Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Neumol. pediátr. (En línea) ; 18(2): 37-39, 2023. ilus, tab
Article in Spanish | LILACS | ID: biblio-1444103

ABSTRACT

En las alturas, sobre todo a 2500 metros sobre el nivel del mar, la cantidad absoluta de oxígeno va decreciendo y por lo tanto la cantidad disponible para el intercambio gaseoso disminuye, produciéndose una vasoconstricción hipóxica pulmonar (VHP). La VHP asociada a la hipoxia hipobárica de la altura produce un aumento de la presión pulmonar que es mayor en los lactantes y a mayores alturas. No hay valores únicos de saturación de oxígeno (SatO2) en la altura, porque ésta va disminuyendo según el mayor nivel de altura, aumenta con la edad, y la brecha entre la vigilia y sueño es grande (sobre todo en los primeros meses de vida). El 25% de los niños sanos que viven en altura tienen valores de SatO2 significativamente menores que el 75% restante. Los valores normales de los índices de apnea/hipopnea son distintos a los de nivel del mar. El edema pulmonar de las alturas es una patología frecuente, que se produce por un incremento desproporcionado en la VHP reflejando una hiperactividad del lecho vascular pulmonar ante la exposición aguda a la hipoxia hipobárica. Tiene cuatro fenotipos, es infrecuente en menores de 5 años y rara vez es mortal, la sospecha clínica y el manejo oportuno con oxigeno es la clave. Finalmente, en la altura los valores normales de la función pulmonar de la espirometría, oscilometría de impulso y capacidad de difusión son distintos que a nivel del mar.


At high altitude, especially > 2,500 meters above sea level, the absolute amount of oxygen decreases and therefore the amount available for gas exchange decreases, producing hypoxic pulmonary vasoconstriction (VHP). VHP associated with high-altitude hypobaric hypoxia produces an increase in pulmonary pressure that is greater in infants and at higher altitudes. There are no single values of oxygen saturation (SatO2) at altitude, because it decreases with the highest level of altitude, increases with age, and the gap between wakefulness and sleep is large (especially in the first months of life). Around 25% of healthy children living at altitude have SatO2 values significantly lower than the remaining 75%. The normal values of the apnea/hypopnea indices are different from those at sea level. High altitude pulmonary edema is a frequent pathology that is produced by a disproportionate increase in VHP reflecting hyperactivity of the pulmonary vascular bed in the face of acute exposure to hypobaric hypoxia, it has four phenotypes, it is uncommon in children under 5 years of age, and it is rarely fatal, the clinical suspicion and timely management with oxygen is the key. Finally, at high altitude, the normal values of lung function from spirometry, impulse oscillometry, and diffusing capacity are different from those at sea level.


Subject(s)
Humans , Child , Adolescent , Pulmonary Edema/physiopathology , Altitude , Altitude Sickness/physiopathology , Respiratory Function Tests , Oxygen Saturation , Hypoxia/physiopathology
2.
Rev. invest. clín ; Rev. invest. clín;74(5): 232-243, Sep.-Oct. 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1409587

ABSTRACT

ABSTRACT A large world population resides at moderate altitudes. In the Valley of Mexico (2240 m above sea level) and for patients with respiratory diseases implies more hypoxemia and clinical deterioration, unless supplementary oxygen is prescribed or patients move to sea level. A group of individuals residing at 2500 or more meters above sea level may develop acute or chronic mountain disease but those conditions may develop at moderate altitudes although less frequently and in predisposed individuals. In the valley of México, at 2200 m above sea level, re-entry pulmonary edema has been reported. The frequency of other altitude-related diseases at moderate altitude, described in skiing resorts, remains to be known in visitors to Mexico City and other cities at similar or higher altitudes. Residents of moderate altitudes inhale deeply the city's air with all pollutants and require more often supplementary oxygen.

3.
Rev Invest Clin ; 74(5): 232-243, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36170185

ABSTRACT

A large world population resides at moderate altitudes. In the Valley of Mexico (2240 m above sea level) and for patients with respiratory diseases implies more hypoxemia and clinical deterioration, unless supplementary oxygen is prescribed or patients move to sea level. A group of individuals residing at 2500 or more meters above sea level may develop acute or chronic mountain disease but those conditions may develop at moderate altitudes although less frequently and in predisposed individuals. In the valley of México, at 2200 m above sea level, re-entry pulmonary edema has been reported. The frequency of other altituderelated diseases at moderate altitude, described in skiing resorts, remains to be known in visitors to Mexico City and other cities at similar or higher altitudes. Residents of moderate altitudes inhale deeply the city's air with all pollutants and require more often supplementary oxygen.


Subject(s)
Altitude Sickness , Pulmonary Edema , Humans , Altitude , Altitude Sickness/epidemiology , Altitude Sickness/etiology , Hypoxia/epidemiology , Hypoxia/etiology , Pulmonary Edema/epidemiology , Pulmonary Edema/etiology , Oxygen
4.
High Alt Med Biol ; 23(1): 96-99, 2022 03.
Article in English | MEDLINE | ID: mdl-35231183

ABSTRACT

Vizcarra-Vizcarra, Cristhian A. and Angélica L. Alcos-Mamani. High-altitude pulmonary edema in a chronic kidney disease patient-Is peritoneal dialysis a risk factor? High Alt Med Biol. 23:96-99, 2022.-High-altitude pulmonary edema is a cause of acute respiratory failure secondary to hypobaric hypoxia, which occurs after ascent above 2,500 m (8,202 feet), in susceptible people or without prior acclimatization. We present the case of a 20-year-old man with chronic kidney disease (CKD) on peritoneal dialysis (PD), living at sea (Mollendo, Peru) who presented with dyspnea and pulmonary congestion, after ascending to a high-altitude city (Juliaca, Peru at 3,827 m or 12,555 feet). The patient required diuretics, nifedipine, PD, tracheal intubation, and mechanical ventilation, but recovered and was discharged without complications. We think that CKD and PD could be risk factors for the development of high-altitude pulmonary edema, secondary to pulmonary hypertension and fluid overload, so this diagnosis should be considered in this group of patients when they ascend to high altitude.


Subject(s)
Altitude Sickness , Hypertension, Pulmonary , Peritoneal Dialysis , Pulmonary Edema , Renal Insufficiency, Chronic , Adult , Altitude , Altitude Sickness/complications , Altitude Sickness/diagnosis , Humans , Male , Peritoneal Dialysis/adverse effects , Pulmonary Edema/complications , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/therapy , Risk Factors , Young Adult
5.
Med Hypotheses ; 146: 110418, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33268002

ABSTRACT

Exposure to hypoxic environments when ascending at high altitudes may cause life-threatening pulmonary edema (HAPE) due to a rapid accumulation of extracellular fluid flooding in the pulmonary alveoli. In Andeans, high-altitude adaptation occurs at the expense of being more prone to chronic mountain sickness: relative hypoventilation, excess pulmonary hypertension, and secondary polycythemia. Because HAPE prevalence is high in the Andes, we posit the hypothesis that a high hemoglobine mass may increase HAPE risk. In support of it, high intrapulmonary hypertension along with hyperviscosity produced by polycytemia may enhance sear forces and intravascular hemolysis, thus leading to increased acellular hemoglobin and the subsequent damage of the alveolar and endothelial barrier. It is proposed to investigate the relationship between the vaso-endothelial homeostasis and erythropoiesis in the maladaptation to high altitude and HAPE. This research is especially important when reentry HAPE, since rheologic properties of blood changes with rapid ascent to high altitudes.


Subject(s)
Altitude Sickness , Pulmonary Edema , Altitude , Altitude Sickness/complications , Hemoglobins , Humans , Lung
6.
J. health med. sci. (Print) ; 6(2): 87-95, abr.-jun. 2020. ilus
Article in Spanish | LILACS | ID: biblio-1390989

ABSTRACT

Se describen las respuestas fisiológicas que el ser humano desarrolla en respuesta a la exposición a la altitud geográfica. Se describen no sólo las alteraciones debidas a una mala coordinación de los ajustes fisiológicos desencadenados durante la aclimatación a la altura sino también sus manifestaciones clínicas más relevantes. Se detallan los mecanismos moleculares subyacentes a tales respuestas y cómo su mejor conocimiento puede permitir aplicar la exposición intermitente a hipoxia como una herramienta útil para la resolución o alivio de determinadas alteraciones y patologías.


We depict the physiological responses developed by the human body in response to the exposure to geographic altitude. The main alterations due to a noncoordinated setup of the physiological adjustments triggered during the acclimatization at altitude are also described, as its most relevant clinical manifestations. The molecular mechanisms underlying such responses are detailed, and how a better knowledge of these processes can allow us to apply intermittent exposure to hypoxia programs as a useful tool for the resolution or relief of certain disorders and pathologies.


Subject(s)
Humans , Adaptation, Physiological , Altitude , Altitude Sickness , Brain Edema , Acclimatization , Hypoxia
7.
High Alt Med Biol ; 18(3): 278-284, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28846035

ABSTRACT

Ebert-Santos, Christine. High-altitude pulmonary edema in mountain community residents. High Alt Med Biol. 18:278-284, 2017.-High-altitude pulmonary edema (HAPE) affects lowlanders ascending quickly to elevations above 2440 m. Mountain resident children with no travel can sometimes develop HAPE as was observed over 30 years ago (Fasules et al., 1985). This is not well known and children instead are diagnosed as having pneumonia or asthma. In our clinic at 2800 m, we see children presenting with severe hypoxemia, clinical, and radiographic findings consistent with HAPE despite no recent travel. We call this mountain resident HAPE. We reviewed records of 48 patients with pulmonary symptoms. Analysis included vital signs, pulse oximetry, laboratories, physical findings, and clinical course. We identified 33 residents with HAPE and no travel, five with reentry HAPE, two visitors with classic HAPE, six residents with pneumonia, and two with asthma. Also, 48 X-rays on hypoxemic children seen between 2006 and 2017 were reviewed. Five showed definite HAPE with follow-up X-rays within 48 hours confirming rapid clearing on oxygen, 27 showed findings consistent with HAPE or viral pneumonia and no repeat study. Children living at elevation presenting with hypoxemia are commonly misdiagnosed. Rapid improvement with oxygen and little to no improvement with bronchodilators are more consistent with HAPE, and thus, antibiotics and other treatments can be avoided.


Subject(s)
Altitude Sickness/diagnosis , Altitude , Hypertension, Pulmonary/diagnosis , Adolescent , Altitude Sickness/physiopathology , Child , Child, Preschool , Diagnostic Errors , Female , Humans , Hypertension, Pulmonary/physiopathology , Infant , Lung/physiopathology , Male
8.
Medicina (B.Aires) ; Medicina (B.Aires);72(2): 150-157, abr. 2012. tab
Article in Spanish | LILACS | ID: lil-639669

ABSTRACT

La altura constituye un fascinante laboratorio natural para la investigación médica. Si bien al principio el objetivo de la investigación en la altura fue la comprensión de los mecanismos de adaptación del organismo a la hipoxia y la búsqueda de tratamientos para las enfermedades relacionadas con la altura, durante la última década el alcance de esta investigación se ha ampliado considerablemente. Dos importantes observaciones han generado las bases para el crecimiento del alcance científico de la investigación en la altura. Primero, el hecho de que el edema pulmonar agudo de la altura constituye un modelo único para estudiar los mecanismos fundamentales de la hipertensión pulmonar y el edema pulmonar en humanos. Segundo, que la hipoxia ambiental asociada con la exposición a la altura facilita la detección de disfunción vascular pulmonar y sistémica en un estadio precoz. Aquí revisaremos los estudios que, capitalizando estas observaciones, han llevado a la descripción de nuevos mecanismos subyacentes del edema pulmonar y de la hipertensión pulmonar, y a la primera demostración directa de la existencia de una programación fetal sobre la disfunción vascular en humanos.


High altitude constitutes an exciting natural laboratory for medical research. While initially, the aim of high-altitude research was to understand the adaptation of the organism to hypoxia and find treatments for altitude-related diseases, over the past decade or so, the scope of this research has broadened considerably. Two important observations led to the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema (HAPE) represents a unique model which allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Secondly, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans.


Subject(s)
Humans , Altitude Sickness/physiopathology , Endothelium, Vascular/embryology , Endothelium, Vascular/physiopathology , Hypertension, Pulmonary/physiopathology , Pulmonary Edema/physiopathology , Altitude Sickness/complications , Altitude Sickness/embryology , Fetal Development , Hypertension, Pulmonary/complications , Hypertension, Pulmonary/embryology , Nitric Oxide/biosynthesis , Nitric Oxide/deficiency , Oxidative Stress , Pulmonary Edema/embryology , Pulmonary Edema/etiology
9.
Medicina (B.Aires) ; Medicina (B.Aires);72(2): 150-157, abr. 2012. tab
Article in Spanish | BINACIS | ID: bin-129584

ABSTRACT

La altura constituye un fascinante laboratorio natural para la investigación médica. Si bien al principio el objetivo de la investigación en la altura fue la comprensión de los mecanismos de adaptación del organismo a la hipoxia y la búsqueda de tratamientos para las enfermedades relacionadas con la altura, durante la última década el alcance de esta investigación se ha ampliado considerablemente. Dos importantes observaciones han generado las bases para el crecimiento del alcance científico de la investigación en la altura. Primero, el hecho de que el edema pulmonar agudo de la altura constituye un modelo único para estudiar los mecanismos fundamentales de la hipertensión pulmonar y el edema pulmonar en humanos. Segundo, que la hipoxia ambiental asociada con la exposición a la altura facilita la detección de disfunción vascular pulmonar y sistémica en un estadio precoz. Aquí revisaremos los estudios que, capitalizando estas observaciones, han llevado a la descripción de nuevos mecanismos subyacentes del edema pulmonar y de la hipertensión pulmonar, y a la primera demostración directa de la existencia de una programación fetal sobre la disfunción vascular en humanos.(AU)


High altitude constitutes an exciting natural laboratory for medical research. While initially, the aim of high-altitude research was to understand the adaptation of the organism to hypoxia and find treatments for altitude-related diseases, over the past decade or so, the scope of this research has broadened considerably. Two important observations led to the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema (HAPE) represents a unique model which allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Secondly, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans.(AU)

10.
Medicina (B.Aires) ; Medicina (B.Aires);72(2): 150-157, abr. 2012. tab
Article in Spanish | BINACIS | ID: bin-127760

ABSTRACT

La altura constituye un fascinante laboratorio natural para la investigación médica. Si bien al principio el objetivo de la investigación en la altura fue la comprensión de los mecanismos de adaptación del organismo a la hipoxia y la búsqueda de tratamientos para las enfermedades relacionadas con la altura, durante la última década el alcance de esta investigación se ha ampliado considerablemente. Dos importantes observaciones han generado las bases para el crecimiento del alcance científico de la investigación en la altura. Primero, el hecho de que el edema pulmonar agudo de la altura constituye un modelo único para estudiar los mecanismos fundamentales de la hipertensión pulmonar y el edema pulmonar en humanos. Segundo, que la hipoxia ambiental asociada con la exposición a la altura facilita la detección de disfunción vascular pulmonar y sistémica en un estadio precoz. Aquí revisaremos los estudios que, capitalizando estas observaciones, han llevado a la descripción de nuevos mecanismos subyacentes del edema pulmonar y de la hipertensión pulmonar, y a la primera demostración directa de la existencia de una programación fetal sobre la disfunción vascular en humanos.(AU)


High altitude constitutes an exciting natural laboratory for medical research. While initially, the aim of high-altitude research was to understand the adaptation of the organism to hypoxia and find treatments for altitude-related diseases, over the past decade or so, the scope of this research has broadened considerably. Two important observations led to the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema (HAPE) represents a unique model which allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Secondly, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans.(AU)

11.
Medicina (B.Aires) ; Medicina (B.Aires);67(1): 71-81, jan.-fev. 2007. ilus, graf, tab
Article in Spanish | LILACS | ID: lil-464750

ABSTRACT

La altura, fascinante laboratorio natural de investigación médica, provee resultados con importantes implicancias para la comprensión de enfermedades que afectan a millones de personas que viven en ella, asi como para el tratamiento de enfermedades ligadas a la hipoxemia en pacientes que viven en baja altitud. El edema pulmonar de altura (EPA) es una entidad que pone en peligro la vida y que ocurre en sujetos predispuestos pero sanos. Esto permite estudiar los mecanismos subyacentes del edema pulmonar en humanos, sin la presencia de factores que presten a la confusión como enfermedades concomitantes. El EPA resulta de la conjunción de dos defectos mayores: acumulación de líquido en el espacio alveolar debido a una hipertensión pulmonar hipóxica exagerada, y alteración en la eliminación del mismo por un defecto en el transporte transepitelial alveolar de sodio. En esta revisión, describimos brevemente las características clínicas y revisaremos este novedoso concepto. Proveemos evidencia experimental de como la síntesis alterada de óxido nítrico y/o la disminución de su biodisponibilidad representan el defecto central que predispone a la vasoconstricción pulmonar hipóxica exagerada y a la acumulación de líquido en el espacio alveolar. Mostramos que la hipertensión pulmonar hipóxica exagerada, per se, no es suficiente para producir un EPA, y que una alteración en la eliminación del fluido del espacio alveolar representa un segundo mecanismo fisiopatológico importante. Finalmente, describimos cómo los nuevos aportes obtenidos de los estudios del EPA pueden ser trasladados al manejo de otros estados patológicos ligados a la hipoxemia.


High altitude constitutes an exciting natural laboratory for medical research. Over the past decade, it has become clear that the results of high-altitude research may have important implications not only for the understanding of diseases in the millions of people living permanently at high altitude, but also for the treatment of hypoxemia-related disease states in patients living at low altitude. High-altitude pulmonary edema (HAPE) is a life-threatening condition occurring in predisposed, but otherwise healthy subjects, and, therefore, allows to study underlying mechanisms of pulmonary edema in humans, in the absence of confounding factors. Over the past decade, evidence has accumulated that HAPE results from the conjunction of two major defects, augmented alveolar fluid flooding resulting from exaggerated hypoxic pulmonary hypertension, and impaired alveolar fluid clearance related to defective respiratory transepithelial sodium transport. Here, after a brief presentation of the clinical features of HAPE, we review this novel concept. We provide experimental evidence for the novel concept that impaired pulmonary endothelial and epithelial nitric oxide synthesis and/or bioavailability may represent the central underlying defect predisposing to exaggerated hypoxic pulmonary vasoconstriction and alveolar fluid flooding. We demonstrate that exaggerated pulmonary hypertension, while possibly a condition sine qua non, may not be sufficient to cause HAPE, and how defective alveolar fluid clearance may represent a second important pathogenic mechanism. Finally, we outline how this insight gained from studies in HAPE may be translated into the management of hypoxemia related disease states in general.


Subject(s)
Humans , Altitude Sickness/physiopathology , Hypertension, Pulmonary/complications , Pulmonary Circulation , Pulmonary Edema/etiology , Sympathetic Nervous System , Altitude Sickness/complications , Altitude Sickness/drug therapy , Biological Availability , Biological Transport/physiology , Blood Pressure/drug effects , Blood Pressure/physiology , Epithelial Sodium Channels/physiology , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/physiopathology , Nitric Oxide/biosynthesis , Nitric Oxide/pharmacokinetics , Pulmonary Alveoli/drug effects , Pulmonary Circulation/physiology , Pulmonary Edema/drug therapy , Pulmonary Edema/physiopathology , Sodium/pharmacokinetics , Sodium/therapeutic use , Sympathetic Nervous System/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL