ABSTRACT
The aim of the present investigation is to evaluate the influence of the powder size of Cr3C2-25NiCr spraying powder on the fatigue behavior of HVOF-sprayed coating on the ASTM A516 steel substrate. Conventional commercial Cr3C2-25NiCr spraying powder was previously treated through high-energy milling. The crystallite sizes of milled powders were measured by X-ray diffraction and transmission electronic microscopy. Three different powder formats of the same Cr3C2-25NiCr composite were subjected to HVOF spraying to produce (i) a Milled-Coating (from high-energy milled spray powder), (ii) an Original-Coating (from conventional commercial spray powder), and (iii) a 50%-50% mixture of both (Milled + Original-Coating). The same spraying conditions were adopted for all the assessed cases. The sprayed coatings were investigated through the Knoop hardness test and SEM-EDS analysis. In addition, 3-point bending fatigue tests were conducted at different stress levels up to 107 cycles. The coating morphology and roughness effects on fatigue behavior were analyzed. The Cr3C2-25NiCr milled coating presented a lower fatigue life above the fatigue limit and a higher fatigue limit than other coatings; this outcome could be attributed to its lower surface roughness and finer grain size microstructure.
ABSTRACT
This study aimed at evaluating the effect of high-energy milling (HEM) and traditional nixtamalization (TN) on bioactive compounds and antioxidant capacity in nixtamalized creole corn flours obtained from a maize genotype cultivated under rainy temporal conditions in the Mexican semidesert. Four creole grains, including San José de Gracia white and blue (WG and BG), Negritas (NG), and Ahualulco white corn grains (SG), were used. For HEM nixtamalization, corn grains were hammer-milled; then, two different conditions were evaluated: treatment H1, with raw flours with 14% moisture content and 1.1% Ca(OH)2, and treatment H2, with raw corn flours with a 23% moisture content and 1.4% Ca(OH)2. The TN process was utilized as a control. TN recorded significant losses in luminosity value L* (p < 0.05), while HEM nixtamalized blue corn flours remained close to -b* values, that is, near to those of raw flour. Anthocyanin content showed higher content values in HEM treatments compared with TN (759.55 and 252.53 mg cyanidin 3-O-ß-D-glucoside (C3G)/kg, respectively) (p < 0.05). Total soluble phenolic content was higher in HEM nixtamalization compared with the traditional process, except for WH2 and SH2 (H2 treatment for WG and SG). Two redundant radical scavenging assays were used: antioxidant capacity (DPPH assay) exhibited less value in nixtamalized flours than in raw flour (p < 0.05). Antioxidant activity by (ABTS) assay was higher in HEM than in TN. Nixtamalized flours produced by HEM demonstrated more improvement in nutraceutical properties than those produced employing TN.
Subject(s)
Antioxidants/metabolism , Food Handling/methods , Phytochemicals/metabolism , Zea mays/chemistry , Anthocyanins/analysis , Anthocyanins/metabolism , Antioxidants/analysis , Dietary Supplements , Edible Grain/chemistry , Flour/analysis , Mexico , Phenols/analysis , Phenols/metabolism , Phytochemicals/analysisABSTRACT
High-energy milling (HEM) was used to produce nixtamalized corn flours, the traditional nixtamalization process was used as a control. Four creole grains were stone-milled, adjusted to an appropriate moisture content and calcium hydroxide concentration and milled using HEM. The physicochemical, thermal, and rheological characteristics of the flours and corn masas were affected by the HEM process. Negritas and Ahualulco creole grains nixtamalized by HEM showed similar viscosity profiles as a control. HEM reduced the gelatinization enthalpy compared to control and raw flours. Diffractograms showed changes in the crystalline structures and FT-IR demonstrated different regions for lipids, proteins, and carbohydrates in all control and treated grains. The texture of corn masas revealed significant differences according to the grain type. ESEM analysis showed smaller particles of HEM flours compared to those of the control. HEM could be a faster, non-pollutant, energy-saving, alternative nixtamalization process.
Subject(s)
Flour , Food Handling/methods , Zea mays/chemistry , Flour/analysis , Microscopy, Electron, Scanning , Rheology , Spectroscopy, Fourier Transform Infrared , Viscosity , X-Ray DiffractionABSTRACT
Recently, several approaches have been reported to improve the dissolution rate and bioavailability of furosemide, a class IV drug. However, to the best of our knowledge, none of them proposed nanocrystals. In the last decade, nanocrystals successfully addressed solubility issues by increasing surface area and saturation solubility, both leading to an increase in the dissolution rate of poor water soluble drugs. The preparation of furosemide nanocrystals was by a rotation revolution mixer method. Size distribution and morphology were performed using laser diffraction and scanning electron microscopy, respectively. In addition, differential scanning calorimetry, thermogravimetry, X-ray powder diffraction (XRD) and low frequency shift-Raman spectroscopy allowed investigating the thermal properties and crystalline state. Solubility saturation and intrinsic dissolution rate (IDR) studies were conducted. The thermal analysis revealed lower melting range for the nanocrystals comparing to furosemide. Moreover, a slight crystalline structure change to the amorphous state was observed by XRD and confirmed by low frequency shift Raman. The particle size was reduced to 231 nm with a polydispersity index of 0.232, a 30-fold reduction from the original powder. Finally, the saturation solubility and IDR showed a significant increase. Furosemide nanocrystals showed potential for development of innovative formulations as an alternative to the commercial products.
Subject(s)
Furosemide/chemistry , Nanoparticles/chemistry , Calorimetry, Differential Scanning/methods , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Microscopy, Electron, Scanning/methods , Particle Size , Rotation , Solubility , Spectroscopy, Fourier Transform Infrared/methods , Water/chemistry , X-Ray Diffraction/methodsABSTRACT
Segundo a Organização Mundial de Saúde, a hipertensão arterial é responsável por uma crise global de saúde pública, sendo as doenças cardiovasculares implicadas em aproximadamente 17 milhões de mortes/ano, das quais, 9,4 milhões ocasionadas por complicações provocadas pela hipertensão, como edema pulmonar. Quanto ao arsenal terapêutico disponível, a furosemida, potente diurético de alça, é amplamente utilizada em situações de controle e emergência relacionadas à hipertensão e ao edema pulmonar cardiogênico. Apesar do elevado índice de sua prescrição, esse fármaco pertence à classe IV do Sistema de Classificação Biofarmacêutica (SCB), apresentando absorções intestinais erráticas e variáveis. Tais características representam desafio para o desenvolvimento de formas farmacêuticas orais. Assim, adoção de tecnologias inovadoras associadas à via de administração pulmonar pode permitir abordagem terapêutica alternativa, com elevado potencial de aplicação. Entre as tecnologias inovadoras, a obtenção de nanocristais de fármacos classes II e IV tem sido promissora. Nanocristais podem exibir desempenho in vivo superior quando comparados aos seus homólogos, na forma micronizada. Portanto, estratégias que permitam o desenvolvimento de medicamentos contendo furosemida, com maior eficácia e segurança, são de fundamental importância. Nesse sentido, a aplicação de tecnologia in silico, com propriedade preditiva, contribui para a racionalização de ensaios na pesquisa e no desenvolvimento de novas formas farmacêuticas. Objetivou-se, desse modo, a preparação e a caracterização físico-química de nanocristais de furosemida e sua avaliação in silico na absorção oral e pulmonar empregando ferramenta computacional. Os nanocristais foram obtidos por moagem à alta energia, utilizando movimentos simultâneos de revolução/rotação. A determinação da distribuição do tamanho e a morfologia foram realizadas por difração de raios laser e microscopia eletrônica de varredura, respectivamente. As possíveis interações e/ou alterações do estado cristalino do fármaco foram investigadas por calorimetria exploratória diferencial, termogravimetria diferencial, difração de raio X e espectroscopia Raman de baixo deslocamento. Quanto à solubilidade do nanocristal, foram realizados ensaios para a determinação do aumento na solubilidade de equilíbrio e da velocidade dissolução, utilizando os métodos shake flask e velocidade de dissolução intrínseca (VDI), respectivamente. A moagem à alta energia permitiu a obtenção de nanocristais com tamanho médio trinta vezes menor (231nm) do que o tamanho inicial, na escala micrométrica (7,1 µm). Os nanocristais apresentaram estabilidade térmica. Não foram observadas interações entre os excipientes e os nanocristais, que, entretanto, exibiram estrutura cristalina menos definida, o que indica parcial amorfização do nanocristal. A solubilidade de saturação dos nanocristais aumentou aproximadamente três vezes; como consequência, houve aumento na VDI em 2,2 vezes, 1,8 vezes e 3,8 vezes, quando comparado à VDI da furosemida micronizada em meio SGF, tampão 4,5 e SIF, respectivamente. Quanto às avaliações in silico dos nanocristais, sua absorção oral revelou moderada alteração no perfil farmacocinético. Quando foi utilizada a via de administração pulmonar, os nanocristais apresentaram maior desempenho quando comparada a via de administração oral; destacando-se o aumento na Fa% e na Cmáx e a acentuada diminuição no Tmáx. Em conclusão, a plataforma tecnológica obtida tem potencial aplicação no desenvolvimento de formas farmacêuticas inovadoras para administração pulmonar de furosemida
According to the World Health Organization, hypertension is responsible for global public health crisis, being the cardiovascular diseases involved in approximately 17 million deaths a year, of these, 9.4 million occasioned by hypertension complications such as pulmonary edema. Regarding therapeutic arsenal available, Furosemide is a potent loop diuretic widely used in control and emergency situations related to hypertension and cardiogenic pulmonary edema. Despite the high level of prescribing, this drug belongs a class IV drug, according to Biopharmaceutics Classification System (BCS), exposing erratic and variable intestinal absorption. These characteristics represent a challenge for the development of oral dosage forms. Thus, adoption of innovative technologies associated with pulmonary route of administration may allow an alternative therapeutic approach, with high potential for application. Among the new technologies, those for obtaining nanocrystals of classes II and IV drugs have been a promising approach. Nanocrystals can exhibit in vivo higher performance when compared to their counterparts in micronized form. Therefore, strategies to develop medicines containing Furosemide, with greater efficacy and safety, are of critical importance. In this sense, the application of technology in silico, with predictive property, contributes to the rationalization of testing in research and development of new dosage forms. The objectives, as a result, were the preparation and the physicochemical characterization of Furosemide nanocrystals, and it's in silico evaluation on oral and pulmonary absorption using a computational tool. The nanocrystals were obtained using a high-energy milling technology under simultaneous revolution/rotation motion. The determination of the size distribution and morphology was performed using laser diffraction and scanning electron microscopy, respectively. Furthermore, differential scanning calorimetry, differential thermogravimetry, X-ray diffraction and Low Shift Raman spectroscopy were performed to investigate possible interactions and changes in the crystalline state of the nanocrystals. To measure the increase in the equilibrium solubility and dissolution rate, the shake flask and intrinsic dissolution rate (IDR) methods were used respectively. The nanocrystals size appeared thirty times lower (231 nm) compared to the initial size (7,1 µm). The nanocrystals were stable with concern to its thermal characteristic not showing interactions between the excipients and the nanocrystals; however, they exhibited less defined crystal structure, indicating partial amorphization. The nanocrystals saturation solubility increased approximately three times. Consequently, 2.2, 1.8 and 3.8 folds increase were observed in IDR when compared to the Furosemide raw material in SGF, buffer 4.5 and SIF, respectively. The in silico nanocrystal studies revealed moderate changes in its oral absorption and pharmacokinetic profile. When the pulmonary route of administration was used, the nanocrystals showed higher performance compared to oral route administration; highlighting the increase in Fa % and Cmax and a significant decrease in Tmax. In conclusion, the technology platform obtained has potential application in the development of innovative dosage forms for Furosemide pulmonary delivery