Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Front Genet ; 2: 3, 2011.
Article in English | MEDLINE | ID: mdl-22303302

ABSTRACT

Insulin-like growth factor 1 (IGF-1) has been shown to be associated with fertility, growth, and development in cattle. The aim of this study was to (1) identify novel single nucleotide polymorphisms (SNPs) in the bovine IGF-1 gene and alongside previously identified SNPs (2) determine their association with traits of economic importance in Holstein-Friesian dairy cattle. Nine novel SNPs were identified across a panel of 22 beef and dairy cattle by sequence analysis of the 5' promoter, intronic, and 3' regulatory regions, encompassing ~5 kb of IGF-1. Genotyping and associations with daughter performance for milk production, fertility, survival, and measures of body size were undertaken on 848 Holstein-Friesian AI sires. Using multiple regression analysis nominal associations (P < 0.05) were identified between six SNPs (four novel and two previously identified) and milk composition, survival, body condition score, and body size. The C allele of AF017143 a previously published SNP (C-512T) in the promoter region of IGF-1 predicted to introduce binding sites for transcription factors HSF1 and ZNF217 was associated (P < 0.05) with increased cow carcass weight (i.e., an indicator of mature cow size). Novel SNPs were identified in the 3' region of IGF-1 were associated (P < 0.05) with functional survival and chest width. The remaining four SNPs, all located within introns of IGF-1 were associated (P < 0.05) with milk protein yield, milk fat yield, milk fat concentration, somatic cell score, carcass conformation, and carcass fat. Results of this study further demonstrate the multifaceted influences of IGF-1 on milk production and growth related traits in cattle.

2.
Genet. mol. biol ; 30(3): 580-583, 2007. ilus, tab
Article in English | LILACS | ID: lil-460074

ABSTRACT

We investigated the occurrence of Factor XI (FXI) deficiency syndrome in the following Indian dairy animals: Bos taurus Holstein-Friesian and Jersey cattle, Bos indicus Indian cattle breeds, B. taurus x B. indicus crossbreds and the river buffalo Bubalus bubalis. Factor XI deficiency is an autosomal recessive bleeding disorder known to affect Holstein cattle worldwide. A total of 1001 dairy animals, mainly bulls, were genotyped to detect the mutation within exon 12 of the gene encoding for factor XI. Two Holstein bulls were detected as heterozygous (carrier) for FXI deficiency, giving a carrier frequency of 0.6 percent in Indian Holstein cattle. None of the other cattle or buffalo breeds was found to be a carrier for FXI. Sequence comparison between normal and heterozygous animals revealed that there is a 77 base pair insertion fragment (AT (A)29 TAAAG (A)27 GAATTATTAATTCT) within exon 12 of the FXI gene. Both sequences were submitted to the National Center for Biotechnology Information (NCBI) GenBank and assigned the accession numbers DQ438908 for normal Holstein Friesian animals and DQ438909 for heterozygous Holstein Friesian animals.

SELECTION OF CITATIONS
SEARCH DETAIL
...