Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Poult Sci ; 96(12): 4352-4360, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29253276

ABSTRACT

Historically, Salmonella vaccines have been either live attenuated or killed bacterin vaccines that fail to offer cross-serogroup protection, which limits risk mitigation and protection of consumers. Subunit recombinant vaccines which possess highly conserved antigens offer potential to provide cross-serogroup protection, and the ability to express immune-enhancing molecules that promote recognition by the immune system. Six Salmonella subunit vaccine candidates were developed in either attenuated S. Enteritidis (SE) or S. Typhimurium (ST) that cell-surface express antigenic epitopes of high mobility group box 1 immune-enhancing sequence (H), peptidoglycan associated lipoprotein (P), and Omp18 protein Cj0113 (C) in different pattern arrangements for evaluation against S. Heidelberg (SH) challenge in broilers. In exp. 1, chicks were orally vaccinated with SE-CPH, SE-HCP, SE-CHP, ST-CPH, ST-HCP, or ST-CHP at 1 × 107 cfu/chick, or saline on d 1 and d 14. On d 17 all birds were challenged with 6 × 106 cfu/chick SH, and ceca collected on d 23 and d 28. On d 23 only SE-CPH reduced (P < 0.05) SH recovery at 0.34 ± 0.23 log10 cfu when compared to control at 1.19 ± 0.26 log10 cfu. On d 28, SE-CPH and ST-HCP reduced SH recovery at 0.40 ± 0.40 and 0.51 ± 0.26 log10 cfu, respectively in comparison to control at 1.36 ± 0.23 log10 cfu. For exp. 2, chicks were orally vaccinated with 1 × 108 cfu/chick SE-CPH, SE-HCP, SE-CHP or saline on d 1. At d 7 all chicks were orally challenged with 7 × 106 cfu/chick SH and ceca collected on d 28 and d 35. SE-CPH reduced (P < 0.05) SH recovery on d 28 when compared to control (6.16 ± 0.13 vs. 4.71 ± 0.55 log10 cfu). In exp 3, chicks were vaccinated by spray in a commercial vaccination cabinet with SE-CPH vaccination, 1.6 × 107 cfu/chick, or saline. Birds were challenged on d 14 with 3 × 107 cfu/chick SH and ceca collected on d 18 and d 25. SE-CPH reduced SH recovery (P < 0.05) on d 18, 2.75 ± 0.05 log10 cfu, and d 25, 1.89 ± 0.43 log10 cfu, as compared to control chickens at 5.6 ± 0.37 (d 18) and 3.98 ± 0.5 log10 cfu (d 25). The results of these experiments suggest that cross-serogroup protection is possible using these SE and ST-vectored subunit vaccines.


Subject(s)
Chickens , Poultry Diseases/prevention & control , Salmonella Infections, Animal/prevention & control , Salmonella Vaccines/immunology , Salmonella enterica/immunology , Animals , Campylobacter/immunology , Campylobacter Infections/immunology , Campylobacter Infections/prevention & control , Poultry Diseases/immunology , Salmonella Infections, Animal/immunology , Salmonella enteritidis/immunology , Salmonella typhimurium/immunology , Serogroup , Vaccines, Synthetic/immunology
2.
Hum Vaccin Immunother ; 10(11): 3261-9, 2014.
Article in English | MEDLINE | ID: mdl-25625929

ABSTRACT

Autologous dendritic cells (DCs) loaded with tumor-associated antigens (TAAs) are a promising immunological tool for cancer therapy. These stimulate the antitumor response and immunological memory generation. Nevertheless, many patients remain refractory to DC approaches. Antigen (Ag) delivery to DCs is relevant to vaccine success, and antigen peptides, tumor-associated proteins, tumor cells, autologous tumor lysates, and tumor-derived mRNA have been tested as Ag sources. Recently, DCs loaded with allogeneic tumor cell lysates were used to induce a potent immunological response. This strategy provides a reproducible pool of almost all potential Ags suitable for patient use, independent of MHC haplotypes or autologous tumor tissue availability. However, optimizing autologous tumor cell lysate preparation is crucial to enhancing efficacy. This review considers the role of cancer cell-derived lysates as a relevant source of antigens and as an activating factor for ex vivo therapeutic DCs capable of responding to neoplastic cells. These promising therapies are associated with the prolonged survival of advanced cancer patients.


Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Cell Extracts/therapeutic use , Dendritic Cells/immunology , Neoplasms/immunology , Cell Extracts/immunology , Humans , Immunologic Memory/immunology , Neoplasms/prevention & control , Neoplasms/therapy , T-Lymphocytes, Cytotoxic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL