Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.554
Filter
1.
Virology ; 597: 110161, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38981317

ABSTRACT

Epstein-Barr virus (EBV) is linked to lymphoma and epithelioma but lacks drugs specifically targeting EBV-positive tumors. BamHI A Rightward Transcript (BART) miRNAs are expressed in all EBV-positive tumors, suppressing both lytic infection and host cell apoptosis. We identified suberoylanilide hydroxamic acid (SAHA), an inhibitor of histone deacetylase enzymes, as an agent that suppresses BART promoter activity and transcription of BART miRNAs. SAHA treatment demonstrated a more pronounced inhibition of cell proliferation in EBV-positive cells compared to EBV-negative cells, affecting both p53 wild-type and mutant gastric epithelial cells. SAHA treatment enhanced lytic infection in wild-type EBV-infected cells, while also enhancing cell death in BZLF1-deficient EBV-infected cells. It reduced BART gene expression by 85% and increased the expression of proapoptotic factors targeted by BART miRNAs. These findings suggest that SAHA not only induces lytic infection but also leads to cell death by suppressing BART miRNA transcription and promoting the apoptotic program.


Subject(s)
Apoptosis , Herpesvirus 4, Human , Hydroxamic Acids , MicroRNAs , Vorinostat , Vorinostat/pharmacology , Apoptosis/drug effects , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/physiology , Herpesvirus 4, Human/drug effects , Hydroxamic Acids/pharmacology , Gene Expression Regulation, Viral/drug effects , Cell Line , Histone Deacetylase Inhibitors/pharmacology , Promoter Regions, Genetic , Cell Proliferation/drug effects
2.
Cancer Lett ; : 217117, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019144

ABSTRACT

Cancer cells rewire metabolism to sculpt the immune tumor microenvironment (TME) and propel tumor advancement, which intricately tied to post-translational modifications. Histone lactylation has emerged as a novel player in modulating protein functions, whereas little is known about its pathological role in pancreatic ductal adenocarcinoma (PDAC) progression. Employing a multi-omics approach encompassing bulk and single-cell RNA sequencing, metabolomics, ATAC-seq, and CUT&Tag methodologies, we unveiled the potential of histone lactylation in prognostic prediction, patient stratification and TME characterization. Notably, "LDHA-H4K12la-immuno-genes" axis has introduced a novel node into the regulatory framework of "metabolism-epigenetics-immunity," shedding new light on the landscape of PDAC progression. Furthermore, the heightened interplay between cancer cells and immune counterparts via Nectin-2 in liver metastasis with elevated HLS unraveled a positive feedback loop in driving immune evasion. Simultaneously, immune cells exhibited altered HLS and autonomous functionality across the metastatic cascade. Consequently, the exploration of innovative combination strategies targeting the metabolism-epigenetics-immunity axis holds promise in curbing distant metastasis and improving survival prospects for individuals grappling with challenges of PDAC.

3.
Biol Psychiatry ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019389

ABSTRACT

BACKGROUND: Epigenetic changes, leading to long-term neuroadaptations following opioid exposure are not well understood. We examined how histone demethylase JMJD3 in the nucleus accumbens (NAc) influences heroin seeking after abstinence from self-administration. METHODS: Male Sprague-Dawley rats were trained to self-administer heroin. Western blotting and qPCR were performed to quantify JMJD3 and bone morphogenetic protein (BMP) pathway expression in the NAc (n = 7-11/group). Pharmacological inhibitors or viral expression vectors were microinfused into the NAc to manipulate JMJD3 or the BMP pathway member SMAD1 (n = 9-11/group). The RiboTag capture method (n = 3-5/group) and viral vectors (n = 7-8/group) were used in male transgenic rats to identify the contributions of D1- and D2-type medium spiny neurons (MSN) in the NAc. Drug-seeking was tested by cue-induced response previously paired with drug infusion. RESULTS: Levels of JMJD3 and phosphorylated SMAD1/5 in the NAc were increased after 14 days of abstinence from heroin self-administration. Pharmacological and virus-mediated inhibition of JMJD3 or the BMP pathway attenuated cue-induced seeking. Pharmacological inhibition of BMP signaling reduced JMJD3 expression and histone 3 lysine 27 trimethylation (H3K27me3) levels. JMJD3 bidirectionally affected seeking: expression of the wild type increased whereas expression of a catalytic dead mutant decreased cue-induced seeking. JMJD3 expression was increased in D2+ but not D1+ MSNs. Expression of the mutant JMJD3 in D2+ neurons was sufficient to decrease cue-induced heroin seeking. CONCLUSIONS: JMJD3 mediates persistent cellular and behavioral adaptations underlying heroin relapse and this activity is regulated by the BMP pathway.

4.
Elife ; 122024 Jul 16.
Article in English | MEDLINE | ID: mdl-39009040

ABSTRACT

Background: Prinflammatory extracellular chromatin from neutrophil extracellular traps (NETs) and other cellular sources is found in COVID-19 patients and may promote pathology. We determined whether pulmonary administration of the endonuclease dornase alfa reduced systemic inflammation by clearing extracellular chromatin. Methods: Eligible patients were randomized (3:1) to the best available care including dexamethasone (R-BAC) or to BAC with twice-daily nebulized dornase alfa (R-BAC + DA) for seven days or until discharge. A 2:1 ratio of matched contemporary controls (CC-BAC) provided additional comparators. The primary endpoint was the improvement in C-reactive protein (CRP) over time, analyzed using a repeated-measures mixed model, adjusted for baseline factors. Results: We recruited 39 evaluable participants: 30 randomized to dornase alfa (R-BAC +DA), 9 randomized to BAC (R-BAC), and included 60 CC-BAC participants. Dornase alfa was well tolerated and reduced CRP by 33% compared to the combined BAC groups (T-BAC). Least squares (LS) mean post-dexamethasone CRP fell from 101.9 mg/L to 23.23 mg/L in R-BAC +DA participants versus a 99.5 mg/L to 34.82 mg/L reduction in the T-BAC group at 7 days; p=0.01. The anti-inflammatory effect of dornase alfa was further confirmed with subgroup and sensitivity analyses on randomised participants only, mitigating potential biases associated with the use of CC-BAC participants. Dornase alfa increased live discharge rates by 63% (HR 1.63, 95% CI 1.01-2.61, p=0.03), increased lymphocyte counts (LS mean: 1.08 vs 0.87, p=0.02) and reduced circulating cf-DNA and the coagulopathy marker D-dimer (LS mean: 570.78 vs 1656.96 µg/mL, p=0.004). Conclusions: Dornase alfa reduces pathogenic inflammation in COVID-19 pneumonia, demonstrating the benefit of cost-effective therapies that target extracellular chromatin. Funding: LifeArc, Breathing Matters, The Francis Crick Institute (CRUK, Medical Research Council, Wellcome Trust). Clinical trial number: NCT04359654.


Subject(s)
Anti-Inflammatory Agents , COVID-19 Drug Treatment , COVID-19 , Deoxyribonuclease I , Humans , Male , Female , Deoxyribonuclease I/administration & dosage , Deoxyribonuclease I/therapeutic use , Middle Aged , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Aged , Recombinant Proteins/administration & dosage , Recombinant Proteins/therapeutic use , Extracellular Traps/drug effects , SARS-CoV-2 , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , Dexamethasone/administration & dosage , Dexamethasone/therapeutic use , Adult , Nebulizers and Vaporizers , Treatment Outcome , Administration, Inhalation
5.
Article in English | MEDLINE | ID: mdl-39023505

ABSTRACT

This study aimed to investigate the pharmacokinetic parameters of single oral administration of postchange and prechange abexinostat (CRA-024781) tosylate tablets in Chinese healthy subjects under fasting conditions, and assess the bioequivalence (BE) of the 2 formulations (Test [T1] and Reference [T2]). This study was a randomized, open-label, 2-formulation, fasting administration, single-dose, 2-sequence, 2-cycle, crossover BE study. Thirty-six subjects were enrolled in the study and 33 subjects completed 2 cycles. The plasma concentrations were determined by liquid chromatography-tandem mass spectrometry. The 90% confidence intervals (CIs) for the Cmax, AUC0-t, and AUC0-∞ of CRA-024781 and its 2 major metabolites (PCI-27789 and PCI-27887, both metabolites are pharmacologically inactive on HDAC1) fell within the acceptable range of 80%-125%. The results suggest that the CRA-024781 test preparation (Test [T1]) is bioequivalent to the reference preparation (Reference [T2]) in healthy Chinese subjects under fasting conditions.

6.
Cell Commun Signal ; 22(1): 361, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010083

ABSTRACT

BACKGROUND: Breast cancer is one of the most lethal cancers in women. Despite significant advances in the diagnosis and treatment of breast cancer, many patients still succumb to this disease, and thus, novel effective treatments are urgently needed. Natural product coumarin has been broadly investigated since it reveals various biological properties in the medicinal field. Accumulating evidence indicates that histone deacetylase inhibitors (HDACIs) are promising novel anti-breast cancer agents. However, most current HDACIs exhibit only moderate effects against solid tumors and are associated with severe side effects. Thus, to develop more effective HDACIs for breast cancer therapy, hydroxamate of HDACIs was linked to coumarin core, and coumarin-hydroxamate hybrids were designed and synthesized. METHODS: A substituted coumarin moiety was incorporated into the classic hydroxamate HDACIs by the pharmacophore fusion strategy. ZN444B was identified by using the HDACI screening kit and cell viability assay. Molecular docking was performed to explore the binding mode of ZN444B with HDAC1. Western blot, immunofluorescent staining, cell viability, colony formation and cell migration and flow cytometry assays were used to analyze the anti-breast cancer effects of ZN444B in vitro. Orthotopic studies in mouse models were applied for preclinical evaluation of efficacy and toxicity in vivo. Proteomic analysis, dual-luciferase reporter assay, chromatin immunoprecipitation, co-immunoprecipitation, immunofluorescent staining assays along with immunohistochemical (IHC) analysis were used to elucidate the molecular basis of the actions of ZN444B. RESULTS: We synthesized and identified a novel coumarin-hydroxamate conjugate, ZN444B which possesses promising anti-breast cancer activity both in vitro and in vivo. A molecular docking model showed that ZN444B binds to HDAC1 with high affinity. Further mechanistic studies revealed that ZN444B specifically decreases FOS-like antigen 2 (FOSL2) mRNA levels by inhibiting the deacetylase activity of HDAC1 on Sp1 at K703 and abrogates the binding ability of Sp1 to the FOSL2 promoter. Furthermore, FOSL2 expression positively correlates with breast cancer progression and metastasis. Silencing FOSL2 expression decreases the sensitivity of breast cancer cells to ZN444B treatment. In addition, ZN444B shows no systemic toxicity in mice. CONCLUSIONS: Our findings highlight the potential of FOSL2 as a new biomarker and therapeutic target for breast cancer and that targeting the HDAC1-Sp1-FOSL2 signaling axis with ZN444B may be a promising therapeutic strategy for breast cancer.


Subject(s)
Breast Neoplasms , Coumarins , Histone Deacetylase 1 , Hydroxamic Acids , Signal Transduction , Coumarins/chemistry , Coumarins/pharmacology , Humans , Histone Deacetylase 1/metabolism , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylase 1/genetics , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Animals , Signal Transduction/drug effects , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry , Hydroxamic Acids/therapeutic use , Sp1 Transcription Factor/metabolism , Mice , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Cell Line, Tumor , Molecular Docking Simulation , Cell Proliferation/drug effects , Mice, Nude , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Mice, Inbred BALB C , Cell Movement/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Drug Discovery
7.
Methods Mol Biol ; 2842: 3-20, 2024.
Article in English | MEDLINE | ID: mdl-39012588

ABSTRACT

The introduction of CRISPR/Cas systems has resulted in a strong impulse for the field of gene-targeted epigenome/epigenetic reprogramming (EpiEditing), where EpiEditors consisting of a DNA binding part for targeting and an enzymatic part for rewriting of chromatin modifications are applied in cells to alter chromatin modifications at targeted genome loci in a directed manner. Pioneering studies preceding this era indicated causal relationships of chromatin marks instructing gene expression. The accumulating evidence of chromatin reprogramming of a given genomic locus resulting in gene expression changes opened the field for mainstream applications of this technology in basic and clinical research. The growing knowledge on chromatin biology and application of EpiEditing tools, however, also revealed a lack of predictability of the efficiency of EpiEditing in some cases. In this perspective, the dependence of critical parameters such as specificity, effectivity, and sustainability of EpiEditing on experimental settings and conditions including the expression levels and expression times of the EpiEditors, their chromatin binding affinity and specificity, and the crosstalk between EpiEditors and cellular epigenome modifiers are discussed. These considerations highlight the intimate connection between the outcome of epigenome reprogramming and the details of the technical approaches toward EpiEditing, which are the main topic of this volume of Methods in Molecular Biology. Once established in a fully functional "plug-and-play" mode, EpiEditing will allow to better understand gene expression control and to translate such knowledge into therapeutic tools. These expectations are beginning to be met as shown by various in vivo EpiEditing applications published in recent years, several companies aiming to exploit the therapeutic power of EpiEditing and the first clinical trial initiated.


Subject(s)
CRISPR-Cas Systems , Chromatin , Epigenesis, Genetic , Epigenome , Gene Editing , Animals , Humans , Chromatin/genetics , Chromatin/metabolism , Epigenomics/methods , Gene Editing/methods
8.
Methods Mol Biol ; 2842: 103-127, 2024.
Article in English | MEDLINE | ID: mdl-39012592

ABSTRACT

Epigenome editing applications are gaining broader use for targeted transcriptional control as more enzymes with diverse chromatin-modifying functions are being incorporated into fusion proteins. Development of these fusion proteins, called epigenome editors, has outpaced the study of proteins that interact with edited chromatin. One type of protein that acts downstream of chromatin editing is the reader-effector, which bridges epigenetic marks with biological effects like gene regulation. As the name suggests, a reader-effector protein is generally composed of a reader domain and an effector domain. Reader domains directly bind epigenetic marks, while effector domains often recruit protein complexes that mediate transcription, chromatin remodeling, and DNA repair. In this chapter, we discuss the role of reader-effectors in driving the outputs of epigenome editing and highlight instances where abnormal and context-specific reader-effectors might impair the effects of epigenome editing. Lastly, we discuss how engineered reader-effectors may complement the epigenome editing toolbox to achieve robust and reliable gene regulation.


Subject(s)
Epigenesis, Genetic , Epigenome , Gene Editing , Animals , Humans , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly , CRISPR-Cas Systems , Epigenomics/methods , Gene Editing/methods , Gene Expression Regulation
9.
Proteomics ; : e2300650, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018239

ABSTRACT

Mass spectrometry (MS)-based top-down proteomics (TDP) analysis of histone proteoforms provides critical information about combinatorial post-translational modifications (PTMs), which is vital for pursuing a better understanding of epigenetic regulation of gene expression. It requires high-resolution separations of histone proteoforms before MS and tandem MS (MS/MS) analysis. In this work, for the first time, we combined SDS-PAGE-based protein fractionation (passively eluting proteins from polyacrylamide gels as intact species for mass spectrometry, PEPPI-MS) with capillary zone electrophoresis (CZE)-MS/MS for high-resolution characterization of histone proteoforms. We systematically studied the histone proteoform extraction from SDS-PAGE gel and follow-up cleanup as well as CZE-MS/MS, to determine an optimal procedure. The optimal procedure showed reproducible and high-resolution separation and characterization of histone proteoforms. SDS-PAGE separated histone proteins (H1, H2, H3, and H4) based on their molecular weight and CZE provided additional separations of proteoforms of each histone protein based on their electrophoretic mobility, which was affected by PTMs, for example, acetylation and phosphorylation. Using the technique, we identified over 200 histone proteoforms from a commercial calf thymus histone sample with good reproducibility. The orthogonal and high-resolution separations of SDS-PAGE and CZE made our technique attractive for the delineation of histone proteoforms extracted from complex biological systems.

10.
Methods Mol Biol ; 2826: 47-54, 2024.
Article in English | MEDLINE | ID: mdl-39017884

ABSTRACT

Immunofluorescence microscopy is a powerful technique using fluorescently labelled antibodies which can be used to visualize proteins in the nucleus. A key advantage of this method is that it can provide insight into the spatial organization and the localization of nuclear proteins, which can provide elucidation of their function. Here, we provide a protocol for immunofluorescence staining in the nucleus, which has successfully been used to visualize histone modifications and nuclear bodies in human and mouse B lymphocytes, using as few as 1 × 104-5 × 104 cells.


Subject(s)
Epigenesis, Genetic , Fluorescent Antibody Technique , Animals , Mice , Fluorescent Antibody Technique/methods , Humans , Cell Nucleus/metabolism , B-Lymphocyte Subsets/metabolism , B-Lymphocyte Subsets/immunology , Immunologic Memory , Microscopy, Fluorescence/methods , Histones/metabolism , Lymphocyte Activation , Staining and Labeling/methods
11.
Methods Mol Biol ; 2826: 65-77, 2024.
Article in English | MEDLINE | ID: mdl-39017886

ABSTRACT

Epigenetic programs play a key role in regulating the development and function of immune cells. However, conventional methods for profiling epigenetic mechanisms, such as the post-translational modifications to histones, present several technical challenges that prevent a complete understanding of gene regulation. Here, we provide a detailed protocol of the Cleavage Under Targets and Tagmentation (CUT&Tag) chromatin profiling technique for identifying histone modifications in human and mouse lymphocytes.


Subject(s)
B-Lymphocyte Subsets , Epigenesis, Genetic , Epigenomics , Histones , Humans , Animals , Mice , Epigenomics/methods , Histones/metabolism , B-Lymphocyte Subsets/metabolism , B-Lymphocyte Subsets/immunology , Chromatin/metabolism , Chromatin/genetics , Protein Processing, Post-Translational , Histone Code
12.
J Integr Plant Biol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953749

ABSTRACT

The plant hormone jasmonate (JA) regulates plant growth and immunity by orchestrating a genome-wide transcriptional reprogramming. In the resting stage, JASMONATE-ZIM DOMAIN (JAZ) proteins act as main repressors to regulate the expression of JA-responsive genes in the JA signaling pathway. However, the mechanisms underlying de-repression of JA-responsive genes in response to JA treatment remain elusive. Here, we report two nuclear factor Y transcription factors NF-YB2 and NF-YB3 (thereafter YB2 and YB3) play key roles in such de-repression in Arabidopsis. YB2 and YB3 function redundantly and positively regulate plant resistance against the necrotrophic pathogen Botrytis cinerea, which are specially required for transcriptional activation of a set of JA-responsive genes following inoculation. Furthermore, YB2 and YB3 modulated their expression through direct occupancy and interaction with histone demethylase Ref6 to remove repressive histone modifications. Moreover, YB2 and YB3 physically interacted with JAZ repressors and negatively modulated their abundance, which in turn attenuated the inhibition of JAZ proteins on the transcription of JA-responsive genes, thereby activating JA response and promoting disease resistance. Overall, our study reveals the positive regulators of YB2 and YB3 in JA signaling by positively regulating transcription of JA-responsive genes and negatively modulating the abundance of JAZ proteins.

13.
Article in English | MEDLINE | ID: mdl-38961843

ABSTRACT

Sex differences in renal physiology and pathophysiology are well established in rodent models and humans. While renal epigenetics play a crucial role in injury, the impact of biological sex on aging kidney epigenome is less known, as most of the studies are from male rodents. We sought to determine the influence of sex and age on kidney epigenetic and injury markers, using male and female mice at 4-month (4M; young), 12-month (12M), and 24-month (24M; aged) of age. Females exhibited a significant increase in kidney and body weight and serum creatinine and decreased serum albumin levels from ages 4M to 24M, whereas minor changes were observed in male mice. Males exhibited higher levels of circulating histone 3 (H3; damage-associated molecular pattern molecules) compared with age-matched females. Kidney injury molecule-1 levels increased in serum and renal tissues from 12M to 24M in both sexes. Overall, females had markedly high histone acetyltransferase activity than age-matched males. Aged females had substantially decreased H3 methylation at lysine 9 and 27 and histone methyltransferase activity compared to aged males. Klotho levels were significantly higher in young males than females and decreased with age in males, whereas epigenetic repressor of Klotho, H3K27me3 and its enzyme, EZH2 augmented with age in both sexes. Proinflammatory NF-κB (p65) signaling increased with age in both sexes. Taken together, our data suggest that renal aging may lie in a range between normal and diseased kidneys, but differ between female and male mice, highlighting sex-specific regulation of renal epigenome in aging.

14.
Cancer Innov ; 3(3): e114, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947757

ABSTRACT

Histone deacetylase 6 (HDAC6) belongs to a class of epigenetic targets that have been found to be a key protein in the association between tumors and cardiovascular disease. Recent studies have focused on the crucial role of HDAC6 in regulating cardiovascular diseases such as atherosclerosis, myocardial infarction, myocardial hypertrophy, myocardial fibrosis, hypertension, pulmonary hypertension, and arrhythmia. Here, we review the association between HDAC6 and cardiovascular disease, the research progress of HDAC6 inhibitors in the treatment of cardiovascular disease, and discuss the feasibility of combining HDAC6 inhibitors with other therapeutic agents to treat cardiovascular disease.

15.
Front Oncol ; 14: 1384928, 2024.
Article in English | MEDLINE | ID: mdl-38947884

ABSTRACT

Sirtuins are pivotal in orchestrating numerous cellular pathways, critically influencing cell metabolism, DNA repair, aging processes, and oxidative stress. In recent years, the involvement of sirtuins in tumor biology has garnered substantial attention, with a growing body of evidence underscoring their regulatory roles in various aberrant cellular processes within tumor environments. This article delves into the sirtuin family and its biological functions, shedding light on their dual roles-either as promoters or inhibitors-in various cancers including oral, breast, hepatocellular, lung, and gastric cancers. It further explores potential anti-tumor agents targeting sirtuins, unraveling the complex interplay between sirtuins, miRNAs, and chemotherapeutic drugs. The dual roles of sirtuins in cancer biology reflect the complexity of targeting these enzymes but also highlight the immense therapeutic potential. These advancements hold significant promise for enhancing clinical outcomes, marking a pivotal step forward in the ongoing battle against cancer.

16.
Open Biol ; 14(7): 230355, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981515

ABSTRACT

Epigenetic regulation is important for circadian rhythm. In previous studies, multiple histone modifications were found at the Period (Per) locus. However, most of these studies were not conducted in clock neurons. In our screen, we found that a CoREST mutation resulted in defects in circadian rhythm by affecting Per transcription. Based on previous studies, we hypothesized that CoREST regulates circadian rhythm by regulating multiple histone modifiers at the Per locus. Genetic and physical interaction experiments supported these regulatory relationships. Moreover, through tissue-specific chromatin immunoprecipitation assays in clock neurons, we found that the CoREST mutation led to time-dependent changes in corresponding histone modifications at the Per locus. Finally, we proposed a model indicating the role of the CoREST complex in the regulation of circadian rhythm. This study revealed the dynamic changes of histone modifications at the Per locus specifically in clock neurons. Importantly, it provides insights into the role of epigenetic factors in the regulation of dynamic gene expression changes in circadian rhythm.


Subject(s)
Circadian Rhythm , Co-Repressor Proteins , Epigenesis, Genetic , Neurons , Period Circadian Proteins , Animals , Neurons/metabolism , Period Circadian Proteins/metabolism , Period Circadian Proteins/genetics , Mice , Co-Repressor Proteins/metabolism , Co-Repressor Proteins/genetics , Histones/metabolism , Histone Code , Mutation , Circadian Clocks/genetics , Gene Expression Regulation
17.
Curr Opin Plant Biol ; 81: 102598, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38986392

ABSTRACT

Histone lysine methylation is a highly conserved epigenetic modification across eukaryotes that contributes to creating different dynamic chromatin states, which may result in transcriptional changes. Over the years, an accumulated set of evidence has shown that histone methylation allows plants to align their development with their surroundings, enabling them to respond and memorize past events due to changes in the environment. In this review, we discuss the molecular mechanisms of histone methylation in plants. Writers, readers, and erasers of Arabidopsis histone methylation marks are described with an emphasis on their role in two of the most important developmental transition phases in plants, seed germination and flowering. Further, the crosstalk between different methylation marks is also discussed. An overview of the mechanisms of histone methylation modifications and their biological outcomes will shed light on existing research gaps and may provide novel perspectives to increase crop yield and resistance in the era of global climate change.

18.
Mol Neurobiol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987488

ABSTRACT

Neuropeptide cocaine- and amphetamine-regulated transcript peptide (CARTp) is known to play an important role in reward processing. The rats conditioned to intra-cranial self-stimulation (ICSS) showed massive upregulation of CART protein and mRNA in the vicinity of the electrode implanted to deliver the electric current directly at the lateral hypothalamus (LH)-medial forebrain bundle (MFB) area. However, the underlying mechanisms leading to the upregulation of CART in ICSS animals remain elusive. We tested the putative role of CREB-binding protein (CBP), an epigenetic enzyme with intrinsic histone acetyltransferase (HAT) activity, in regulating CART expression during ICSS. An electrode was implanted in LH-MFB and the rats were conditioned to self-stimulation in an operant chamber. CBP siRNA was delivered ipsilaterally in the LH-MFB to knock-down CBP and the effects on lever press activity were monitored. While ICSS-conditioned rats showed distinct increase in CART, CBP and pCREB levels, enhanced CBP binding and histone acetylation (H3K9ac) were noticed on the CART promoter in chromatin immunoprecipitation assay. Direct infusion of CBP siRNA in the LH-MFB lowered lever press activity, CBP levels, histone acetylation at the CART promoter, and CART mRNA and peptide expression. Co-infusion of CARTp in LH-MFB rescued the waning effects of CBP siRNA on self-stimulation. We suggest that CBP-mediated histone acetylation may play a causal role in CART expression in LH, which in turn may drive the positive reinforcement of lever press activity.

19.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189150, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971208

ABSTRACT

Histone deacetylases (HDACs) are key epigenetic regulators, and transcriptional complexes with deacetylase function are among the epigenetic corepressor complexes in the nucleus that target the epigenome. HDAC-bearing corepressor complexes such as the Sin3 complex, NuRD complex, CoREST complex, and SMRT/NCoR complex are common in biological systems. These complexes activate the otherwise inactive HDACs in a solitary state. HDAC complexes play vital roles in the regulation of key biological processes such as transcription, replication, and DNA repair. Moreover, deregulated HDAC complex function is implicated in human diseases including cancer. Therapeutic strategies targeting HDAC complexes are being sought actively. Thus, illustration of the nature and composition of HDAC complexes is vital to understanding the molecular basis of their functions under physiologic and pathologic conditions, and for designing targeted therapies. This review presents key aspects of large multiprotein HDAC-bearing complexes including their structure, function, regulatory mechanisms, implication in disease development, and role in therapeutics.

20.
Environ Toxicol ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994737

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a malignant tumor with high metastatic features originating from the nasopharynx. However, the underlying mechanism of Suppressor of variegation 3-9 homolog 2 (SUV39H2) in NPC remains poorly understood. RT-qPCR was carried out to examine SUV39H2 and SIRT1 expression in NPC tissues and cells. Kaplan-Meier method was utilized to evaluate the association between SUV39H2 level and overall survival. The function of SUV39H2 and SIRT1 in NPC cell viability, metastasis, and apoptosis was tested through CCK-8, transwell, and flow cytometry experiments. Here, it was uncovered that SUV39H2 level was augmented in NPC tissues and cells. Moreover, SUV39H2 expedited NPC cell viability, metastasis, and inhibited apoptosis, while SIRT1 addition reversed these impacts. Besides, SUV39H2 induced H3K9me3 enhancement to repress SIRT1 transcription via binding to SIRT1 promoter. Collectively, our results demonstrated upregulated SUV39H2 aggravated NPC tumorigenesis through SIRT1, which may offer a potential therapeutic target for NPC.

SELECTION OF CITATIONS
SEARCH DETAIL
...