Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
J Biomed Res ; : 1-13, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38807379

ABSTRACT

Macrophages mediated inflammatory response is crucial for the recovery of skeletal muscle following ischemia. Thus, it's necessary to exploit macrophages based therapeutic targets for ischemic disease. Here, we found mRNA level of SR-A1 was elevated in patients with critical limb ischemia by analysis of gene expression omnibus (GEO) database. Then we investigated the role and the underlined mechanisms of macrophage SR-A1 in a mouse HLI model. Compared with the SR-A1 fl/fl mice, the Lyz Cre/+/SR-A1 flox/flox (SR-A1 ΔMΦ) mice showed significantly lower laser doppler blood flow in the ischemic limb at day 7 after HLI. Consistently, histological analysis exhibited that ischemic limb of SR-A1 ΔMΦ mice displayed more sever and sustained necrotic morphology, inflammation and fibrosis, decreased vessel density and regeneration rate, compared with which of control SR-A1 fl/fl mice. Furthermore, restoration of wild-type myeloid cells to SR-A1 knock-out mice effectively relieved the doppler perfusion in the ischemic limb and restrained skeletal muscle damage 7 days post HLI. In line with in vivo findings, when co-cultivating macrophages with the mouse myoblast line C2C12, SR-A1 -/- bone marrow macrophage significantly inhibited myoblast differentiation in vitro. Mechanically, SR-A1 enhanced skeletal muscle regeneration response to HLI by inhibiting the oncostatin M (OSM) production via suppressed NF-κB signaling activation. These results indicates that SR-A1 is a promising candidate molecule to improve tissue repair and regeneration in peripheral ischemic arterial disease.

2.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585832

ABSTRACT

Background: The translation of promising therapies from pre-clinical models of hindlimb ischemia (HLI) to patients with peripheral artery disease (PAD) has been inadequate. While this failure is multifactorial, primary outcome measures in preclinical HLI models and clinical trials involving patients with PAD are not aligned well. For example, laser Doppler perfusion recovery measured under resting conditions is the most used outcome in HLI studies, whereas clinical trials involving patients with PAD primarily assess walking performance. Here, we sought to develop a 6-min limb function test for preclinical HLI models that assess muscular performance and hemodynamics congruently. Methods: We developed an in situ 6-min limb function test that involves repeated isotonic (shortening) contractions performed against a submaximal load. Continuous measurement of muscle blood flow was performed using laser Doppler flowmetry. Quantification of muscle power, work, and perfusion are obtained across the test. To assess the efficacy of this test, we performed HLI via femoral artery ligation on several mouse strains: C57BL6J, BALBc/J, and MCK-PGC1α (muscle-specific overexpression of PGC1α). Additional experiments were performed using an exercise intervention (voluntary wheel running) following HLI. Results: The 6-min limb function test was successful at detecting differences in limb function of C57BL6/J and BALBc/J mice subjected to HLI with effect sizes superior to laser Doppler perfusion recovery. C57BL6/J mice randomized to exercise therapy following HLI had smaller decline in muscle power, greater hyperemia, and performed more work across the 6-min limb function test compared to non-exercise controls with HLI. Mice with muscle-specific overexpression of PGC1α had no differences in perfusion recovery in resting conditions, but exhibited greater capillary density, increased muscle mass and absolute force levels, and performed more work across the 6-min limb function test compared to their wildtype littermates without the transgene. Conclusion: These results demonstrate the efficacy of the 6-min limb function test to detect differences in the response to HLI across several interventions including where traditional perfusion recovery, capillary density, and muscle strength measures were unable to detect therapeutic differences.

3.
Stem Cell Res Ther ; 15(1): 27, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38303049

ABSTRACT

BACKGROUND: Adipose-derived stromal cells (ADSCs) demonstrate ability to promote tissue healing and down-regulate excessive inflammation. ADSCs have been used to treat critical limb ischemia in preclinical and clinical trials, but still, there is little known about their optimal delivery strategy. To date, no direct analysis of different methods of ADSCs delivery has been performed in the hindlimb ischemia model. Therefore, in this study we focused on the therapeutic efficacy of different ADSCs delivery methods in a murine model of hindlimb ischemia. METHODS: For the hADSCs isolation, we used the subcutaneous adipose tissue collected during the surgery. The murine hindlimb ischemia was used as a model. The unilateral femoral artery ligation was performed on 10-12-week-old male C57BL/6. ADSCs were delivered directly into ischemic muscle, into the contralateral muscle or intravenously. 7 and 14 days after the surgery, the gastrocnemius and quadriceps muscles were collected for the immunohistochemical analysis. The results were analyzed with relevant tests using the Statistica software. RESULTS: Our research revealed that muscle regeneration, angiogenesis, arteriogenesis and macrophage infiltration in murine model of hindlimb ischemia differ depending on ADSCs delivery method. We have demonstrated that intramuscular method (directly into ischemic limb) of ADSCs delivery is more efficient in functional recovery after critical limb ischemia than intravenous or contralateral route. CONCLUSIONS: We have noticed that injection of ADSCs directly into ischemic limb is the optimal delivery strategy because it increases: (1) muscle fiber regeneration, (2) the number of capillaries and (3) the influx of macrophages F4/80+/CD206+.


Subject(s)
Adipose Tissue , Chronic Limb-Threatening Ischemia , Mice , Male , Humans , Animals , Disease Models, Animal , Neovascularization, Physiologic , Hindlimb/blood supply , Muscle, Skeletal , Ischemia/therapy , Stromal Cells
4.
J Cardiovasc Transl Res ; 17(4): 828-841, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38376701

ABSTRACT

Critical limb ischemia (CLI) is a state of severe peripheral artery disease, with no effective treatment. Cell therapy has been investigated as a therapeutic tool for CLI, and pericytes are promising therapeutic candidates based on their angiogenic properties. We firstly generated highly proliferative and immunosuppressive pericyte-like cells from embryonic stem (ES) cells. In order to enhance the angiogenic potential, we transduced the basic fibroblast growth factor (bFGF) gene into the pericyte-like cells and found a significant enhancement of angiogenesis in a Matrigel plug assay. Furthermore, we evaluated the bFGF-expressing pericyte-like cells in the previously established chronic hindlimb ischemia model in which bone marrow-derived MSCs were not effective. As a result, bFGF-expressing pericyte-like cells significantly improved blood flow in both laser Doppler perfusion imaging (LDPI) and dynamic contrast-enhanced MRI (DCE-MRI). These findings suggest that bFGF-expressing pericyte-like cells differentiated from ES cells may be a therapeutic candidate for CLI.


Subject(s)
Cell Differentiation , Disease Models, Animal , Fibroblast Growth Factor 2 , Hindlimb , Human Embryonic Stem Cells , Ischemia , Neovascularization, Physiologic , Pericytes , Animals , Fibroblast Growth Factor 2/metabolism , Fibroblast Growth Factor 2/genetics , Hindlimb/blood supply , Pericytes/metabolism , Pericytes/transplantation , Ischemia/physiopathology , Ischemia/metabolism , Ischemia/therapy , Ischemia/genetics , Humans , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/transplantation , Regional Blood Flow , Recovery of Function , Cell Proliferation , Laser-Doppler Flowmetry , Severity of Illness Index , Cells, Cultured , Chronic Disease , Time Factors , Transfection , Male , Mice , Stem Cell Transplantation , Magnetic Resonance Imaging
5.
ACS Appl Bio Mater ; 7(2): 1081-1094, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38294873

ABSTRACT

Hindlimb ischemia is a common disease worldwide featured by the sudden decrease in limb perfusion, which usually causes a potential threat to limb viability and even amputation or death. Revascularization has been defined as the gold-standard therapy for hindlimb ischemia. Considering that vascular injury recovery requires cellular adaptation to the hypoxia, hypoxia-inducible factor 1 α (HIF-1α) is a potential gene for tissue restoration and angiogenesis. In this manuscript, effective gene delivery vector PEI-ß-CD (PC) was reported for the first application in the hindlimb ischemia treatment to deliver HIF-1α plasmid in vitro and in vivo. Our in vitro finding demonstrated that PC/HIF-1α-pDNA could be successfully entered into the cells and mediated efficient gene transfection with good biocompatibility. More importantly, under hypoxic conditions, PC/HIF-1α-pDNA could up-regulate the HUEVC cell viability. In addition, the mRNA levels of VEGF, Ang-1, and PDGF were upregulated, and transcriptome results also demonstrated that the cell-related function of response to hypoxia was enhanced. The therapeutic effect of PC/HIF-1α-pDNA was further estimated in a murine acute hindlimb ischemia model, which demonstrated that intramuscular injection of PC/HIF-1α-pDNA resulted in significantly increased blood perfusion and alleviation in tissue damage, such as tissue fibrosis and inflammation. The results provide a rationale that HIF-1α-mediated gene therapy might be a practical strategy for the treatment of limb ischemia.


Subject(s)
Neovascularization, Physiologic , Polyethyleneimine , Mice , Animals , Neovascularization, Physiologic/genetics , Muscle, Skeletal , Hindlimb/blood supply , Ischemia/therapy , Ischemia/drug therapy , Genetic Therapy/methods , Hypoxia/therapy
6.
J Biomed Mater Res A ; 112(4): 549-561, 2024 04.
Article in English | MEDLINE | ID: mdl-37326361

ABSTRACT

There is a significant clinical need to develop effective vascularization strategies for tissue engineering and the treatment of ischemic pathologies. In patients afflicted with critical limb ischemia, comorbidities may limit common revascularization strategies. Cell-encapsulating modular microbeads possess a variety of advantageous properties, including the ability to support prevascularization in vitro while retaining the ability to be injected in a minimally invasive manner in vivo. Here, fibrin microbeads containing human umbilical vein endothelial cells (HUVEC) and bone marrow-derived mesenchymal stromal cells (MSC) were cultured in suspension for 3 days (D3 PC microbeads) before being implanted within intramuscular pockets in a SCID mouse model of hindlimb ischemia. By 14 days post-surgery, animals treated with D3 PC microbeads showed increased macroscopic reperfusion of ischemic foot pads and improved limb salvage compared to the cellular controls. Delivery of HUVEC and MSC via microbeads led to the formation of extensive microvascular networks throughout the implants. Engineered vessels of human origins showed evidence of inosculation with host vasculature, as indicated by erythrocytes present in hCD31+ vessels. Over time, the total number of human-derived vessels within the implant region decreased as networks remodeled and an increase in mature, pericyte-supported vascular structures was observed. Our findings highlight the potential therapeutic benefit of developing modular, prevascularized microbeads as a minimally invasive therapeutic for treating ischemic tissues.


Subject(s)
Fibrin , Neovascularization, Physiologic , Animals , Mice , Humans , Cells, Cultured , Fibrin/pharmacology , Fibrin/chemistry , Microspheres , Mice, SCID , Human Umbilical Vein Endothelial Cells , Tissue Engineering , Neovascularization, Pathologic , Ischemia/therapy
7.
Biol Chem ; 405(2): 119-128, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-36869860

ABSTRACT

Salvia miltiorrhiza (Salvia miltiorrhiza) root, as a traditional herb, is widely applied to pharmacotherapy for vascular system disease. In this study, we elucidate the therapy mechanism of Salvia miltiorrhiza by using a model of hindlimb ischemia. Blood perfusion measurement showed that intravenous administration of the Water Extract of Salvia miltiorrhiza (WES) could facilitate damaged hindlimb blood flow recovery and blood vessel regeneration. In vitro mRNA screen assay in cultured human umbilical vein endothelial cells (HUVECs) show that WES induced increased NOS3, VEGFA, and PLAU mRNA levels. Endothelial NOS (eNOS) promotor reporter analysis revealed that WES and the major ingredients danshensu (DSS) could enhance eNOS promoter activity. Additionally, we found that WES and its ingredients, including DSS, protocatechuic aldehyde (PAI), and salvianolic acid A (SaA), promoted HUVECs growth by the endothelial cell viability assays. A mechanistic approach confirmed that WES augments HUVECs proliferation through the activation of extracellular signal-regulated kinase (ERK) signal pathway. This study reveals that WES promotes ischemic remodeling and angiogenesis through its multiple principal ingredients, which target and regulate multiple sites of the network of the blood vessel endothelial cell regenerating process.


Subject(s)
Salvia miltiorrhiza , Animals , Humans , Ischemia/drug therapy , Human Umbilical Vein Endothelial Cells , Hindlimb , RNA, Messenger
8.
Methodist Debakey Cardiovasc J ; 19(5): 47-57, 2023.
Article in English | MEDLINE | ID: mdl-38028966

ABSTRACT

Peripheral arterial disease (PAD) represents a global health concern with a rising prevalence attributed to factors such as obesity, diabetes, aging, and smoking. Among patients with PAD, chronic limb-threatening ischemia (CLTI) is the most severe manifestation, associated with substantial morbidity and mortality. While revascularization remains the primary therapy for CLTI, not all patients are candidates for such interventions, highlighting the need for alternative approaches. Impaired angiogenesis, the growth of new blood vessels, is a central feature of PAD, and despite decades of research, effective clinical treatments remain elusive. Epigenetics, the study of heritable changes in gene expression, has gained prominence in understanding PAD pathogenesis. Here, we explore the role of epigenetic regulation in angiogenesis within the context of PAD, with a focus on long non-coding RNAs and fibroblast-endothelial cell transdifferentiation. Additionally, we discuss the interplay between metabolic control and epigenetic regulation, providing insights into potential novel therapeutic avenues for improving PAD treatments. This review aims to offer a concise update on the application of epigenetics in angiogenesis and PAD research, inspiring further investigations in this promising field.


Subject(s)
Epigenesis, Genetic , Peripheral Arterial Disease , Humans , Peripheral Arterial Disease/genetics , Ischemia/genetics
9.
Genome Med ; 15(1): 95, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37950327

ABSTRACT

BACKGROUND: Chronic limb-threatening ischemia (CLTI), a severe manifestation of peripheral arterial disease (PAD), is associated with a 1-year limb amputation rate of approximately 15-20% and substantial mortality. A key feature of CLTI is the compromised regenerative ability of skeletal muscle; however, the mechanisms responsible for this impairment are not yet fully understood. In this study, we aim to delineate pathological changes at both the cellular and transcriptomic levels, as well as in cell-cell signaling pathways, associated with compromised muscle regeneration in limb ischemia in both human tissue samples and murine models of CLTI. METHODS: We performed single-cell transcriptome analysis of ischemic and non-ischemic muscle from the same CLTI patients and from a murine model of CLTI. In both datasets, we analyzed gene expression changes in macrophage and muscle satellite cell (MuSC) populations as well as differential cell-cell signaling interactions and differentiation trajectories. RESULTS: Single-cell transcriptomic profiling and immunofluorescence analysis of CLTI patient skeletal muscle demonstrated that ischemic-damaged tissue displays a pro-inflammatory macrophage signature. Comparable results were observed in a murine CLTI model. Moreover, integrated analyses of both human and murine datasets revealed premature differentiation of MuSCs to be a key feature of failed muscle regeneration in the ischemic limb. Furthermore, in silico inferences of intercellular communication and in vitro assays highlight the importance of macrophage-MuSC signaling in ischemia induced muscle injuries. CONCLUSIONS: Collectively, our research provides the first single-cell transcriptome atlases of skeletal muscle from CLTI patients and a murine CLTI model, emphasizing the crucial role of macrophages and inflammation in regulating muscle regeneration in CLTI through interactions with MuSCs.


Subject(s)
Satellite Cells, Skeletal Muscle , Humans , Animals , Mice , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/pathology , Muscle, Skeletal/metabolism , Ischemia/metabolism , Ischemia/pathology , Cell Differentiation , Regeneration , Macrophages/metabolism , Risk Factors , Treatment Outcome , Retrospective Studies
10.
Biomed Pharmacother ; 168: 115634, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37879211

ABSTRACT

Peripheral arterial disease (PAD) has been historically neglected, which has resulted in a lack of effective drugs in clinical practice. However, with the increasing prevalence of diseases like atherosclerosis and diabetes, the incidence of PAD is rising and cannot be ignored. Researchers are exploring the potential of promoting angiogenesis through exogenous compounds to improve PAD. This paper focuses on the therapeutic effect of natural products (Salidroside, Astragaloside IV, etc.) and synthetic compounds (Cilostazol, Dapagliflozin, etc.). Specifically, it examines how they can promote autocrine secretion of vascular endothelial cells, enhance cell paracrine interactions, and regulate endothelial progenitor cell function. The activation of these effects may be closely related to PI3K, AMPK, and other pathways. Overall, these exogenous compounds have promising therapeutic potential for PAD. This study aims to summarize the potential active compounds, provide a variety of options for the search for drugs for the treatment of PAD, and bring light to the treatment of patients.


Subject(s)
Biological Products , Diabetes Mellitus , Peripheral Arterial Disease , Humans , Endothelial Cells , Biological Products/pharmacology , Diabetes Mellitus/drug therapy , Peripheral Arterial Disease/drug therapy
11.
Exp Cell Res ; 430(2): 113720, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37479052

ABSTRACT

BACKGROUND: Hyperglycemia-induced vascular endothelial cell dysfunction is a major factor contributing to diabetic lower extremity ischemia. We intend to investigate the role of Dusp2 in hyperglycemia-induced vascular endothelial cell dysfunction and related mechanisms. METHODS: The human umbilical vein endothelial cells (HUVECs) were treated with high glucose (HG) as the cell model. Streptozotocin injection was performed to induce diabetes and femoral artery ligation was to induce hind limb ischemia in mice. The levels of Dusp2, p-p38 MAPK, E2F4, and p38 MAPK were evaluated by Western blot or quantitative real-time PCR. The laser Doppler perfusion imaging was conducted to measure blood flow recovery. The cell counting kit-8, transwell, and tube formation assay were performed to evaluate cell proliferation, migration, and angiogenesis, respectively. CD31 immunohistochemical staining was carried out to detect the capillary density of gastrocnemius. The dual-luciferase reporter gene assay and Chromatin immunoprecipitation assay were executed to explore the interaction between E2F4 and Dusp2. RESULTS: Dusp2 was highly expressed in HG-induced HUVECs and diabetic lower extremity ischemia model mice. Interference with Dusp2 promoted cell proliferation, migration, and angiogenesis, as well as alleviated mouse diabetic hindlimb ischemia. Dusp2 knockdown up-regulated p-p38 MAPK levels. We verified the binding between E2F4 and Dusp2. Overexpressing E2F4 suppressed Dusp2 levels and promoted cell proliferation, migration, and angiogenesis, co-overexpression of Dusp2 reversed the results. CONCLUSIONS: Overexpressing E2F4 promotes endothelial cell proliferation, migration, and angiogenesis by inhibiting Dusp2 expression and activating p38 MAPK to alleviate vascular endothelial cell dysfunction under HG stimulation.


Subject(s)
Hyperglycemia , p38 Mitogen-Activated Protein Kinases , Animals , Humans , Mice , Cells, Cultured , Glucose/pharmacology , Glucose/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Hyperglycemia/metabolism , Ischemia/genetics , Neovascularization, Physiologic , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
12.
Stem Cell Rev Rep ; 19(7): 2341-2360, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37392292

ABSTRACT

Peripheral artery disease (PAD) is a common vascular disorder in the extremity of limbs with limited clinical treatments. Stem cells hold great promise for the treatment of PAD, but their therapeutic efficiency is limited due to multiple factors, such as poor engraftment and non-optimal selection of cell type. To date, stem cells from a variety of tissue sources have been tested, but little information is available regarding vascular smooth muscle cells (VSMCs) for PAD therapy. The present study examines the effects of keratose (KOS) hydrogels on c-kit+/CD31- cardiac vascular smooth muscle progenitor cell (cVSMPC) differentiation and the therapeutic potential of the resultant VSMCs in a mouse hindlimb ischemic model of PAD. The results demonstrated that KOS but not collagen hydrogel was able to drive the majority of cVSMPCs into functional VSMCs in a defined Knockout serum replacement (SR) medium in the absence of differentiation inducers. This effect could be inhibited by TGF-ß1 antagonists. Further, KOS hydrogel increased expression of TGF-ß1-associated proteins and modulated the level of free TGF-ß1 during differentiation. Finally, transplantation of KOS-driven VSMCs significantly increased blood flow and vascular densities of ischemic hindlimbs. These findings indicate that TGF-ß1 signaling is involved in KOS hydrogel-preferred VSMC differentiation and that enhanced blood flow are likely resulted from angiogenesis and/or arteriogenesis induced by transplanted VSMCs.

13.
J Nanobiotechnology ; 21(1): 189, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37308908

ABSTRACT

INTRODUCTION: Ischemic diseases caused by diabetes continue to pose a major health challenge and effective treatments are in high demand. Mesenchymal stem cells (MSCs) derived exosomes have aroused broad attention as a cell-free treatment for ischemic diseases. However, the efficacy of exosomes from adipose-derived mesenchymal stem cells (ADSC-Exos) in treating diabetic lower limb ischemic injury remains unclear. METHODS: Exosomes were isolated from ADSCs culture supernatants by differential ultracentrifugation and their effect on C2C12 cells and HUVECs was assessed by EdU, Transwell, and in vitro tube formation assays separately. The recovery of limb function after ADSC-Exos treatment was evaluated by Laser-Doppler perfusion imaging, limb function score, and histological analysis. Subsequently, miRNA sequencing and rescue experiments were performed to figure out the responsible miRNA for the protective role of ADSC-Exos on diabetic hindlimb ischemic injury. Finally, the direct target of miRNA in C2C12 cells was confirmed by bioinformatic analysis and dual-luciferase report gene assay. RESULTS: ADSC-Exos have the potential to promote proliferation and migration of C2C12 cells and to promote HUVECs angiogenesis. In vivo experiments have shown that ADSC-Exos can protect ischemic skeletal muscle, promote the repair of muscle injury, and accelerate vascular regeneration. Combined with bioinformatics analysis, miR-125b-5p may be a key molecule in this process. Transfer of miR-125b-5p into C2C12 cells was able to promote cell proliferation and migration by suppressing ACER2 overexpression. CONCLUSION: The findings revealed that miR-125b-5p derived from ADSC-Exos may play a critical role in ischemic muscle reparation by targeting ACER2. In conclusion, our study may provide new insights into the potential of ADSC-Exos as a treatment option for diabetic lower limb ischemia.


Subject(s)
Diabetes Mellitus , Mesenchymal Stem Cells , Animals , Alkaline Ceramidase , Ischemia , Hindlimb
14.
Biomater Res ; 27(1): 51, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37208764

ABSTRACT

BACKGROUND: Recently, various studies have revealed that 3D cell spheroids have several advantages over 2D cells in stem cell culture. However, conventional 3D spheroid culture methods have some disadvantages and limitations such as time required for spheroid formation and complexity of the experimental process. Here, we used acoustic levitation as cell culture platform to overcome the limitation of conventional 3D culture methods. METHODS: In our anti-gravity bioreactor, continuous standing sonic waves created pressure field for 3D culture of human mesenchymal stem cells (hMSCs). hMSCs were trapped and aggerated in pressure field and consequently formed spheroids. The structure, viability, gene and protein expression of spheroids formed in the anti-gravity bioreactor were analyzed by electron microscope, immunostaining, polymerase chain reaction, and western blot. We injected hMSC spheroids fabricated by anti-gravity bioreactor into the mouse hindlimb ischemia model. Limb salvage was quantified to evaluate therapeutic efficacy of hMSC spheroids. RESULTS: The acoustic levitation in anti-gravity bioreactor made spheroids faster and more compact compared to the conventional hanging drop method, which resulted in the upregulation of angiogenic paracrine factors of hMSCs, such as vascular endothelial growth factor and angiopoietin 2. Injected hMSCs spheroids cultured in the anti-gravity bioreactor exhibited improved therapeutic efficacy, including the degree of limb salvage, capillary formation, and attenuation of fibrosis and inflammation, for mouse hindlimb ischemia model compared to spheroids formed by the conventional hanging drop method. CONCLUSION: Our stem cell culture system using acoustic levitation will be proposed as a new platform for the future 3D cell culture system.

15.
Arterioscler Thromb Vasc Biol ; 43(7): 1262-1277, 2023 07.
Article in English | MEDLINE | ID: mdl-37051932

ABSTRACT

BACKGROUND: Peripheral vascular disease remains a leading cause of vascular morbidity and mortality worldwide despite advances in medical and surgical therapy. Besides traditional approaches, which can only restore blood flow to native arteries, an alternative approach is to enhance the growth of new vessels, thereby facilitating the physiological response to ischemia. METHODS: The ActinCreER/R26VT2/GK3 Rainbow reporter mouse was used for unbiased in vivo survey of injury-responsive vasculogenic clonal formation. Prospective isolation and transplantation were used to determine vessel-forming capacity of different populations. Single-cell RNA-sequencing was used to characterize distinct vessel-forming populations and their interactions. RESULTS: Two populations of distinct vascular stem/progenitor cells (VSPCs) were identified from adipose-derived mesenchymal stromal cells: VSPC1 is CD45-Ter119-Tie2+PDGFRa-CD31+CD105highSca1low, which gives rise to stunted vessels (incomplete tubular structures) in a transplant setting, and VSPC2 which is CD45-Ter119-Tie2+PDGFRa+CD31-CD105lowSca1high and forms stunted vessels and fat. Interestingly, cotransplantation of VSPC1 and VSPC2 is required to form functional vessels that improve perfusion in the mouse hindlimb ischemia model. Similarly, VSPC1 and VSPC2 populations isolated from human adipose tissue could rescue the ischemic condition in mice. CONCLUSIONS: These findings suggest that autologous cotransplantation of synergistic VSPCs from nonessential adipose tissue can promote neovascularization and represents a promising treatment for ischemic disease.


Subject(s)
Mesenchymal Stem Cells , Neovascularization, Physiologic , Mice , Humans , Animals , Neovascularization, Physiologic/physiology , Adipose Tissue , Neovascularization, Pathologic , Ischemia/therapy , Disease Models, Animal , Hindlimb/blood supply
16.
Adv Healthc Mater ; 12(25): e2300476, 2023 10.
Article in English | MEDLINE | ID: mdl-37068221

ABSTRACT

As the potential of pluripotent stem cell-derived differentiated cells has been demonstrated in regenerative medicine, differentiated vascular endothelial cells (ECs) are emerging as a therapeutic agent for the cardiovascular system. To verify the therapeutic efficacy of differentiated ECs in an ischemic model, human embryonic stem cells (hESCs) are induced as EC lineage and produce high-purity ECs through fluorescence-activated cell sorting (FACS). When hESC-ECs are transplanted into a hindlimb ischemic model, it is confirmed that blood flow and muscle regeneration are further improved by creating new blood vessels together with autologous ECs than the primary cell as cord blood endothelial progenitor cells (CB-EPCs). In addition, previously reported studies show the detection of transplanted cells engrafted in blood vessels through various tracking methods, but fail to provide accurate quantitative values over time. In this study, it is demonstrated that hESC-ECs are engrafted approximately sevenfold more than CB-EPCs by using an accelerator mass spectrometry (AMS)-based cell tracking technology that can perform quantification at the single cell level. An accurate quantification index is suggested. It has never been reported in in vivo kinetics of hESC-ECs that can act as therapeutic agents.


Subject(s)
Endothelial Cells , Human Embryonic Stem Cells , Animals , Humans , Embryonic Stem Cells , Ischemia/therapy , Cell Differentiation , Neovascularization, Physiologic/physiology
17.
Ultrasound Med Biol ; 49(6): 1465-1475, 2023 06.
Article in English | MEDLINE | ID: mdl-36967332

ABSTRACT

OBJECTIVE: The aim of this work was to evaluate the reliability of power Doppler ultrasound (PD-US) measurements made without contrast enhancement to monitor temporal changes in peripheral blood perfusion. METHODS: On the basis of pre-clinical rodent studies, we found that combinations of spatial registration and clutter filtering techniques applied to PD-US signals reproducibly tracked blood perfusion in skeletal muscle. Perfusion is monitored while modulating hindlimb blood flow. First, in invasive studies, PD-US measurements in deep muscle with laser speckle contrast imaging (LSCI) of superficial tissues made before, during and after short-term arterial clamping were compared. Then, in non-invasive studies, a pressure cuff was employed to generate longer-duration hindlimb ischemia. Here, B-mode imaging was also applied to measure flow-mediated dilation of the femoral artery while, simultaneously, PD-US was used to monitor downstream muscle perfusion to quantify reactive hyperemia. Measurements in adult male and female mice and rats, some with exercise conditioning, were included to explore biological variables. RESULTS: PD-US methods are validated through comparisons with LSCI measurements. As expected, no significant differences were found between sexes or fitness levels in flow-mediated dilation or reactive hyperemia estimates, although post-ischemic perfusion was enhanced with exercise conditioning, suggesting there could be differences between the hyperemic responses of conduit and resistive vessels. CONCLUSION: Overall, we found non-contrast PD-US imaging can reliably monitor relative spatiotemporal changes in muscle perfusion. This study supports the development of PD-US methods for monitoring perfusion changes in patients at risk for peripheral artery disease.


Subject(s)
Hyperemia , Male , Female , Rats , Mice , Animals , Rodentia , Reproducibility of Results , Blood Flow Velocity , Muscle, Skeletal , Ischemia/diagnostic imaging , Ultrasonography, Doppler , Femoral Artery/diagnostic imaging , Dilatation, Pathologic , Perfusion , Regional Blood Flow
18.
Adv Exp Med Biol ; 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36991295

ABSTRACT

INTRODUCTION: Recent studies have demonstrated that adipose tissue-derived stem cell (ADSC) transplantation could promote neoangiogenesis in various ischemic diseases. However, as whole cells, ADSCs have some disadvantages, such as shipping and storage issues, high costs, and controversies related to the fates of grafted cells in the recipients. Therefore, this study aimed to investigate the effects of intravenously infused exosomes purified from human ADSCs on ischemic disease in a murine hindlimb ischemia model. METHODS: ADSCs were cultured in exosome-free medium for 48 h before the conditioned medium was collected for exosome isolation by ultracentrifugation. The murine ischemic hindlimb models were created by cutting and burning the hindlimb arteries. Exosomes were intravenously infused into murine models (ADSC-Exo group), with phosphate-buffered saline (PBS) used as a placebo (PBS group). Treatment efficacy was determined using a murine mobility assay (frequency of pedaling in water per 10 s), peripheral blood oxygen saturation (SpO2 index), and the recovery of vascular circulation by trypan blue staining. The formation of blood vessels was shown by X-ray. Expression levels of genes related to angiogenesis and muscle tissue repair were quantified by quantitative reverse-transcription polymerase chain reaction. Finally, H&E staining was used to determine the histological structure of muscle in the treatment and placebo groups. RESULTS: The rates of acute limb ischemia in the PBS and ADSC-Exo injection groups were 66% (9/16 mice) and 43% (6/14 mice), respectively. The mobility of the limbs 28 days after surgery was significantly different between the ADSC-Exo treatment group (41 ± 1 times/10 s) and the PBS group (24 ± 1 times/10 s; n = 3; p < 0.05). Peripheral blood oxygen saturation 21 days after treatment was 83.83% ± 2.02% in the PBS group and 83% ± 1.73% in the ADSC-Exo treatment group, and the difference was not statistically significant (n = 3, p > 0.05). On day 7 after treatment, the time required to stain the toes after trypan blue injection was 20.67 ± 12.5 s and 85 ± 7.09 s in the ADSC-Exo and PBS groups, respectively (n = 3, p < 0.05). On day 3 after the operation, the expression of genes promoting angiogenesis and muscle remodeling, such as Flk1, Vwf, Ang1, Tgfb1, Myod, and Myf5, was increased 4-8 times in the ADSC-Exo group compared with the PBS group. No mice in either group died during the experimental period. CONCLUSIONS: These results revealed that intravenous infusion of human ADSC-derived exosomes is a safe and effective method to treat ischemic disease, especially hindlimb ischemia, by promoting angiogenesis and muscle regeneration.

19.
Angiogenesis ; 26(3): 385-407, 2023 08.
Article in English | MEDLINE | ID: mdl-36933174

ABSTRACT

The molecular mechanisms of angiogenesis have been intensely studied, but many genes that control endothelial behavior and fate still need to be described. Here, we characterize the role of Apold1 (Apolipoprotein L domain containing 1) in angiogenesis in vivo and in vitro. Single-cell analyses reveal that - across tissues - the expression of Apold1 is restricted to the vasculature and that Apold1 expression in endothelial cells (ECs) is highly sensitive to environmental factors. Using Apold1-/- mice, we find that Apold1 is dispensable for development and does not affect postnatal retinal angiogenesis nor alters the vascular network in adult brain and muscle. However, when exposed to ischemic conditions following photothrombotic stroke as well as femoral artery ligation, Apold1-/- mice display dramatic impairments in recovery and revascularization. We also find that human tumor endothelial cells express strikingly higher levels of Apold1 and that Apold1 deletion in mice stunts the growth of subcutaneous B16 melanoma tumors, which have smaller and poorly perfused vessels. Mechanistically, Apold1 is activated in ECs upon growth factor stimulation as well as in hypoxia, and Apold1 intrinsically controls EC proliferation but not migration. Our data demonstrate that Apold1 is a key regulator of angiogenesis in pathological settings, whereas it does not affect developmental angiogenesis, thus making it a promising candidate for clinical investigation.


Subject(s)
Endothelial Cells , Neovascularization, Physiologic , Animals , Humans , Mice , Endothelial Cells/metabolism , Hindlimb/blood supply , Hypoxia/metabolism , Ischemia/pathology , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Physiologic/genetics , Immediate-Early Proteins/metabolism
20.
J Am Heart Assoc ; 12(4): e026586, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36789853

ABSTRACT

Background Severe hindlimb ischemia is a chronic disease with poor prognosis that can lead to amputation or even death. This study aimed to assess the therapeutic effect of liraglutide on hind-limb ischemia in type 2 diabetic mice and to elucidate the underlying mechanism. Methods and Results Blood flow reperfusion and capillary densities after treatment with liraglutide or vehicle were evaluated in a mouse model of lower-limb ischemia in a normal background or a background of streptozotocin-induced diabetes. The proliferation, migration, and tube formation of human umbilical vein endothelial cells were analyzed in vitro upon treatment with liraglutide under normal-glucose and high-glucose conditions. Levels of phospho-Akt, phospho-endothelial nitric oxide synthase, and phospho-extracellular signal-related kinases 1 and 2 under different conditions in human umbilical vein endothelial cells and in ischemic muscle were determined by western blotting. Liraglutide significantly improved perfusion recovery and capillary density in both nondiabetic and diabetic mice. Liraglutide also promoted, in a concentration-dependent manner, the proliferation, migration, and tube formation of normal glucose- and high glucose-treated human umbilical vein endothelial cells, as well as the phosphorylation of Akt, endothelial nitric oxide synthase, and extracellular signal-related kinases 1 and 2 both in vitro and in vivo. The liraglutide antagonist exendin (9-39) reversed the promoting effects of liraglutide on human umbilical vein endothelial cell functions. Furthermore, exendin (9-39), LY294002, and PD98059 blocked the liraglutide-induced activation of Akt/endothelial nitric oxide synthase and extracellular signal-related kinases 1 and 2 signaling pathways. Conclusions These studies identified a novel role of liraglutide in modulating ischemia-induced angiogenesis, possibly through effects on endothelial cell function and activation of Akt/endothelial nitric oxide synthase and extracellular signal-related kinases 1 and 2 signaling, and suggested the glucagon-like peptide-1 receptor may be an important therapeutic target in diabetic hind-limb ischemia.


Subject(s)
Diabetes Mellitus, Experimental , Liraglutide , Mice , Humans , Animals , Liraglutide/pharmacology , Liraglutide/therapeutic use , Nitric Oxide Synthase Type III/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Neovascularization, Physiologic , Human Umbilical Vein Endothelial Cells/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Ischemia/metabolism , Glucose/metabolism , Hindlimb/blood supply
SELECTION OF CITATIONS
SEARCH DETAIL