Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.605
Filter
1.
Mol Nutr Food Res ; : e2400085, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39021302

ABSTRACT

SCOPE: This study aims to investigate the anticancer properties of α-ionone in squamous cell carcinoma (SCC). METHODS AND RESULTS: The expression of OR10A6 together with olfactory receptor signaling components is demonstrated in A431 human SCC cells via RT-PCR and qRT-PCR analysis. OR10A6 activation in A431 cells using the ligand α-ionone inhibits proliferation and migration but induces apoptosis which is confirmed by proliferation assay, colony formation, and western blotting. The mechanism involves the core proteins of the Hippo pathway, where the phosphorylation of large tumor suppressor kinase (LATS), yes-associated protein (YAP), and transcriptional coactivator with PDZ-binding motif (TAZ) is confirmed by western blotting. However, the anticancer effects of α-ionone are abrogated in A431 cells with OR10A6 gene knockdown. In A431 xenograft mouse model, the injection of α-ionone suppresses tumor growth, induces apoptosis, and increases phosphorylation of the LATS-YAP-TAZ signaling axis in the Hippo pathway. None of these effects are observed in xenografted tumors with OR10A6 gene knockdown. CONCLUSION: These findings collectively demonstrate that activation of ectopic OR OR10A6 by α-ionone in SCC cells stimulates the Hippo pathway and suppresses tumorigenesis both in vitro and in vivo, suggesting a novel therapeutic candidate for the treatment of SCC.

2.
Mater Today Bio ; 26: 101104, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38952539

ABSTRACT

Clinical treatment of diabetic refractory ulcers is impeded by chronic inflammation and cell dysfunction associated with wound healing. The significant clinical application of bFGF in wound healing is limited by its instability in vivo. Sulfur has been applied for the treatment of skin diseases in the clinic for antibiosis. We previously found that sulfur incorporation improves the ability of selenium nanoparticles to accelerate wound healing, yet the toxicity of selenium still poses a risk for its clinical application. To obtain materials with high pro-regeneration activity and low toxicity, we explored the mechanism by which selenium-sulfur nanoparticles aid in wound healing via RNA-Seq and designed a nanoparticle called Nano-S@bFGF, which was constructed from sulfur and bFGF. As expected, Nano-S@bFGF not only regenerated zebrafish tail fins and promoted skin wound healing but also promoted skin repair in diabetic mice with a profitable safety profile. Mechanistically, Nano-S@bFGF successfully coactivated the FGFR and Hippo signalling pathways to regulate wound healing. Briefly, the Nano-S@bFGF reported here provides an efficient and feasible method for the synthesis of bioactive nanosulfur and bFGF. In the long term, our results reinvigorated efforts to discover more peculiar unique biofunctions of sulfur and bFGF in a great variety of human diseases.

3.
Theranostics ; 14(9): 3653-3673, 2024.
Article in English | MEDLINE | ID: mdl-38948066

ABSTRACT

Rationale: Recent evidence highlights the pivotal role of mitochondrial dysfunction in mood disorders, but the mechanism involved remains unclear. We studied whether the Hippo/YAP/14-3-3η signaling pathway mediates mitochondrial abnormalities that result in the onset of major depressive disorder (MDD) in a mouse model. Methods: The ROC algorithm was used to identify a subpopulation of mice that were exposed to chronic unpredictable mild stress (CUMS) and exhibited the most prominent depressive phenotype (Dep). Electron microscopy, biochemical assays, quantitative PCR, and immunoblotting were used to evaluate synaptic and mitochondrial changes in the basolateral amygdala (BLA). RNA sequencing was used to explore changes in the Hippo pathway and downstream target genes. In vitro pharmacological inhibition and immunoprecipitation was used to confirm YAP/14-3-3η interaction and its role in neuronal mitochondrial dysfunction. We used virus-mediated gene overexpression and knockout in YAP transgenic mice to verify the regulatory effect of the Hippo/YAP/14-3-3η pathway on depressive-like behavior. Results: Transcriptomic data identified a large number of genes and signaling pathways that were specifically altered from the BLA of Dep mice. Dep mice showed notable synaptic impairment in BLA neurons, as well as mitochondrial damage characterized by abnormal mitochondrial morphology, compromised function, impaired biogenesis, and alterations in mitochondrial marker proteins. The Hippo signaling pathway was activated in Dep mice during CUMS, and the transcriptional regulatory activity of YAP was suppressed by phosphorylation of its Ser127 site. 14-3-3η was identified as an important co-regulatory factor of the Hippo/YAP pathway, as it can respond to chronic stress and regulate cytoplasmic retention of YAP. Importantly, the integrated Hippo/YAP/14-3-3η pathway mediated neuronal mitochondrial dysfunction and depressive behavior in Dep mice. Conclusion: The integrated Hippo/YAP/14-3-3η pathway in the BLA neuron is critical in mediating depressive-like behaviors in mice, suggesting a causal role for this pathway in susceptibility to chronic stress-induced depression. This pathway therefore may present a therapeutic target against mitochondrial dysfunction and synaptic impairment in MDD.


Subject(s)
Basolateral Nuclear Complex , Disease Models, Animal , Hippo Signaling Pathway , Mitochondria , Protein Serine-Threonine Kinases , Signal Transduction , YAP-Signaling Proteins , Animals , Mice , Mitochondria/metabolism , YAP-Signaling Proteins/metabolism , Basolateral Nuclear Complex/metabolism , Basolateral Nuclear Complex/pathology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Male , Stress, Psychological/complications , Stress, Psychological/metabolism , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/pathology , Depression/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Neurons/pathology , Mice, Transgenic
4.
Helicobacter ; 29(4): e13109, 2024.
Article in English | MEDLINE | ID: mdl-38951739

ABSTRACT

BACKGROUND: Integrin-linked kinase (ILK) is crucial in solid tumors by regulating the Hippo-Yes-associated protein 1 (YAP) pathway. This study aimed to uncover how Helicobacter pylori influences ILK levels and its role in regulating YAP during H. pylori-induced gastric cancer. MATERIALS AND METHODS: GES-1 cells with stable Ilk knockdown and overexpression and a mouse carcinogenesis model for H. pylori infection were constructed. And ILK, the phosphorylated mammalian STE20-like protein kinase 1 (MST1), large tumor suppressor 1 (LATS1; S909, T1079), and YAP (S109, S127) were detected in cells, and mice by western blotting, as well as fluorescence intensity of YAP were assayed by immunofluorescence. YAP downstream genes Igfbp4 and Ctgf, the pathological changes and tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-1beta (IL-1ß), and nitric oxide (NO) levels in mice gastric tissues were detected by real-time PCR, H&E, and ELISA assays. RESULTS: In this study, stable Ilk knockdown cells exhibited significantly higher phosphorylated levels of MST1, LATS1, and YAP, as well as increased YAP in the nuclei of GES-1 cells. Conversely, cells with Ilk overexpression showed opposite results. H. pylori infection led to decreased ILK levels in gastric epithelial cells but increased ILK levels in gastric cancer cell lines (MGC803, SGC7901) and gastric cancer tissues in mice. Treatment with the ILK inhibitor OST-T315 elevated the phosphorylated MST, LATS1, and YAP levels, and inhibited the mRNA levels of Igfbp4 and Ctgf at 44, 48 week-aged mice. OST-T315 also reduced the release of TNF-α, IL-6, IL-1ß, and NO, as well as the progression of gastric cancer caused by H. pylori and N-Nitroso-N-methylurea (NMU) treatment. CONCLUSION: Upon initiation of gastric tumorigenesis signals, H. pylori increases ILK levels and suppresses Hippo signaling, thereby promoting YAP activation and gastric cancer progression. ILK can serve as a potential prevention target to impede H. pylori-induced gastric cancer.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Protein Serine-Threonine Kinases , Stomach Neoplasms , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Animals , Stomach Neoplasms/microbiology , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Mice , Humans , Disease Models, Animal , Cell Line , Male
5.
Biochem Biophys Res Commun ; 730: 150373, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38996785

ABSTRACT

Although cells are frequently maintained at cold temperatures during experiments, the effects of cold stress on cell viability and subsequent cellular conditions remain elusive. In this study, we investigated the effects of cold stress on cancer cells under various culture conditions. We showed that cold stress induces ferroptosis, a form of cell death characterized by lipid peroxidation, in sensitive cancer cell lines. High cell density and serum starvation activate the Hippo pathway and suppress cold-induced cell death. Genetic deletion of Hippo pathway components enhances cold stress susceptibility. Furthermore, the cell attachment status influences the response to cold stress, with suspended cells showing greater resistance and faster recovery than attached cells. This study highlights the importance of cellular conditions and the Hippo pathway in the handling and storage of cancer cells at cold temperatures, thereby offering insights into experimental and clinical contexts.

6.
bioRxiv ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38979373

ABSTRACT

Hippo pathway functions as a tumor suppressor pathway by inhibiting the oncogenic potential of pathway effectors YAP/TAZ. However, YAP can also function as a context-dependent tumor suppressor in several types of cancer including clear cell renal cell carcinomas (ccRCC). Here we show that YAP blocks NF-κB signaling in ccRCC to inhibit cancer cell growth. Mechanistically, YAP inhibits the expression of ZHX2, a critical p65 co-factor in ccRCC. Furthermore, YAP competes with ZHX2 for binding to p65. Consequently, elevated nuclear YAP blocks the cooperativity between ZHX2 and p65, leading to diminished NF-κB target gene expression. Pharmacological inhibition of Hippo/MST1/2 blocked NF-κB transcriptional program and suppressed ccRCC cancer cell growth, which can be rescued by ZHX2/p65 overexpression. Our study uncovers a novel crosstalk between the Hippo and NF-κB pathways and its involvement in ccRCC growth inhibition, suggesting that targeting the Hippo pathway may provide a therapeutical opportunity for ccRCC treatment.

7.
EMBO Rep ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009833

ABSTRACT

RAS GTPases bind effectors to convert upstream cues to changes in cellular function. Effectors of classical H/K/NRAS are defined by RBD/RA domains which recognize the GTP-bound conformation of these GTPases, yet the specificity of RBD/RAs for over 160 RAS superfamily proteins remains poorly explored. We have systematically mapped interactions between BRAF and four RASSF effectors, the largest family of RA-containing proteins, with all RAS, RHO and ARF small GTPases. 39 validated complexes reveal plasticity in RASSF binding, while BRAF demonstrates tight specificity for classical H/K/NRAS. Complex between RASSF5 and diverse RAS GTPases at the plasma membrane can activate Hippo signalling and sequester YAP in the cytosol. RASSF8 undergoes liquid-liquid phase separation and resides in YAP-associated membraneless condensates, which also engage several RAS and RHO GTPases. The poorly studied RASSF3 has been identified as a first potential effector of mitochondrial MIRO proteins, and its co-expression with these GTPases impacts mitochondria and peroxisome distribution. These data reveal the complex nature of GTPase-effector interactions and show their systematic elucidation can reveal completely novel and biologically relevant cellular processes.

8.
Am J Transl Res ; 16(6): 2571-2578, 2024.
Article in English | MEDLINE | ID: mdl-39006253

ABSTRACT

AIM: To explore the impact of up- or down-regulation of Neurofibromin 2 (NF2) on the expression of downstream Hippo pathway genes, large tumor suppressor gene1 (LATS1), and phosphorylation of Mammalian Ste2-like kinases1/2 (MST1/2), in lung cancer cells. METHODS: A549 lung cancer cells were used. The NF2 was down-regulated by si-RNA interference and upregulated by lentiviral vector mediated overexpression. The LATS1 and MST1/2 expressions were evaluated by real-time PCR and western blot. RESULTS: Down-regulation of NF2 decreased LATS1 and MST1/2 level (P<0.05). Overexpression of NF2 increased LATS1 (P<0.05) and Mammalian Ste2-like kinases1 (MST1) (P<0.05), suggesting LATS1 and MST1 are modulated by NF2 in a lung cancer cell line. CONCLUSIONS: NF2 mediates the downstream LATS1 and MST1/2 expressions in a lung cancer cell line.

9.
Mol Carcinog ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016677

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors with poor prognosis and inadequate response to treatment, such as gemcitabine (Gem), the first-line chemotherapeutic drug. Understanding the molecular determinants that control drug resistance to Gem is critical to predict potentially responsive patients and improve the benefits of Gem therapy. Emerging evidence suggests that certain developmental pathways, such as Hippo signaling, are aberrated and play important roles in Gem resistance in cancers. Although Hippo signaling has been reported to play a role in chemoresistance in cancers, it has not been clarified which specific target gene(s) functionally mediates the effect. In the present study, we found that YAP serves as a potent barrier for the cellular sensitivity of PDAC cells to Gem. We then identified and characterized laminin subunit beta 3 (LAMB3) as a bona fide target of YAP-TEAD4 to amplify YAP signaling via a feedback loop. Such a YAP-LAMB3 axis is critical to induce epithelial-mesenchymal transition and mediate Gem resistance. Taken together, we uncovered that YAP-LAMB3 axis is an important regulator of Gem, thus providing potential therapeutic targets for overcoming Gem resistance in PDAC.

10.
J Biol Chem ; : 107512, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960037

ABSTRACT

The Hippo-YAP signaling pathway plays a central role in many biological processes such as regulating cell fate, organ size and tissue growth, and its key components are spatiotemporally expressed and post-translationally modified during these processes. Neddylation is a post-translational modification that involves the covalent attachment of NEDD8 to target proteins by NEDD8-specific E1-E2-E3 enzymes. Whether neddylation is involved in Hippo-YAP signaling remains poorly understood. Here, we provide evidence supporting the critical role of NEDD8 in facilitating the Hippo-YAP signaling pathway by mediating neddylation of the transcriptional coactivator Yes-associated protein 1 (YAP1). Overexpression of NEDD8 induces YAP1 neddylation and enhances YAP1 transactivity, but inhibition of neddylation suppresses YAP1 transactivity and attenuates YAP1 nuclear accumulation. Furthermore, inhibition of YAP1 signaling promotes MLN4924-induced GCs apoptosis and disruption of nedd8 in zebrafish results in downregulation of yap1-activated genes and upregulation of yap1-repressed genes. Further assays show that the xiap ligase promotes nedd8 conjugates to yap1 and that yap1 neddylation. In addition, we identify lysine 159 as a major neddylation site on YAP1. These findings reveal a novel mechanism for neddylation in the regulation of Hippo-YAP signaling.

11.
Int Immunopharmacol ; 138: 112645, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972208

ABSTRACT

BACKGROUND: Pulmonary fibrosis is a progressive disease with high incidence and poor prognosis. It is urgent to explore new therapeutic methods for pulmonary fibrosis. As a new treatment method, gene therapy has attracted more and more attention. CCDC59 is a transcriptional coactivator of SP-B and SP-C. Our study mainly aims to explore the effect of overexpression of CCDC59 gene in pulmonary fibrosis of mice. METHODS: CCDC59 overexpressing lentivirus was constructed and then concentrated. RT-qPCR, Western blotting, and immunofluorescence assays were used to detect the expression of CCDC59, SP-B and SP-C protein in cell line and lung tissues after infected with lentivirus. Immunohistochemical staining and hematoxylin-eosin staining assays were used to assess the degree of fibrosis and ELISA assay was used to detect the concentrations of inflammatory factors, SP-B, and SP-C in bronchoalveolar lavage fluid of mice. Dynamic changes of mice lung function at various time points were assessed by lung function test assay. HIPPO pathway and proliferation capacity of alveolar type II epithelial cells were evaluated by immunofluorescence staining and Western blotting. RESULTS: Results showed that endotracheal instillation of CCDC59 overexpressed lentivirus significantly alleviated bleomycin-induced inflammation and pulmonary fibrosis in mice. Overexpression of CCDC59 protein in type II alveolar epithelial cells can enhance the expression of SP-B and SP-C. Overexpression of CCDC59 protein significantly protected against pulmonary inflammatory response and improved lung function of mice. Overexpression of CCDC59 protein significantly alleviated the hyperactivation of HIPPO pathway and increased the proliferative capacity of type II alveolar epithelial cells in lung. CONCLUSION: CCDC59 can alleviate inflammation and pulmonary fibrosis in mice by upregulating the expression of SP-B and SP-C in type II alveolar epithelial cells and alleviating the hyperactivation of HIPPO pathway. Our study offers a new potential treatment for pulmonary fibrosis.

12.
Cell Stem Cell ; 31(7): 949-960, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971147

ABSTRACT

Tissue regeneration after damage is generally thought to involve the mobilization of adult stem cells that divide and differentiate into progressively specialized progeny. However, recent studies indicate that tissue regeneration can be accompanied by reversion to a fetal-like state. During this process, cells at the injury site reactivate programs that operate during fetal development but are typically absent in adult homeostasis. Here, we summarize our current understanding of the molecular signals and epigenetic mediators that orchestrate "fetal-like reversion" during intestinal regeneration. We also explore evidence for this phenomenon in other organs and species and highlight open questions that merit future examination.


Subject(s)
Intestines , Regeneration , Humans , Animals , Intestines/physiology , Cell Differentiation , Fetus , Signal Transduction
13.
Sci Rep ; 14(1): 15732, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977826

ABSTRACT

YAP plays a vital role in controlling growth and differentiation in various cell lineages. Although the expression of YAP in mice testicular and spermatogenic cells suggests its role in mammalian spermatogenesis, the role of YAP in the development of human male germ cells has not yet been determined. Using an in vitro model and a gene editing approach, we generated human spermatogonia stem cell-like cells (hSSLCs) from human embryonic stem cells (hESCs) and investigated the role of YAP in human spermatogenesis. The results showed that reducing YAP expression during the early stage of spermatogenic differentiation increased the number of PLZF+ hSSLCs and haploid spermatid-like cells. We also demonstrated that the up-regulation of YAP is essential for maintaining spermatogenic cell survival during the later stages of spermatogenic differentiation. The expression of YAP that deviates from this pattern results in a lower number of hSSLCs and an increased level of spermatogenic cell death. Taken together, our result demonstrates that the dynamic expression pattern of YAP is essential for human spermatogenesis. Modulating the level of YAP during human spermatogenesis could improve the production yield of male germ cells derived from hESCs, which could provide the optimization method for in vitro gametogenesis and gain insight into the application in the treatment of male infertility.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Differentiation , Human Embryonic Stem Cells , Spermatogenesis , Transcription Factors , YAP-Signaling Proteins , Male , Humans , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Spermatogonia/metabolism , Spermatogonia/cytology , Promyelocytic Leukemia Zinc Finger Protein/metabolism , Promyelocytic Leukemia Zinc Finger Protein/genetics
14.
Ann Vasc Surg ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025214

ABSTRACT

Promoting the establishment of collateral circulation is essential for chronic lower extremity ischemia. However, no effective therapeutic drugs have yet been developed. Recent studies discovered that in the peripheral arteries, there are GABAB1 receptors expressed in endothelial cells and smooth muscle cells, these receptors may have some effects in regulating vascular functions, but the precise mechanism is not yet clear. This study explores the effect of GABAB1 receptor inhibition on angiogenesis and its regulatory mechanism. The expression of GABAB1 in HUVECs was knocked down using shRNA transfection, and effects in HUVECs' proliferation, migration, and tube formation ability were detected. Western blot and RT-PCR were used to verify the signal pathway. The murine hind limb ischemia model was used to verify the effect of CGP35348, an antagonist of GABAB1R, on the recovery of blood flow perfusion and angiogenesis in ischemic tissues. Cell proliferation, migration, and tube formation ability were improved after GABAB1 receptor knockdown in HUVECs. The phosphorylation of the HIPPO/YAP pathway decreased, while the effect of promoting angiogenesis increased. After treating the ischemic hindlimbs of mice with GABAB1 receptor antagonists, the blood flow perfusion recovered, and the angiogenesis increased. These findings demonstrate the effect of GABAB1 receptor inhibition on the HIPPO/YAP pathway in regulating angiogenesis, suggesting that inhibiting GABAB1 receptor levels might be a novel approach for chronic lower extremity ischemia diseases.

15.
Int J Oncol ; 65(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38873993

ABSTRACT

Genes encoding subunits of SWI/SNF (BAF) chromatin­remodeling complexes are recurrently mutated in a broad array of tumor types, and among the subunits, ARID1A is the most frequent target with mutations. In the present study, it was reported that ARID1A inhibits the epithelial­mesenchymal transition (EMT) and stemness of ovarian cancer cells, accompanied by reduced cell viability, migration and colony formation, suggesting that ARID1A acts as a tumor suppressor in ovarian cancer. Mechanistically, ARID1A exerts its inhibitory effects on ovarian cancer cells by activating the Hippo signaling pathway. Conversely, the overexpression of a gain­of­function transcriptional co­activator with PDZ­binding motif (TAZ) mutant (TAZ­Ser89) effectively reverses the effects induced by ARID1A. In addition, activation of Hippo signaling apparently upregulates ARID1A protein expression, whereas ectopic expression of TAZ­Ser89 results in the markedly decreased ARID1A levels, indicating a feedback of ARID1A­TAZ in regulating ovarian cancer cell EMT and stemness. Thus, the present study uncovered the role of ARID1A through the Hippo/TAZ pathway in modulating EMT and stemness of ovarian cancer cells, and providing with evidence that TAZ inhibitors could effectively prevent initiation and metastasis of ovarian cancer cases where ARID1A is lost or mutated.


Subject(s)
DNA-Binding Proteins , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Hippo Signaling Pathway , Neoplastic Stem Cells , Ovarian Neoplasms , Protein Serine-Threonine Kinases , Signal Transduction , Transcription Factors , Humans , Female , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Line, Tumor , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Cell Movement , Cell Proliferation , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
16.
Acta Pharmacol Sin ; 45(7): 1425-1437, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38839936

ABSTRACT

Cardiac fibrosis is a pathological scarring process that impairs cardiac function. N-acetyltransferase 10 (Nat10) is recently identified as the key enzyme for the N4-acetylcytidine (ac4C) modification of mRNAs. In this study, we investigated the role of Nat10 in cardiac fibrosis following myocardial infarction (MI) and the related mechanisms. MI was induced in mice by ligation of the left anterior descending coronary artery; cardiac function was assessed with echocardiography. We showed that both the mRNA and protein expression levels of Nat10 were significantly increased in the infarct zone and border zone 4 weeks post-MI, and the expression of Nat10 in cardiac fibroblasts was significantly higher compared with that in cardiomyocytes after MI. Fibroblast-specific overexpression of Nat10 promoted collagen deposition and induced cardiac systolic dysfunction post-MI in mice. Conversely, fibroblast-specific knockout of Nat10 markedly relieved cardiac function impairment and extracellular matrix remodeling following MI. We then conducted ac4C-RNA binding protein immunoprecipitation-sequencing (RIP-seq) in cardiac fibroblasts transfected with Nat10 siRNA, and revealed that angiomotin-like 1 (Amotl1), an upstream regulator of the Hippo signaling pathway, was the target gene of Nat10. We demonstrated that Nat10-mediated ac4C modification of Amotl1 increased its mRNA stability and translation in neonatal cardiac fibroblasts, thereby increasing the interaction of Amotl1 with yes-associated protein 1 (Yap) and facilitating Yap translocation into the nucleus. Intriguingly, silencing of Amotl1 or Yap, as well as treatment with verteporfin, a selective and potent Yap inhibitor, attenuated the Nat10 overexpression-induced proliferation of cardiac fibroblasts and prevented their differentiation into myofibroblasts in vitro. In conclusion, this study highlights Nat10 as a crucial regulator of myocardial fibrosis following MI injury through ac4C modification of upstream activators within the Hippo/Yap signaling pathway.


Subject(s)
Fibrosis , Mice, Inbred C57BL , Myocardial Infarction , Animals , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Mice , Male , YAP-Signaling Proteins/metabolism , Fibroblasts/metabolism , Cytidine/analogs & derivatives , Cytidine/pharmacology , Mice, Knockout , Membrane Proteins/metabolism , Membrane Proteins/genetics , N-Terminal Acetyltransferase E/metabolism , Hippo Signaling Pathway , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Cells, Cultured , Signal Transduction , N-Terminal Acetyltransferases/metabolism , Myocardium/pathology , Myocardium/metabolism , Adaptor Proteins, Signal Transducing/metabolism
18.
Arch Pharm Res ; 47(6): 558-570, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38874747

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is becoming an increasingly pressing global health challenge, with increasing mortality rates showing an upward trend. Two million deaths occur annually from cirrhosis and liver cancer together each year. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), key effectors of the Hippo signaling pathway, critically regulate tissue homeostasis and disease progression in the liver. While initial studies have shown that YAP expression is normally restricted to cholangiocytes in healthy livers, the activation of YAP/TAZ is observed in other hepatic cells during chronic liver disease. The disease-driven dysregulation of YAP/TAZ appears to be a critical element in the MASLD progression, contributing to hepatocyte dysfunction, inflammation, and fibrosis. In this study, we focused on the complex roles of YAP/TAZ in MASLD and explored how the YAP/TAZ dysregulation of YAP/TAZ drives steatosis, inflammation, fibrosis, and cirrhosis. Finally, the cell-type-specific functions of YAP/TAZ in different types of hepatic cells, such as hepatocytes, hepatic stellate cells, hepatic macrophages, and biliary epithelial cells are discussed, highlighting the multifaceted impact of YAP/TAZ on liver physiology and pathology.


Subject(s)
Adaptor Proteins, Signal Transducing , Disease Progression , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins , Humans , Transcription Factors/metabolism , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Fatty Liver/metabolism , Fatty Liver/pathology , Trans-Activators/metabolism , Signal Transduction
19.
Biology (Basel) ; 13(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38927266

ABSTRACT

The repurposing of previously clinically approved drugs as an alternative therapeutic approach to treating disease has gained significant attention in recent years. A multitude of studies have demonstrated various and successful therapeutic interventions with these drugs in a wide range of neoplastic diseases, including multiple myeloma, leukaemia, glioblastoma, and colon cancer. Drug repurposing has been widely encouraged due to the known efficacy, safety, and convenience of already established drugs, allowing the bypass of the long and difficult road of lead optimization and drug development. Repurposing drugs in cancer therapy is an exciting prospect due to the ability of these drugs to successfully target cancer-associated genes, often dysregulated in oncogenic signalling pathways, amongst which are the classical cancer signalling pathways; WNT (wingless-related integration type) and Hippo signalling. These pathways play a fundamental role in controlling organ size, tissue homeostasis, cell proliferation, and apoptosis, all hallmarks of cancer initiation and progression. Prolonged dysregulation of these pathways has been found to promote uncontrolled cellular growth and malignant transformation, contributing to carcinogenesis and ultimately leading to malignancy. However, the translation of cancer signalling pathways and potential targeted therapies in cancer treatment faces ongoing challenges due to the pleiotropic nature of cancer cells, contributing to resistance and an increased rate of incomplete remission in patients. This review provides analyses of a range of potential anti-cancer compounds in drug repurposing. It unravels the current understanding of the molecular rationale for repurposing these drugs and their potential for targeting key oncogenic signalling pathways.

20.
Genes (Basel) ; 15(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38927734

ABSTRACT

Cardiomyocytes are the largest cell type that make up the heart and confer beating activity to the heart. The proper differentiation of cardiomyocytes relies on the efficient transmission and perception of differentiation cues from several signaling pathways that influence cardiomyocyte-specific gene expression programs. Signaling pathways also mediate intercellular communications to promote proper cardiomyocyte differentiation. We have reviewed the major signaling pathways involved in cardiomyocyte differentiation, including the BMP, Notch, sonic hedgehog, Hippo, and Wnt signaling pathways. Additionally, we highlight the differences between different cardiomyocyte cell lines and the use of these signaling pathways in the differentiation of cardiomyocytes from stem cells. Finally, we conclude by discussing open questions and current gaps in knowledge about the in vitro differentiation of cardiomyocytes and propose new avenues of research to fill those gaps.


Subject(s)
Cell Differentiation , Myocytes, Cardiac , Signal Transduction , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Humans , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...