Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 559
Filter
1.
Mol Ecol Resour ; : e13989, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946220

ABSTRACT

Abyssal (3501-6500 m) and hadal (>6500 m) fauna evolve under harsh abiotic stresses, characterized by high hydrostatic pressure, darkness and food shortage, providing unique opportunities to investigate mechanisms underlying environmental adaptation. Genomes of several hadal species have recently been reported. However, the genetic adaptation of deep sea species across a broad spectrum of ocean depths has yet to be thoroughly investigated, due to the challenges imposed by collecting the deep sea species. To elucidate the correlation between genetic innovation and vertical distribution, we generated a chromosome-level genome assembly of the macrourids Coryphaenoides yaquinae, which is widely distributed in the abyssal/hadal zone ranging from 3655 to 7259 m in depth. Genomic comparisons among shallow, abyssal and hadal-living species identified idiosyncratic and convergent genetic alterations underlying the extraordinary adaptations of deep-sea species including light perception, circadian regulation, hydrostatic pressure and hunger tolerance. The deep-sea fishes (Coryphaenoides Sp. and Pseudoliparis swirei) venturing into various ocean depths independently have undergone convergent amino acid substitutions in multiple proteins such as rhodopsin 1, pancreatic and duodenal homeobox 1 and melanocortin 4 receptor which are known or verified in zebrafish to be related with vision adaptation and energy expenditure. Convergent evolution events were also identified in heat shock protein 90 beta family member 1 and valosin-containing protein genes known to be related to hydrostatic pressure adaptation specifically in fishes found around the hadal range. The uncovering of the molecular convergence among the deep-sea species shed new light on the common genetic innovations required for deep-sea adaptation by the fishes.

2.
J Sci Food Agric ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970166

ABSTRACT

BACKGROUND: Use of high hydrostatic pressure (HHP) with reduced processing times is gaining traction in the food industry as an alternative to conventional thermal treatment. In order to enhance functional benefits while minimizing processing losses, functionalized products are being developed with such novel techniques. In this study, changes in quality parameters for HHP treated enriched tomato sauce were evaluated, with the aim to assess its viability as an alternative to conventional thermal treatment methods. RESULTS: HHP treatments at 500 MPa, 30 °C/50 °C significantly increased the total phenolic and lycopene content of the sauce samples, achieving 6.7% and 7.5% improvements over conventionally treated samples. The antioxidant capacity of the HHP-treated samples was also found to match or be better than conventionally treated samples. Furthermore, a T2 relaxation time study revealed that pressure-temperature processing treatments were effective in maintaining the structural integrity of water molecules. Microbiological analyses revealed that 500 MPa/50 °C 5 min treatment can offer 8 logs reduction colony formation, matching the results of conventional thermal treatment. CONCLUSION: Combined pressure-temperature treatments improve results, reduce time consumption. 500 MPa/50 °C treatments provided retention of quality parameters and significant reduction in microbial activity. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Food Res Int ; 190: 114658, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945590

ABSTRACT

Egg proteins, notably ovalbumin (OVA), contribute to a prevalent form of food allergy, particularly in children. This study aims to investigate the impact of high hydrostatic pressure (HHP) treatment at varying levels (300, 400, 500, and 600 MPa) on the molecular structure and allergenicity of OVA. The structure of HHP-treated OVA was assessed through fluorescence spectroscopy, circular dichroism spectroscopy, and molecular dynamics (MD) simulation. HHP treatment (600 MPa) altered OVA structures, such as α-helix content decreased from 28.07 % to 19.47 %, and exogenous fluorescence intensity increased by 8.8 times compared to that of the native OVA. The free sulfhydryl groups and zeta potential value were also increased with HHP treatment (600 MPa). ELISA analysis and MD simulation unveiled a noteworthy reduction in the allergenicity of OVA when subjected to 600 MPa for 10 min. Overall, this study suggests that the conformational changes in HHP-treated OVA contribute to its altered allergenicity.


Subject(s)
Allergens , Hydrostatic Pressure , Ovalbumin , Ovalbumin/immunology , Ovalbumin/chemistry , Allergens/chemistry , Allergens/immunology , Molecular Dynamics Simulation , Circular Dichroism , Spectrometry, Fluorescence , Animals , Egg Hypersensitivity/immunology , Food Hypersensitivity/immunology , Humans , Food Handling/methods , Protein Conformation
4.
Food Chem ; 455: 139863, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38823140

ABSTRACT

This study explored the impact of homogenization (at pressures of 16, 30, and 45 MPa) on both raw and high hydrostatic pressure (HHP)-treated human milk (HM). It focused on protein compositions and binding forces of soluble and insoluble fractions for both milk fat globule membrane (MFGM) and skim milk. Mild homogenization of HHP-treated milk increased lactoferrin (LF) levels in the insoluble fractions of both MFGM and skim milk, due to insoluble aggregation through hydrophobic interactions. Intense homogenization of HHP-treated milk decreased the LF level in the MFGM fractions due to the LF desorption from the MFGM, which increased LF level in the insoluble skim milk fraction. Homogenized-HHP treated milk showed noticeably higher casein (CN) level at the MFGM compared to homogenized-raw milk, attributed to HHP effect on CN micelles. Overall, the combined use of HHP and shear-homogenization should be avoided as it increased the biological proteins in insoluble fractions.


Subject(s)
Glycolipids , Glycoproteins , Hydrostatic Pressure , Lipid Droplets , Milk, Human , Pasteurization , Protein Aggregates , Glycoproteins/chemistry , Lipid Droplets/chemistry , Humans , Glycolipids/chemistry , Milk, Human/chemistry , Lactoferrin/chemistry , Milk/chemistry , Food Handling , Milk Proteins/chemistry
5.
Mar Life Sci Technol ; 6(2): 331-348, 2024 May.
Article in English | MEDLINE | ID: mdl-38827128

ABSTRACT

Phenolic compounds, as well as other aromatic compounds, have been reported to be abundant in hadal trenches. Although high-throughput sequencing studies have hinted at the potential of hadal microbes to degrade these compounds, direct microbiological, genetic and biochemical evidence under in situ pressures remain absent. Here, a microbial consortium and a pure culture of Pseudomonas, newly isolated from Mariana Trench sediments, efficiently degraded phenol under pressures up to 70 and 60 MPa, respectively, with concomitant increase in biomass. By analyzing a high-pressure (70 MPa) culture metatranscriptome, not only was the entire range of metabolic processes under high pressure generated, but also genes encoding complete phenol degradation via ortho- and meta-cleavage pathways were revealed. The isolate of Pseudomonas also contained genes encoding the complete degradation pathway. Six transcribed genes (dmpKLMNOPsed) were functionally identified to encode a multicomponent hydroxylase catalyzing the hydroxylation of phenol and its methylated derivatives by heterogeneous expression. In addition, key catabolic genes identified in the metatranscriptome of the high-pressure cultures and genomes of bacterial isolates were found to be all widely distributed in 22 published hadal microbial metagenomes. At microbiological, genetic, bioinformatics, and biochemical levels, this study found that microorganisms widely found in hadal trenches were able to effectively drive phenolic compound degradation under high hydrostatic pressures. This information will bridge a knowledge gap concerning the microbial aromatics degradation within hadal trenches. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00224-2.

6.
Food Chem ; 457: 140118, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38905831

ABSTRACT

The development of natural inhibitors of polyphenol oxidase (PPO) is crucial in the prevention of enzymatic browning in fresh foods. However, few studies have focused on the effect of subsequent sterilization on their inhibition efficiency. This study investigated the influence and mechanism of high hydrostatic pressure (HHP) on the inhibition of PPO by epigallocatechin gallate (EGCG), cyanidin-3-O-glucoside (C3G), and ferulic acid. Results showed that under the conditions of 550 MPa/30 min, the activity of EGCG-PPO decreased to 55.92%, C3G-PPO decreased to 81.80%, whereas the activity of FA-PPO remained stable. Spectroscopic experiments displayed that HHP intensified the secondary structure transformation and fluorescence quenching of PPO. Molecular dynamics simulations revealed that at 550 MPa, the surface interaction between PPO with EGCG or C3G increased, potentially leading to a reduction in their activity. In contrast, FA-PPO demonstrated conformational stability. This study can provide a reference for the future industrial application of natural inhibitors.

7.
Curr Med Sci ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38926331

ABSTRACT

OBJECTIVE: Bladder outlet obstruction (BOO) results in significant fibrosis in the chronic stage and elevated bladder pressure. Piezo1 is a type of mechanosensitive (MS) channel that directly responds to mechanical stimuli. To identify new targets for intervention in the treatment of BOO-induced fibrosis, this study investigated the impact of high hydrostatic pressure (HHP) on Piezo1 activity and the progression of bladder fibrosis. METHODS: Immunofluorescence staining was conducted to assess the protein abundance of Piezo1 in fibroblasts from obstructed rat bladders. Bladder fibroblasts were cultured under normal atmospheric conditions (0 cmH2O) or exposed to HHP (50 cmH2O or 100 cmH2O). Agonists or inhibitors of Piezo1, YAP1, and ROCK1 were used to determine the underlying mechanism. RESULTS: The Piezo1 protein levels in fibroblasts from the obstructed bladder exhibited an elevation compared to the control group. HHP significantly promoted the expression of various pro-fibrotic factors and induced proliferation of fibroblasts. Additionally, the protein expression levels of Piezo1, YAP1, ROCK1 were elevated, and calcium influx was increased as the pressure increased. These effects were attenuated by the Piezo1 inhibitor Dooku1. The Piezo1 activator Yoda1 induced the expression of pro-fibrotic factors and the proliferation of fibroblasts, and elevated the protein levels of YAP1 and ROCK1 under normal atmospheric conditions in vitro. However, these effects could be partially inhibited by YAP1 or ROCK inhibitors. CONCLUSION: The study suggests that HHP may exacerbate bladder fibrosis through activating Piezo1.

8.
Foods ; 13(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38790874

ABSTRACT

The loss of distinctive aromas due to sterilization significantly hinders efforts to enhance the sensory quality of fruit and vegetable juices. This study aimed to elucidate the impacts of high-hydrostatic pressure (HHP) and high-temperature short-time (HTST) sterilization methods on the loss of C6 aldehyde aroma-active compounds in red raspberry juice. External standard quantification and quantitative descriptive analysis (QDA) revealed a notable decline in the levels of hexanal and (Z)-3-hexenal following the HHP and HTST treatments (p < 0.05), resulting in a marked attenuation of the grassy aroma characteristic of red raspberry juice. Furthermore, a comprehensive examination of the precursors, pivotal enzymes, intermediates, and downstream aromas within the fatty acid metabolism pathway in different raspberry juice samples indicated that the C6 aldehydes loss induced by HHP and HTST sterilizations was primarily ascribed to the competitive inhibition of ß-oxidation and the hindered enzymatic oxidation of fatty acids. These insights suggest that modifying sterilization protocols and enhancing enzymatic stability may help preserve the aroma integrity of raspberry juice. Our findings offer practical guidance for optimizing juice processing techniques to maintain flavor.

9.
Front Chem ; 12: 1400445, 2024.
Article in English | MEDLINE | ID: mdl-38812614

ABSTRACT

Electrophilic aromatic nitrations are used for the preparation of a variety of synthetic products including dyes, agrochemicals, high energy materials, fine chemicals and pharmaceuticals. Traditional nitration methods use highly acidic and corrosive mixed acid systems which present a number of drawbacks. Aside from being hazardous and waste-producing, these methods also often result in poor yields, mostly due to low regioselectivity, and limited functional group tolerance. As a consequence, there is a need for effective and environmentally benign methods for electrophilic aromatic nitrations. In this work, the major aim was to develop reaction protocols that are more environmentally benign while also considering safety issues. The reactions were carried out in dilute aqueous nitric acid, and a broad range of experimental variables, such as acid concentration, temperature, time, and activation method, were investigated. Mesitylene and m-xylene were used as test substrates for the optimization. While the optimized reactions generally occurred at room temperature without any activation under additional solvent-free conditions, slight adjustments in acid concentration, stoichiometric equivalents, and volume were necessary for certain substrates, in addition to the activation. The substrate scope of the process was also investigated using both activated and deactivated aromatics. The concentration of the acid was lowered when possible to improve upon the safety of the process and avoid over-nitration. With some substrates we compared traditional and nontraditional activation methods such as ultrasonic irradiation, microwave and high pressure, respectively, to achieve satisfactory yields and improve upon the greenness of the reaction while maintaining short reaction times.

10.
Food Chem ; 452: 139574, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38733683

ABSTRACT

Barley leaves (BLs) naturally contained abundant phenolics, most of which are hardly completely released from food matrix during gastrointestinal digestion. Superfine grinding (SFG) and high hydrostatic pressure (HHP) are generally used to treat the functional plants due to their effectiveness to cell wall-breaking and improvement of nutraceutical bioavailability. Thus, this study investigated the synergistic effects of SFG and HHP (100, 300, 500 MPa/20 min) on the bioaccessbility of typical phenolics in BLs during the simulated in-vitro digestion. The results demonstrated that the highest bioaccessbility (40.98%) was found in the ultrafine sample with HHP at 500 MPa. CLSM and SEM confirmed SFG led to microstructurally rapture of BLs. Moreover, the recovery index of ABTS radical scavenging activity and FRAP of HHP-treated ultrafine and fine BLs samples maximumly increased by 53.62% and 9.61%, respectively. This study is expecting to provide the theoretical basis to improve the consumer acceptance of BLs.


Subject(s)
Antioxidants , Digestion , Hordeum , Hydrostatic Pressure , Plant Leaves , Polyphenols , Hordeum/chemistry , Hordeum/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Polyphenols/chemistry , Polyphenols/metabolism , Food Handling , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/metabolism , Humans
11.
Appl Environ Microbiol ; 90(6): e0086124, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38809044

ABSTRACT

The foodborne pathogen Listeria monocytogenes is differentiated into four distinct lineages which differ in their virulence. It remains unknown, however, whether the four lineages also differ with respect to their ability to persist in food processing facilities, their resistance to high pressure, a preservation method that is used commercially for Listeria control on ready-to-eat meats, and their ability to form biofilms. This study aimed to determine differences in the pressure resistance and biofilm formation of 59 isolates of L. monocytogenes representing lineages I and II. Furthermore, the genetic similarity of 9 isolates of L. monocytogenes that were obtained from a meat processing facility over a period of 1 year and of 20 isolates of L. monocytogenes from food processing facilities was analyzed to assess whether the ability of the lineages of L. monocytogenes to persist in these facilities differs. Analysis of 386 genomes with respect to the source of isolation revealed that genomes of lineage II are over-represented in meat isolates when compared with clinical isolates. Of the 38 strains of Lm. monocytogenes that persisted in food processing facilities (this study or published studies), 31 were assigned to lineage II. Isolates of lineage I were more resistant to treatments at 400 to 600 MPa. The thickness of biofilms did not differ between lineages. In conclusion, strains of lineage II are more likely to persist in food processing facilities while strains of lineage I are more resistant to high pressure.IMPORTANCEListeria monocytogenes substantially contributes to the mortality of foodborne disease in developed countries. The virulence of strains of four lineages of L. monocytogenes differs, indicating that risks associated with the presence of L. monocytogenes are lineage specific. Our study extends the current knowledge by documentation that the lineage-level phylogeny of L. monocytogenes plays a role in the source of isolation, in the persistence in food processing facilities, and in the resistance to pathogen intervention technologies. In short, the control of risks associated with the presence of L. monocytogenes in food is also lineage specific. Understanding the route of contamination L. monocytogenes is an important factor to consider when designing improved control measures.


Subject(s)
Listeria monocytogenes , Phylogeny , Listeria monocytogenes/genetics , Listeria monocytogenes/classification , Listeria monocytogenes/physiology , Food Microbiology , Food Handling , Biofilms/growth & development , Food-Processing Industry , Meat Products/microbiology
12.
Ultrason Sonochem ; 107: 106920, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38805885

ABSTRACT

Cavitation erosion is a general phenomenon in the fields of aviation, navigation, hydraulic machinery, and so on, causing great damage to fluid machinery. With the vast requirements in deep ocean applications, it is urgent to study the mechanism of cavitation erosion and the cavitation erosion resistance of different materials under high hydrostatic pressure to predict and avoid the effect of cavitation erosion. In this work, the spatially confined cavitation bubble cloud associated with Gaussian-like intensity distribution sonoluminescence (SL) was produced by a spherically focused ultrasound transducer with two opening ends near metallic plates under different hydrostatic pressures (0.1, 3, 6, and 10 MPa). The cavitation erosion effects on copper, 17-4PH stainless steel and tungsten plates were studied. Through coupling analysis towards the SL intensity distribution, the macro/micro morphology of cavitation erosion, and the physical parameters of different metallic materials (hardness, yield strength, and melting point), it is found that with increasing hydrostatic pressure, the erosion effect is intensified, the depth of cavitation pits increases, the phenomenon of melting can be observed on materials with relatively low melting points, and the cavitation erosion experienced an evolution process from high-temperature creep to fracture. This work has also established a method for the evaluation of materials' cavitation erosion resistance with measurable SL intensity distribution, which is promising to promote the designing and selection of anti-cavitation materials in deep-sea applications.

13.
Biotechnol Bioeng ; 121(7): 2057-2066, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38650386

ABSTRACT

High hydrostatic pressure stabilized galactose oxidase (GaOx) at 70.0-80.0°C against thermal inactivation. The pseudo-first-order rate constant of inactivation kinact decreased by a factor of 8 at 80°C and by a factor of 44 at 72.5°C. The most pronounced effect of pressure was at the lowest studied temperature of 70.0°C with an activation volume of inactivation ΔV‡ of 78.8 cm3 mol-1. The optimal pressure against thermal inactivation was between 200 and 300 MPa. Unlike other enzymes, as temperature increased the ΔV‡ of inactivation decreased, and as pressure increased the activation energy of inactivation Eai increased. Combining the results for GaOx with earlier research on the pressure-induced stabilization of other enzymes suggests that ΔV‡ of inactivation correlates with the total molar volume of cavities larger than ~100 Å3 in enzyme monomers for enzymes near the optimal pH and whose thermal unfolding is not accompanied by oligomer dissociation.


Subject(s)
Enzyme Stability , Galactose Oxidase , Hydrostatic Pressure , Galactose Oxidase/chemistry , Galactose Oxidase/metabolism , Hot Temperature , Temperature
14.
J Food Prot ; 87(6): 100278, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631420

ABSTRACT

The use of antibiotics in agriculture and livestock poses health risks to consumers. Treatments such as High Hydrostatic Pressure (HHP) have been shown to reduce antibiotic and pesticide residues in food. This study aims to investigate the matrix effect on the effectiveness of HHP on hydrochloride tetracycline (HTC) and sulfathiazole (STZ) residues in spiked food matrices. The effect of viscosity, as well as carbohydrate, protein, and fat content on the effectiveness of HHP on antibiotic residues, was investigated. The studied matrices were full-fat and fat-free bovine milk and model food systems consisting of aqueous solutions of sugars, aqueous solutions of proteins, and oil in water emulsions. Model food systems were also used to study the viscosity effect. These systems consisted of aqueous solutions of honey, aqueous solutions of apple puree, and aqueous solutions of glycerol. The HHP processing (580 MPa, 6 min, 25 °C) took place under industrial conditions. For both antibiotics, the concentration of sugars and proteins was found to affect the effectiveness of treatment. The concentration of oils affected treatment efficacy only for HTC. Reduction of antibiotics by HHP was also affected by the type of carbohydrate and the viscosity. In conclusion, the composition and the viscosity of the food matrix exert a variable effect on the studied antibiotic residues reduction by HHP indicating different underlying mechanisms of the interactions between food constituents and antibiotics under the same process conditions.


Subject(s)
Anti-Bacterial Agents , Hydrostatic Pressure , Anti-Bacterial Agents/pharmacology , Animals , Humans , Cattle , Viscosity , Food Contamination/analysis , Milk/chemistry , Drug Residues
15.
Nutrients ; 16(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474836

ABSTRACT

High hydrostatic pressure (HHP) is a non-thermal pasteurization technology for the enhancement of food products' safety and quality. The components of tomato juice can be affected by HHP processing. Little is known about the effects of HHP-processed tomato juice on the gut microbiome and metabolism. Here, we performed high-throughput sequencing and metabolomics profiling to determine the critical differences in gut microbiota structure and metabolic profiles in mice administered with HHP-processed tomato juice. Tomato juice administration significantly increased the gut bacterial alpha diversity and the relative abundance of Bacteroides. The mice administered with HHP-processed tomato juice were characterized by the enrichment of Bacteroidetes, Alistieps, and Faecalibaculum compared with those administered with HTST-processed tomato juice. Moreover, HHP-processed tomato juice promoted SCFA levels, which were positively correlated with the enriched Alistieps. Our results show that HHP-processed tomato juice may drive healthy gut microbes and metabolites.


Subject(s)
Gastrointestinal Microbiome , Solanum lycopersicum , Animals , Mice , Hydrostatic Pressure , Pasteurization/methods , Metabolome
16.
Foods ; 13(5)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38472802

ABSTRACT

White grape pomace (winery by-product) stabilized by blanching and high hydrostatic pressure has recently been successful at delaying lipid oxidation in burgers. The aim of this study was to investigate whether it can also delay lipid oxidation in dry-cured sausages, and to compare its effect when added at 0.5 and 3% with those of synthetic additives (sodium nitrite and ascorbic acid) and no additives (Control) in lipid and protein oxidation, the instrumental color, the sensory characteristics, and the volatile compounds. The pomace (68.7 ± 7.4 mmol Trolox g-1) was as effective as the additives at preventing lipid oxidation, resulting in values 3.2-3.8 times lower than the Control sausages. However, the pomace was not effective at decreasing the microbial counts, improving the instrumental and sensory color and the volatile compound profile, and decreasing the off-odor and off-flavor developed in the Control sausages. The lack of a detrimental effect of the pomace at 0.5% on the volatile compounds and the sensory characteristics and its benefits to delay lipid oxidation suggest that it might be useful to improve the oxidative stability. Conversely, at 3%, with a detrimental effect on some sensory characteristics and no benefits over the lower dosage, is not advisable.

17.
Foods ; 13(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38472883

ABSTRACT

The HHP inactivation behaviors of Niigata sake yeast Saccharomyces cerevisiae strain S9arg and its aerobic respiratory-deficient mutant strains were investigated after cultivating them in a YPD media containing 2% to 15% glucose, as well as in moromi mash, in a laboratory-scale sake brewing process. The piezotolerance of strain S9arg, shown after cultivation in a YPD medium containing 2% glucose, decreased to become piezosensitive with increasing glucose concentrations in YPD media. In contrast, the piezosensitivity of a mutant strain UV1, shown after cultivation in the YPD medium containing 2% glucose, decreased to become piezotolerant with increasing glucose concentrations in the YPD medium. The intracellular ATP concentrations were analyzed for an S. cerevisiae strain with intact aerobic respiratory ability, as well as for strain UV1. The higher concentration of ATP after cultivation suggested a higher energy status and may be closely related to higher piezotolerance for the yeast strains. The decreased piezotolerance of strain S9arg observed after a laboratory-scale sake brewing test may be due to a lower energy status resulting from a high glucose concentration in moromi mash during the early period of brewing, as well as a lower aeration efficiency during the brewing process, compared with cultivation in a YPD medium containing 2% glucose.

18.
Food Sci Biotechnol ; 33(5): 1103-1112, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38440688

ABSTRACT

The combined impact of high-hydrostatic pressure (HHP) and ultrasound (US) on the cyanidin-3-O-rutinoside (C3R), quercetin-3-O-rutinoside (Q3R), and volatile compounds from fig (Ficus carica) paste was investigated. The HHP increased the content of C3R and Q3R, from 70 to 133 mg/kg fw and 31 to 44 mg/kg fw, respectively. The combination of HHP and US further enhanced the extraction of these bioactive compounds. Specifically, processing fig paste with US for 5 min at 40 °C yielded approximately 250 mg of C3R/kg fw and 45 mg of Q3R/kg fw, after 20 min. More than 25 volatile compounds were identified, with benzaldehyde being the predominant compound, accounting > 75%. Trace amounts of hydroxymethylfurfural (< 0.36 mg/100 g fw) were detected in HHP-processed fig paste. The application of HHP at mild temperatures and short time, combined with US, effectively promotes the content of bioactive compounds present in fig paste without adversely affecting the fruit's volatile compounds. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01410-1.

19.
J Food Sci ; 89(5): 2803-2813, 2024 May.
Article in English | MEDLINE | ID: mdl-38551196

ABSTRACT

The impact of high hydrostatic pressure (HHP) on protein digestibility of egg yolk and egg yolk granule was evaluated by static in vitro digestion using the standardized INFOGEST 2.0 method. The degree of hydrolysis (DH) and the phospholipid content were determined during digestion, and the protein and peptide profiles were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and reverse phase-high pressure liquid chromatography (RP-HPLC). The results showed that HHP induced protein aggregation in egg yolk and granule, mainly by disulfide bridges, which were not disrupted in the oral phase. Proteolysis during the gastric phase improved egg yolk and granule protein solubility, regardless of whether HHP was applied. However, the extent of the samples' digestibility was not affected, with DH values ranging from 15% to 20%. During the intestinal phase, the DH of egg yolk protein (∼40%) was higher than that of the granule (∼25%), probably due to the denser structure of the granule reducing the accessibility of intestinal enzymes. The DH, peptide, and protein profiles of control and HHP-treated egg yolk showed similar protein digestion behaviors for both gastric and intestinal phases. Among the different proteins, only the digestibility of ß-phosvitin in HHP-treated granule was enhanced. Consequently, applying HHP to granules represents an interesting process that improves the digestibility of phosvitin with the potential to generate bioactive phosvitin-derived phosphopeptides. PRACTICAL APPLICATION: High hydrostatic pressure, mainly used as a preservation process, did not impair the nutritional quality of the egg yolk and granule proteins but improved the susceptibility of phosvitin (protein contained in egg yolk) proteolysis to produce bioactive phosphopeptides. Consequently, applying HHP to granules represents an interesting process that improves the digestibility of phosvitin.


Subject(s)
Digestion , Egg Yolk , Hydrostatic Pressure , Egg Yolk/chemistry , Hydrolysis , Solubility , Phosvitin/chemistry , Proteolysis , Egg Proteins/chemistry , Egg Proteins/metabolism , Food Handling/methods , Animals , Electrophoresis, Polyacrylamide Gel , Chickens , Phospholipids/chemistry , Phospholipids/metabolism
20.
Foods ; 13(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38540867

ABSTRACT

This study evaluated the effects of different drying techniques on the physicochemical properties of Pleurotus citrinopileatus Singer (P. citrinopileatus), focusing on the ergothioneine (EGT) contents. The P. citrinopileatus was subjected to natural ventilation drying (ND), freeze-drying (FD), and hot-air drying (HD). EGT was extracted using high-hydrostatic-pressure extraction (HHPE), and response surface methodology (RSM) was employed with four variables to optimize the extraction parameters. The crude EGT extract was purified by ultrafiltration and anion resin purification, and its antioxidant activity was investigated. The results showed that the ND method effectively disrupted mushroom tissues, promoting amino acid anabolism, thereby increasing the EGT content of mushrooms. Based on RSM, the optimum extracting conditions were pressure of 250 MPa, extraction time of 52 min, distilled water (dH2O) as the extraction solvent, and a 1:10 liquid-solid ratio, which yielded the highest EGT content of 4.03 ± 0.01 mg/g d.w. UPLC-Q-TOF-MSE was performed to assess the purity of the samples (purity: 86.34 ± 3.52%), and MS2 information of the main peak showed primary ions (m/z 230.1) and secondary cations (m/z 186.1050, m/z 127.0323) consistent with standard products. In addition, compared with ascorbic acid (VC), EGT showed strong free radical scavenging ability, especially for hydroxyl and ATBS radicals, at more than 5 mmol/L. These findings indicate that the extraction and purification methods used were optimal and suggest a possible synthetic path of EGT in P. citrinopileatus, which will help better explore the application of EGT.

SELECTION OF CITATIONS
SEARCH DETAIL
...