX-2 cells, paeonol inhibited the expression of collagen and decreased the expression of HSC activation markers. In mice with thioacetamide-induced liver fibrosis, paeonol treatment decreased the serum levels of aspartate aminotransferase and alanine transaminase and mRNA expression of α-smooth muscle actin, platelet-derived growth factor-ß, and connective-tissue growth factor. Investigation of the underlying molecular mechanism of paeonol showed that paeonol inhibits the SMAD2/3 and STAT3 signaling pathways that are important for HSC activation. On the basis of these results, paeonol should be investigated and developed further for hepatic fibrosis treatment. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01440-9.

15.
Gut ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777573

ABSTRACT

OBJECTIVE: Alcohol use in metabolic dysfunction-associated steatohepatitis (MASH) is associated with an increased risk of fibrosis and liver-related death. Here, we aimed to identify a mechanism through which repeated alcohol binges exacerbate liver injury in a high fat-cholesterol-sugar diet (MASH diet)-induced model of MASH. DESIGN: C57BL/6 mice received either chow or the MASH diet for 3 months with or without weekly alcohol binges. Neutrophil infiltration, neutrophil extracellular traps (NETs) and fibrosis were evaluated. RESULTS: We found that alcohol binges in MASH increase liver injury and fibrosis. Liver transcriptomic profiling revealed differential expression of genes involved in extracellular matrix reorganisation, neutrophil activation and inflammation compared with alcohol or the MASH diet alone. Alcohol binges specifically increased NET formation in MASH livers in mice, and NETs were also increased in human livers with MASH plus alcohol use. We discovered that cell-free NETs are sensed via Nod-like receptor protein 3 (NLRP3). Furthermore, we show that cell-free NETs in vitro induce a profibrotic phenotype in hepatic stellate cells (HSCs) and proinflammatory monocytes. In vivo, neutrophil depletion using anti-Ly6G antibody or NET disruption with deoxyribonuclease treatment abrogated monocyte and HSC activation and ameliorated liver damage and fibrosis. In vivo, inhibition of NLRP3 using MCC950 or NLRP3 deficiency attenuated NET formation, liver injury and fibrosis in MASH plus alcohol diet-fed mice (graphical abstract). CONCLUSION: Alcohol binges promote liver fibrosis via NET-induced activation of HSCs and monocytes in MASH. Our study highlights the potential of inhibition of NETs and/or NLRP3, as novel therapeutic strategies to combat the profibrotic effects of alcohol in MASH.

16.
Heliyon ; 10(9): e29853, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38699038

ABSTRACT

Liver disease is a severe public health concern worldwide. There is a close relationship between the liver and cytokines, and liver inflammation from a variety of causes leads to the release and activation of cytokines. The functions of cytokines are complex and variable, and are closely related to their cellular origin, target molecules and mode of action. Interleukin (IL)-20 has been studied as a pro-inflammatory cytokine that is expressed and regulated in some diseases. Furthermore, accumulating evidences has shown that IL-20 is highly expressed in clinical samples from patients with liver disease, promoting the production of pro-inflammatory molecules involved in liver disease progression, and antagonists of IL-20 can effectively inhibit liver injury and produce protective effects. This review highlights the potential of targeting IL-20 in liver diseases, elucidates the potential mechanisms of IL-20 inducing liver injury, and suggests multiple viable strategies to mitigate the pro-inflammatory response to IL-20. Genomic CRISPR/Cas9-based screens may be a feasible way to further explore the signaling pathways and regulation of IL-20 in liver diseases. Nanovector systems targeting IL-20 offer new possibilities for the treatment and prevention of liver diseases.

17.
J Drug Target ; 32(6): 647-654, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38682473

ABSTRACT

Liver fibrosis is a common pathological condition marked by excessive accumulation of extracellular matrix proteins, resulting in irreversible cirrhosis and cancer. Dendritic cells (DCs) act as the crucial component of hepatic immunity and are believed to affect fibrosis by regulating the proliferation and differentiation of hepatic stellate cells (HSCs), a key mediator of fibrogenesis, and by interplaying with immune cells in the liver. This review concisely describes the process of fibrogenesis, and the phenotypic and functional characteristics of DCs in the liver. Besides, it focuses on the interaction between DCs and HSCs, T cells, and natural killer (NK) cells, as well as the dual roles of DCs in liver fibrosis, for the sake of exploring the potential of targeting DCs as a therapeutic strategy for the disease.


Subject(s)
Dendritic Cells , Hepatic Stellate Cells , Liver Cirrhosis , Dendritic Cells/immunology , Humans , Liver Cirrhosis/drug therapy , Liver Cirrhosis/immunology , Hepatic Stellate Cells/metabolism , Animals , Killer Cells, Natural/immunology , Cell Differentiation , T-Lymphocytes/immunology
18.
Liver Int ; 44(8): 1937-1951, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38606676

ABSTRACT

BACKGROUND AND PURPOSE: Liver fibrosis is a wound-healing reaction which is the main cause of chronic liver diseases worldwide. The activated hepatic stellate cell (aHSC) is the main driving factor in the development of liver fibrosis. Inhibiting autophagy of aHSC can prevent the progression of liver fibrosis, but inhibiting autophagy of other liver cells has opposite effects. Hence, targeted inhibition of autophagy in aHSC is quite necessary for the treatment of liver fibrosis, which prompts us to explore the targeted delivery system of small molecule autophagy inhibitor hydroxychloroquine (HCQ) that can target aHSC and alleviate the liver fibrosis. METHODS: The delivery system of HCQ@retinol-liposome nanoparticles (HCQ@ROL-LNPs) targeting aHSC was constructed by the film dispersion and pH-gradient method. TGF-ß-induced HSC activation and thioacetamide (TAA)-induced liver fibrosis mice model were established, and the targeting ability and therapeutic effect of HCQ@ROL-LNPs in liver fibrosis were studied subsequently in vitro and in vivo. RESULTS: HCQ@ROL-LNPs have good homogeneity and stability. They inhibited the autophagy of aHSC selectively by HCQ and reduced the deposition of extracellular matrix (ECM) and the damage to other liver cells. Compared with the free HCQ and HCQ@LNPs, HCQ@ROL-LNPs had good targeting ability, showing enhanced therapeutic effect and low toxicity to other organs. CONCLUSION: Construction of HCQ@ROL-LNPs delivery system lays a theoretical and experimental foundation for the treatment of liver fibrosis and promotes the development of clinical therapeutic drugs for liver diseases.


Subject(s)
Autophagy , Hepatic Stellate Cells , Hydroxychloroquine , Liver Cirrhosis , Hydroxychloroquine/pharmacology , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Animals , Autophagy/drug effects , Mice , Liver Cirrhosis/drug therapy , Liposomes , Nanoparticles , Male , Disease Models, Animal , Humans , Thioacetamide , Mice, Inbred C57BL
19.
Am J Cancer Res ; 14(3): 1015-1032, 2024.
Article in English | MEDLINE | ID: mdl-38590418

ABSTRACT

The ERK1/2 pathway is involved in epithelial-mesenchymal transformation and cell cycle of tumor cells in hepatocellular carcinoma (HCC). In the present study, we investigated the involvement of ERK1/2 activation on hepatic stellate cells (HSCs). We identified ERK1/2 phosphorylation in activated HSCs of HCC samples. We found that tumor cells promoted the migration and invasion capacity of HSCs by activating ERK1/2 phosphorylation. Using high throughput transcriptome sequencing analysis, we found that ERK1/2 inhibition altered genes significantly correlated to signaling pathways involved in extracellular matrix remodeling. We screened genes and demonstrated that the ERK1/2 inhibition-related gene set significantly correlated to cancer-associated fibroblast infiltration in TCGA HCC tumor samples. Moreover, inhibition of ERK1/2 suppressed tumor cell-induced enhancement of HSC migration and invasion by regulating expression of fibrosis markers FAP, FN1 and COL1A1. In a tumor cell and HSC splenic co-transplanted xenograft mouse model, inhibition of ERK1/2 suppressed liver tumor formation by downregulating fibrosis, indicating ERK1/2 inhibition suppresses tumor-stromal interactions in vivo. Taken together, our data indicate that inhibition of ERK1/2 in tumor-associated HSCs suppresses tumor-stromal interactions and progression. Furthermore, inhibition of ERK1/2 may be a potential target for HCC treatment.

20.
Sci Rep ; 14(1): 9425, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658618

ABSTRACT

Liver fibrosis, as a consequence of chronic liver disease, involves the activation of hepatic stellate cell (HSC) caused by various chronic liver injuries. Emerging evidence suggests that activation of HSC during an inflammatory state can lead to abnormal accumulation of extracellular matrix (ECM). Investigating novel strategies to inhibit HSC activation and proliferation holds significant importance for the treatment of liver fibrosis. As a member of the doublecortin domain-containing family, doublecortin domain containing 2 (DCDC2) mutations can lead to neonatal sclerosing cholangitis, but its involvement in liver fibrosis remains unclear. Therefore, this study aims to elucidate the role of DCDC2 in liver fibrosis. Our findings revealed a reduction in DCDC2 expression in both human fibrotic liver tissues and carbon tetrachloride (CCl4)-induced mouse liver fibrotic tissues. Furthermore, exposure to transforming growth factor beta-1(TGF-ß1) stimulation resulted in a dose- and time-dependent decrease in DCDC2 expression. The overexpression of DCDC2 inhibited the expression of α-smooth muscle actin (α-SMA) and type I collagen alpha 1 (Col1α1), and reduced the activation of HSC stimulated with TGF-ß1. Additionally, we provided evidence that the Wnt/ß-catenin signaling pathway was involved in this process, wherein DCDC2 was observed to inhibit ß-catenin activation, thereby preventing its nuclear translocation. Furthermore, our findings demonstrated that DCDC2 could attenuate the proliferation and epithelial-mesenchymal transition (EMT)-like processes of HSC. In vivo, exogenous DCDC2 could ameliorate CCl4-induced liver fibrosis. In summary, DCDC2 was remarkably downregulated in liver fibrotic tissues of both humans and mice, as well as in TGF-ß1-activated HSC. DCDC2 inhibited the activation of HSC induced by TGF-ß1 in vitro and fibrogenic changes in vivo, suggesting that it is a promising therapeutic target for liver fibrosis and warrants further investigation in clinical practice.


Subject(s)
Carbon Tetrachloride , Hepatic Stellate Cells , Liver Cirrhosis , Wnt Signaling Pathway , Animals , Humans , Male , Mice , beta Catenin/metabolism , Cell Proliferation , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Liver Cirrhosis/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Liver Cirrhosis/drug therapy , Mice, Inbred C57BL , Transforming Growth Factor beta1/metabolism , Wnt Signaling Pathway/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...