Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Ann Agric Environ Med ; 31(3): 334-339, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39344720

ABSTRACT

INTRODUCTION AND OBJECTIVE: Hippobosca equina (Diptera: Hippoboscidae), is a widespread blood-feeding ectoparasite associated with the forest ecosystem. The insect is characterized by a wide host range and low host specificity, which increases the risk of feeding on animals that constitute a reservoir of transmissible pathogens, including Bartonella spp. MATERIAL AND METHODS: Hippobosca equina adults were collected from humans and companion animals within a continental mesotrophic oak-pine mixed forest in eastern Poland. DNA was isolated by the ammonia method, and isolates obtained from single individuals were tested by PCR method for the presence of 5 vector-borne pathogens. In case of the positive results, the amplicons were sequenced and examined by a BLAST search. RESULTS: The PCR analysis of DNA isolates obtained from 100 H. equina specimens revealed the presence of the RNA polymerase beta-subunit gene (rpoB) of the genus Bartonella, in 1% of the studied insects, i.e. one H. equina female. The rpoB gene haplotype of Bartonella sp. reported in this study, was identical to a Bartonella sp. sequence obtained from deer keds in Lithuania, and very closely related to strains with zoonotic potential. None of the H. equina specimens studied was positive for the presence of B. burgdorferi s.l., Anaplasma phagocytophilum, Babesia spp., and Coxiella burnetii. CONCLUSIONS: The study indicates the need to screen the occurrence of Bartonella spp., both in potential vectors and reservoirs of this pathogen in various habitats.


Subject(s)
Bartonella , Diptera , Animals , Poland , Bartonella/isolation & purification , Bartonella/genetics , Bartonella/classification , Diptera/microbiology , Female , Bartonella Infections/veterinary , Bartonella Infections/microbiology , Bartonella Infections/epidemiology , Humans , Male
2.
Vet Med Sci ; 10(3): e1417, 2024 05.
Article in English | MEDLINE | ID: mdl-38516829

ABSTRACT

BACKGROUND: Hippoboscid flies are bloodsucking arthropods that can transmit pathogenic microorganisms and are therefore potential vectors for pathogens such as Bartonella spp. These Gram-negative bacteria can cause mild-to-severe clinical signs in humans and animals; therefore, monitoring Bartonella spp. prevalence in louse fly populations appears to be a useful prerequisite for zoonotic risk assessment. METHODS: Using convenience sampling, we collected 103 adult louse flies from four ked species (Lipoptena cervi, n = 22; Lipoptena fortisetosa, n = 61; Melophagus ovinus, n = 12; Hippobosca equina, n = 8) and the pupae of M. ovinus (n = 10) in the federal state of Saxony, Germany. All the samples were screened by polymerase chain reaction (PCR) for Bartonella spp. DNA, targeting the citrate synthase gene (gltA). Subsequently, PCRs targeting five more genes (16S, ftsZ, nuoG, ribC and rpoB) were performed for representatives of revealed gltA genotypes, and all the PCR products were sequenced to identify the Bartonella (sub)species accurately. RESULTS AND CONCLUSIONS: The overall detection rates for Bartonella spp. were 100.0%, 59.1%, 24.6% and 75.0% in M. ovinus, L. cervi, L. fortisetosa and H. equina, respectively. All the identified bartonellae belong to the Bartonella schoenbuchensis complex. Our data support the proposed reclassification of the (sub)species status of this group, and thus we conclude that several genotypes of B. schoenbuchensis were detected, including Bartonella schoenbuchensis subsp. melophagi and Bartonella schoenbuchensis subsp. schoenbuchensis, both of which have previously validated zoonotic potential. The extensive PCR analysis revealed the necessity of multiple PCR approach for proper identification of the ruminant-associated bartonellae.


Subject(s)
Bartonella , Diptera , Phthiraptera , Humans , Animals , Diptera/genetics , Diptera/microbiology , Phthiraptera/genetics , DNA, Bacterial/genetics , Bartonella/genetics , Ruminants/genetics , DNA , Germany/epidemiology , Polymerase Chain Reaction/veterinary
3.
Vet Parasitol Reg Stud Reports ; 45: 100932, 2023 10.
Article in English | MEDLINE | ID: mdl-37783529

ABSTRACT

Keds are hematophagous ectoparasites of animals belonging to the family Hippoboscidae (Diptera: Hippoboscoidea). Because of their importance as vectors of some pathogens of medical and veterinary importance, they have received special attention. There are numerous studies demonstrating the presence of various parasites and pathogenic bacteria in keds. At the same time, there are very few reports on ked-related viruses. The aim of this study was to perform a molecular survey of viral pathogens in the forest fly (Hippobosca equina) from southern Kazakhstan. In this study, 104H. equina were collected from livestock in Turkistan oblast (southern region of Kazakhstan), which has the largest concentration of livestock in the country. Insect homogenates were screened by PCR for pestiviruses, orbiviruses, flaviviruses, orthobunyaviruses, phleboviruses, orthopoxviruses, capripoxviruses, parapoxviruses, and asfiviruses. The causative agents of two livestock diseases, bovine viral diarrhea virus (BVDV) (3/104; 2.88%; 95% confidence interval (CI): 0.6-8.2%) and bluetongue virus (BTV) (1/104; 0.96%; 95% CI: 0.02-5.24%), were identified and subjected to further analysis. The BTV strain was isolated and all ten genomic RNA segments were sequenced using the Sanger technique. The isolated BTV strain showed >99.6% identity in all genomic segments with the BTV-9 strains belonging to the 'western' topotype. Partial analysis of the 5'-untranslated region demonstrated that both BVDV strains are closely related to Pestivirus B. Flaviviruses, phleboviruses, orthobunyaviruses, poxviruses, and asfiviruses were not detected. This is the first report describing BVDV type 2 in Kazakhstan. The study also confirms the presence of BTV serotype 9 in southern Kazakhstan. The data presented here can help improve preventive measures to control the spread of viral diseases in livestock by using forest flies as an object of epidemiological studies. However, further studies are needed to investigate the vector capacity of H. equina and its suitability for xenodiagnosis of veterinary relevant pathogens.


Subject(s)
Bluetongue virus , Diarrhea Virus 2, Bovine Viral , Diptera , Animals , Bluetongue virus/genetics , Livestock , Kazakhstan/epidemiology , Forests
4.
Parasit Vectors ; 16(1): 179, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37269018

ABSTRACT

BACKGROUND: Hippoboscid flies (Diptera: Hippoboscidae), also known as louse flies or keds, are obligate blood-sucking ectoparasites of animals, and accidentally of humans. The potential role of hippoboscids as vectors of human and veterinary pathogens is being increasingly investigated, but the presence and distribution of infectious agents in louse flies is still unknown in parts of Europe. Here, we report the use of molecular genetics to detect and characterize vector-borne pathogens in hippoboscid flies infesting domestic and wild animals in Austria. METHODS: Louse flies were collected from naturally infested cattle (n = 25), sheep (n = 3), and red deer (n = 12) across Austria between 2015 and 2019. Individual insects were morphologically identified to species level and subjected to DNA extraction for molecular pathogen screening and barcoding. Genomic DNA from each louse fly was screened for Borrelia spp., Bartonella spp., Trypanosomatida, Anaplasmataceae, Filarioidea and Piroplasmida. Obtained sequences of Trypanosomatida and Bartonella spp. were further characterized by phylogenetic and haplotype networking analyses. RESULTS: A total of 282 hippoboscid flies corresponding to three species were identified: Hippobosca equina (n = 62) collected from cattle, Melophagus ovinus (n = 100) from sheep and Lipoptena cervi (n = 120) from red deer (Cervus elaphus). Molecular screening revealed pathogen DNA in 54.3% of hippoboscids, including infections with single (63.39%), two (30.71%) and up to three (5.90%) distinct pathogens in the same individual. Bartonella DNA was detected in 36.9% of the louse flies. Lipoptena cervi were infected with 10 distinct and previously unreported Bartonella sp. haplotypes, some closely associated with strains of zoonotic potential. DNA of trypanosomatids was identified in 34% of hippoboscids, including the first description of Trypanosoma sp. in H. equina. Anaplasmataceae DNA (Wolbachia spp.) was detected only in M. ovinus (16%), while < 1% of the louse flies were positive for Borrelia spp. and Filarioidea. All hippoboscids were negative for Piroplasmida. CONCLUSIONS: Molecular genetic screening confirmed the presence of several pathogens in hippoboscids infesting domestic and wild ruminants in Austria, including novel pathogen haplotypes of zoonotic potential (e.g. Bartonella spp.) and the first report of Trypanosoma sp. in H. equina, suggesting a potential role of this louse fly as vector of animal trypanosomatids. Experimental transmission studies and expanded monitoring of hippoboscid flies and hippoboscid-associated pathogens are warranted to clarify the competence of these ectoparasites as vectors of infectious agents in a One-Health context.


Subject(s)
Anaplasmataceae , Anoplura , Bartonella , Deer , Diptera , Piroplasmida , Humans , Animals , Sheep , Cattle , Deer/parasitology , Austria/epidemiology , Phylogeny , Ruminants , Bartonella/genetics , Anaplasmataceae/genetics
5.
Article in English | MEDLINE | ID: mdl-36554859

ABSTRACT

Arthropods of the Hippoboscoidea superfamily are parasites of animals from various systematic groups. Mass appearances of these insects and their attacks on people are increasingly being recorded. Their parasitism has a negative effect on host well-being, as it causes feelings of agitation and irritation as well as skin itching and damage. It may result in weight loss and development of diseases in the long-term perspective. Parasites can be a potential epidemiological threat for their hosts as well. One of such parasites is a cosmopolitan species of the Hippoboscinae subfamily-Hippobosca equina. Studies have confirmed the presence of Corynebacterium pseudotuberculosis equi, Bartonella spp., and Anaplasma spp. in the organism of these insects. The frequency of anaphylactic reactions caused by H. equina attacks has been increasing. The aim of the present paper was to summarize the up-to-date knowledge of Hippobosca equina Linnaeus, 1758 due to its significance in medical and veterinary sciences as a potential vector of pathogens. Given the increasing expansion of ectoparasites, mainly related to climate change, ensuring animal welfare and human health is a priority.


Subject(s)
Anaphylaxis , Diptera , Animals , Humans , Diptera/microbiology , Anaphylaxis/etiology
6.
Saudi J Biol Sci ; 29(4): 2112-2120, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35531248

ABSTRACT

This study aimed to highlight the low host specificity of Hippobosca equina (H. equina) that poses a danger in diseases transmission between different animal species as well as, identification of the collected flies using light microscope and molecular characterization of H. equina in Egypt. Two hundred and forty flies were collected weekly from different animal species from El-Faiyum, Al Qalyubia and Kafr El-Sheikh Governorates, Egypt at the period from May to September of 2020. Insects were phenotypically and genetically identified then classified into 170 (70.8%) males and 70 (29.2%) females. The highest prevalence of H. equina was noticed from mid-June to the end of August. The sequencing of COI gene of five H. equina fly collected from different hosts as (horse, pigeon, cattle, buffalo, and donkey) were submitted to the GenBank under the accession numbers of MZ452239, MZ452240, MZ461943, MZ461944, and MZ461945, respectively. For insect infestation control, fipronil and deltamethrin is monthly sprayed for animals, birds and their circumference give a best result in our control study in the field. Deltamethrin showed a success in the elimination process and control measures of external parasites of pigeon.

7.
Insects ; 13(3)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35323534

ABSTRACT

Lipoptena cervi (Linnaeus), Lipoptena fortisetosa Maa, Hippobosca equina Linnaeus, and Pseudolynchia canariensis (Macquart) are hematophagous ectoparasites that infest different animal species and occasionally bite humans. Hosts are located by a complex process involving different kinds of stimuli perceived mainly by specific sensory structures on the antennae, which are the essential olfactory organs. General antennal morphology, together with distribution and ultrastructure of sensilla, have been studied in detail with scanning and transmission electron microscopy approaches. Observations have revealed some common features among the four studied hippoboscids: (a) typical concealment of the flagellum inside the other two segments; (b) characteristic trabecular surface of the flagellum; (c) peculiar external microtrichia; (d) presence on the flagellum of basiconic sensilla and grooved peg coeloconic sensilla; (e) unarticulated arista. The ultrastructure of L. fortisetosa revealed that microtrichia and the flagellar reticulated cuticle are not innervated. Different roles have been hypothesized for the described antennal structures. Microtrichia and the reticulated cuticle could convey volatile compounds towards the flagellar sensory area. Peculiar sensory neurons characterize the unarticulated arista which could be able to detect temperature variations. Coeloconic sensilla could be involved in thermoreception, hygroreception, and carbon dioxide reception at long distances, while the poorly porous basiconic sensilla could play a role in the host odour perception at medium-short distances.

8.
Acta Trop ; 227: 106274, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34954258

ABSTRACT

Equine vector-borne diseases (EVBDs) are emerging and re-emerging diseases, and most of them are zoonotic. This study aimed to investigate EVBDs in equines and associated arthropods (ticks and flies) from Egypt using molecular analyses, in addition to a preliminary characterization of associated ticks and flies by the matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) and molecular techniques. In this study, 335 blood samples were obtained from equines that appeared to be in good health (320 horses and 15 donkeys) in Cairo and Beni Suef provinces, Egypt. From the same animals, 166 arthropods (105 sucking flies and 61 ticks) were collected. Ticks and flies were preliminary characterized by the MALDI-TOF and molecular tools. Quantitative PCR (qPCR) and standard PCR coupled with sequencing were performed on the DNA of equines, ticks, and flies to screen multiple pathogens. The MALDI-TOF and molecular characterization of arthropods revealed that louse fly (Hippobosca equina) and cattle tick (Rhipicephalus annulatus) infesting equines. Anaplasma platys-like (1.6%), Anaplasma marginale (1.6%), Candidatus Ehrlichia rustica (6.6%), a new Ehrlichia sp. (4.9%), and Borrelia theileri (3.3%) were identified in R. annulatus. Anaplasma sp. and Borrelia sp. DNAs were only detected in H. equina by qPCR. A. marginale, Anaplasma ovis, and Theileria ovis recorded the same low infection rate (0.6%) in donkeys, while horses were found to be infected with Theileria equi and a new Theileria sp. Africa with recorded prevalence rates of 1.2% and 2.7%, respectively. In conclusion, different pathogens were first detected such as A. platys-like, Candidatus E. rustica, and a new Ehrlichia sp. in R. annulatus; A. marginale, A. ovis, and T. ovis in donkeys; and a new Theileria sp. "Africa" in horses.


Subject(s)
Arthropods , Cattle Diseases , Rhipicephalus , Theileria , Tick-Borne Diseases , Vector Borne Diseases , Animals , Cattle , Cattle Diseases/epidemiology , Egypt/epidemiology , Horses , Sheep , Theileria/genetics , Tick-Borne Diseases/epidemiology
9.
J Parasit Dis ; 44(3): 590-596, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32801511

ABSTRACT

Approximately 250 feral horses [Equus ferus caballus (Linnaeus, 1758)] living on Karadag Mountain near Karaman City were caught by Kazakh horse herdsmen with permission of the Turkish Ministry of Agriculture and Forestry and brought to a farm in Karkin village in Konya Province, 70 km from Karadag, in November, 2017. This study was carried out to determine the presence of ectoparasites infesting a subsample of 36 feral horses. The horses were visually inspected, and then their bodies were checked by hand for ectoparasites. Thirty-five (97.2%) were infested with at least one of five species of ectoparasites: Bovicola equi (Linnaeus, 1758), Hippobosca equina (Linnaeus, 1758), Haemaphysalis parva (Neuman, 1897), Hyalomma excavatum (Koch, 18449), Dermacentor marginatus (Sulzer, 1776). Most of the horses were coinfested with two ectoparasite species. Prevalence of infestation with H. equina was 80.6% and with B. equi 72.2%. In addition, prevalence of Ha. parva was 25.0%, Hy. excavatum 13.9%, and D. marginatus was 5.6%. This is the first systematic examination for external parasites of feral horses in Turkey. Further studies are needed to determine ectoparasites of greater numbers of feral horses in different localities.

SELECTION OF CITATIONS
SEARCH DETAIL