Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 749
Filter
1.
Methods Mol Biol ; 2830: 149-161, 2024.
Article in English | MEDLINE | ID: mdl-38977576

ABSTRACT

Transgenesis technologies, such as overexpression or RNA interference-mediated suppression, have often been used to alter the activity of target genes. More recently developed targeted genome modification methods using customizable endonucleases allow for the regulation or knockout mutation of target genes without the necessity of integrating recombinant DNA. Such approaches make it possible to create novel alleles of target genes, thereby significantly contributing to crop improvement. Among these technologies, the Cas9 endonuclease-based method is widely applied to several crops, including barley (Hordeum vulgare). In this chapter, we describe an Agrobacterium-based approach to the targeted modification of grain dormancy genes in barley using RNA-guided Cas9 nuclease.


Subject(s)
CRISPR-Cas Systems , Hordeum , Plant Dormancy , Hordeum/genetics , Plant Dormancy/genetics , Plants, Genetically Modified/genetics , Gene Editing/methods , Agrobacterium/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , Genes, Plant
2.
Front Plant Sci ; 15: 1393991, 2024.
Article in English | MEDLINE | ID: mdl-38984164

ABSTRACT

Plants exhibit an array of drought responses and adaptations, where the trade-off between water loss and CO2 uptake for growth is mediated by regulation of stomatal aperture in response to soil water content (SWC), among other factors. For crop yield stability, the question is how drought timing and response patterns relate to post-drought growth resilience and vigor. We earlier identified, in a few reference varieties of barley that differed by the SWC at which transpiration was curtailed, two divergent water use strategies: water-saving ("isohydric") and water-spending ("anisohydric"). We proposed that an isohydric strategy may reduce risk from spring droughts in climates where the probability of precipitation increases during the growing season, whereas the anisohydric is consistent with environments having terminal droughts, or with those where dry periods are short and not seasonally progressive. Here, we have examined drought response physiology in an 81-line barley (Hordeum vulgare L.) diversity set that spans 20th century European breeding and identified several lines with a third, dynamic strategy. We found a strong positive correlation between vigor and transpiration, the dynamic group being highest for both. However, these lines curtailed daily transpiration at a higher SWC than the isohydric group. While the dynamic lines, particularly cv Hydrogen and Baronesse, were not the most resilient in terms of restoring initial growth rates, their strong initial vigor and high return to initial transpiration rates meant that their growth nevertheless surpassed more resilient lines during recovery from drought. The results will be of use for defining barley physiological ideotypes suited to future climate scenarios.

3.
Plant J ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38843114

ABSTRACT

WHIRLY1 is a chloroplast-nucleus located DNA/RNA-binding protein with functions in development and stress tolerance. By overexpression of HvWHIRLY1 in barley, one line with a 10-fold and two lines with a 50-fold accumulation of the protein were obtained. In these lines, the relative abundance of the nuclear form exceeded that of the chloroplast form. Growth of the plants was shown to be compromised in a WHIRLY1 abundance-dependent manner. Over-accumulation of WHIRLY1 in chloroplasts had neither an evident impact on nucleoid morphology nor on the composition of the photosynthetic apparatus. Nevertheless, oeW1 plants were found to be compromised in the light reactions of photosynthesis as well as in carbon fixation. The reduction in growth and photosynthesis was shown to be accompanied by a decrease in the levels of cytokinins and an increase in the level of jasmonic acid. Gene expression analyses revealed that in nonstress conditions the oeW1 plants had enhanced levels of pathogen response (PR) gene expression indicating activation of constitutive defense. During growth in continuous light of high irradiance PR gene expression increased indicating that under stress conditions oeW1 are capable to further enhance defense.

4.
J Agric Food Chem ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833300

ABSTRACT

The application of high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) revealed the origin and evolution of antioxidants during the brewing process of hopped and unhopped reference beer. As tachioside (3-methoxy-4-hydroxyphenyl-ß-d-glucopyranoside), arbutin (4-hydroxyphenyl-ß-d-glucopyranoside), and hordatines clearly increased during the fermentation step, the raw material barley was investigated as a source of the corresponding precursors. Therefore, 4-hydroxyphenyl-ß-d-glucopyranosyl-(1 → 6)-ß-d-glucopyranosyl-(1 → 6)-ß-d-glucopyranoside, 4-hydroxy-3-methoxyphenyl-ß-d-glucopyranosyl-(1 → 6)-ß-d-glucopyranoside, 4-hydroxy-3-methoxyphenyl-ß-d-glucopyranosyl-(1 → 6)-ß-d-glucopyranosyl-(1 → 6)-ß-d-glucopyranoside, and 4-hydroxy-2-methoxyphenyl-ß-d-glucopyranosyl-(1 → 6)-ß-d-glucopyranosyl-(1 → 6)-ß-d-glucopyranoside were isolated from barley for the first time, and identified using liquid chromatography-mass spectrometry (LC-MS) and one-dimensional/two-dimensional-nuclear magnetic resonance (1D/2D-NMR) experiments. Moreover, hordatine glucosides A, B, and C were isolated and identified from barley, and hordatine C glucoside was characterized for the first time. A fermentation model followed by HPLC-MS/MS analysis substantiated the release of tachioside from 4-hydroxy-3-methoxyphenyl-ß-d-glucopyranosyl-(1 → 6)-ß-d-glucopyranoside by Saccharomyces cerevisiae. Quantitation experiments monitoring the content in wheat, barley, and different barley malt types demonstrated a wide range of concentrations, providing a basis for further comprehensive investigations to optimize the antioxidant yield in beer to contribute to improved flavor stability.

5.
Mol Biol Rep ; 51(1): 731, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869677

ABSTRACT

BACKGROUND: Chitinase (Chi) is a pathogenesis-related protein, also reported to play an important role in plant responses to abiotic stress. However, its role in response to abiotic stress in barley is still unclear. RESULTS: In this study, a total of 61 Chi gene family members were identified from the whole genome of wild barley EC_S1. Phylogenetic analysis suggested that these family genes were divided into five groups. Among these genes, four pairs of collinearity genes were discovered. Besides, abundant cis-regulatory elements, including drought response element and abscisic acid response element were identified in the promoter regions of HvChi gene family members. The expression profiles revealed that most HvChi family members were significantly up-regulated under drought stress, which was also validated by RT-qPCR measurements. To further explore the role of Chi under drought stress, HvChi22 was overexpressed in Arabidopsis. Compared to wild-type plants, overexpression of HvChi22 enhanced drought tolerance by increasing the activity of oxidative protective enzymes, which caused less MDA accumulation. CONCLUSION: Our study improved the understanding of the Chi gene family under drought stress in barley, and provided a theoretical basis for crop improvement strategies to address the challenges posed by changing environmental conditions.


Subject(s)
Chitinases , Droughts , Gene Expression Regulation, Plant , Hordeum , Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Hordeum/genetics , Chitinases/genetics , Chitinases/metabolism , Gene Expression Regulation, Plant/genetics , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Promoter Regions, Genetic/genetics , Plants, Genetically Modified/genetics , Gene Expression Profiling/methods , Drought Resistance
6.
J Appl Genet ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877382

ABSTRACT

Strigolactones (SLs) are plant hormones that play a crucial role in regulating various aspects of plant architecture, such as shoot and root branching. However, the knowledge of SL-responsive genes and transcription factors (TFs) that control the shaping of plant architecture remains elusive. Here, transcriptomic analysis was conducted using the SL-insensitive barley mutant hvd14.d (carried mutation in SL receptor DWARF14, HvD14) and its wild-type (WT) to unravel the differences in gene expression separately in root and shoot tissues. This approach enabled us to select more than six thousand SL-dependent genes that were exclusive to each studied organ or not tissue-specific. The data obtained, along with in silico analyses, found several TFs that exhibited changed expression between the analyzed genotypes and that recognized binding sites in promoters of other identified differentially expressed genes (DEGs). In total, 28 TFs that recognize motifs over-represented in DEG promoters were identified. Moreover, nearly half of the identified TFs were connected in a single network of known and predicted interactions, highlighting the complexity and multidimensionality of SL-related signalling in barley. Finally, the SL control on the expression of one of the identified TFs in HvD14- and dose-dependent manners was proved. Obtained results bring us closer to understanding the signalling pathways regulating SL-dependent plant development.

7.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892304

ABSTRACT

Glycerol-3-phosphoacyltransferase (GPAT) is an important rate-limiting enzyme in the biosynthesis of triacylglycerol (TAG), which is of great significance for plant growth, development, and response to abiotic stress. Although the characteristics of GPAT have been studied in many model plants, little is known about its expression profile and function in barley, especially under abiotic stress. In this study, 22 GPAT genes were identified in the barley genome and divided into three groups (I, II, III), with the latter Group III subdivided further into three subgroups based on the phylogenetic analysis. The analyses of conserved motifs, gene structures, and the three-dimensional structure of HvGPAT proteins also support this classification. Through evolutionary analysis, we determined that HvGPATs in Group I were the earliest to diverge during 268.65 MYA, and the differentiation of other HvGPATs emerged during 86.83-169.84 MYA. The tissue expression profile showed that 22 HvGPAT genes were almost not expressed in INF1 (inflorescence 1). Many functional elements related to stress responses and hormones in cis-element analysis, as well as qRT-PCR results, confirm that these HvGPAT genes were involved in abiotic stress responses. The expression level of HvGPAT18 was significantly increased under abiotic stress and its subcellular localization indicated its function in the endoplasmic reticulum. Various physiological traits under abiotic stress were evaluated using transgenic Arabidopsis to gain further insight into the role of HvGPAT18, and it was found that transgenic seedlings have stronger resistance under abiotic stress than to the wild-type (WT) plants. Overall, our results provide new insights into the evolution and function of the barley GPAT gene family and enable us to explore the molecular mechanism of functional diversity behind the evolutionary history of these genes.


Subject(s)
Evolution, Molecular , Gene Expression Regulation, Plant , Hordeum , Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Hordeum/genetics , Hordeum/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Glycerol-3-Phosphate O-Acyltransferase/genetics , Glycerol-3-Phosphate O-Acyltransferase/metabolism , Genome, Plant , Gene Expression Profiling
8.
Genes (Basel) ; 15(5)2024 05 01.
Article in English | MEDLINE | ID: mdl-38790207

ABSTRACT

Zinc finger-homeodomain transcription factors (ZF-HDs) are pivotal in regulating plant growth, development, and diverse stress responses. In this study, we found 8 ZF-HD genes in barley genome. Theses eight HvZF-HD genes were located on five chromosomes, and classified into ZHD and MIF subfamily. The collinearity, gene structure, conserved motif, and cis-elements of HvZF-HD genes were also analyzed. Real-time PCR results suggested that the expression of HvZF-HD4, HvZF-HD6, HvZF-HD7 and HvZF-HD8 were up-regulated after hormones (ABA, GA3 and MeJA) or PEG treatments, especially HvZF-HD6 was significantly induced. These results provide useful information of ZF-HD genes to future study aimed at barley breeding.


Subject(s)
Gene Expression Regulation, Plant , Hordeum , Plant Proteins , Transcription Factors , Zinc Fingers , Hordeum/genetics , Hordeum/metabolism , Zinc Fingers/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Phylogeny , Chromosomes, Plant/genetics
9.
Plants (Basel) ; 13(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38794416

ABSTRACT

The aim of this work was to study the ability of 28-homobrassinolide (HBL) and 28-homocastasterone (HCS) to increase the resistance of barley (Hordeum vulgare L.) plants to drought and to alter their endogenous brassinosteroid status. Germinated barley seeds were treated with 0.1 nM HBL or HCS solutions for two hours. A water deficit was created by stopping the watering of 7-day-old plants for the next two weeks. Plants responded to drought through growth inhibition, impaired water status, increased lipid peroxidation, differential effects on antioxidant enzymes, intense proline accumulation, altered expression of genes involved in metabolism, and decreased endogenous contents of hormones (28-homobrassinolide, B-ketones, and B-lactones). Pretreatment of plants with HBL reduced the inhibitory effect of drought on fresh and dry biomass accumulation and relative water content, whereas HCS partially reversed the negative effect of drought on fresh biomass accumulation, reduced the intensity of lipid peroxidation, and increased the osmotic potential. Compared with drought stress alone, pretreatment of plants with HCS or HBL followed by drought increased superoxide dismutase activity sevenfold or threefold and catalase activity (by 36%). The short-term action of HBL and HCS in subsequent drought conditions partially restored the endogenous B-ketone and B-lactone contents. Thus, the steroidal phytohormones HBL and HCS increased barley plant resistance to subsequent drought, showing some specificity of action.

10.
BMC Plant Biol ; 24(1): 438, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778283

ABSTRACT

BACKGROUND: Roots play an important role during plant growth and development, ensuring water and nutrient uptake. Understanding the mechanisms regulating their initiation and development opens doors towards root system architecture engineering. RESULTS: Here, we investigated by RNA-seq analysis the changes in gene expression in the barley stem base of 1 day-after-germination (DAG) and 10DAG seedlings when crown roots are formed. We identified 2,333 genes whose expression was lower in the stem base of 10DAG seedlings compared to 1DAG seedlings. Those genes were mostly related to basal cellular activity such as cell cycle organization, protein biosynthesis, chromatin organization, cytoskeleton organization or nucleotide metabolism. In opposite, 2,932 genes showed up-regulation in the stem base of 10DAG seedlings compared to 1DAG seedlings, and their function was related to phytohormone action, solute transport, redox homeostasis, protein modification, secondary metabolism. Our results highlighted genes that are likely involved in the different steps of crown root formation from initiation to primordia differentiation and emergence, and revealed the activation of different hormonal pathways during this process. CONCLUSIONS: This whole transcriptomic study is the first study aiming at understanding the molecular mechanisms controlling crown root development in barley. The results shed light on crown root emergence that is likely associated with a strong cell wall modification, death of the cells covering the crown root primordium, and the production of defense molecules that might prevent pathogen infection at the site of root emergence.


Subject(s)
Gene Expression Regulation, Plant , Hordeum , Plant Roots , Hordeum/genetics , Hordeum/growth & development , Hordeum/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Seedlings/growth & development , Seedlings/genetics , Transcriptome , Gene Expression Profiling , Genes, Plant
11.
BMC Plant Biol ; 24(1): 385, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724918

ABSTRACT

Waterlogging stress is one of the major abiotic stresses affecting the productivity and quality of many crops worldwide. However, the mechanisms of waterlogging tolerance are still elusive in barley. In this study, we identify key differentially expressed genes (DEGs) and differential metabolites (DM) that mediate distinct waterlogging tolerance strategies in leaf and root of two barley varieties with contrasting waterlogging tolerance under different waterlogging treatments. Transcriptome profiling revealed that the response of roots was more distinct than that of leaves in both varieties, in which the number of downregulated genes in roots was 7.41-fold higher than that in leaves of waterlogging sensitive variety after 72 h of waterlogging stress. We also found the number of waterlogging stress-induced upregulated DEGs in the waterlogging tolerant variety was higher than that of the waterlogging sensitive variety in both leaves and roots in 1 h and 72 h treatment. This suggested the waterlogging tolerant variety may respond more quickly to waterlogging stress. Meanwhile, phenylpropanoid biosynthesis pathway was identified to play critical roles in waterlogging tolerant variety by improving cell wall biogenesis and peroxidase activity through DEGs such as Peroxidase (PERs) and Cinnamoyl-CoA reductases (CCRs) to improve resistance to waterlogging. Based on metabolomic and transcriptomic analysis, we found the waterlogging tolerant variety can better alleviate the energy deficiency via higher sugar content, reduced lactate accumulation, and improved ethanol fermentation activity compared to the waterlogging sensitive variety. In summary, our results provide waterlogging tolerance strategies in barley to guide the development of elite genetic resources towards waterlogging-tolerant crop varieties.


Subject(s)
Gene Expression Profiling , Hordeum , Metabolome , Stress, Physiological , Transcriptome , Hordeum/genetics , Hordeum/physiology , Hordeum/metabolism , Stress, Physiological/genetics , Water/metabolism , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/metabolism , Plant Roots/genetics , Plant Roots/physiology , Plant Roots/metabolism , Gene Expression Regulation, Plant
12.
Planta ; 259(6): 144, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709333

ABSTRACT

MAIN CONCLUSION: Silicon application mitigates phosphate deficiency in barley through an interplay with auxin and nitric oxide, enhancing growth, photosynthesis, and redox balance, highlighting the potential of silicon as a fertilizer for overcoming nutritional stresses. Silicon (Si) is reported to attenuate nutritional stresses in plants, but studies on the effect of Si application to plants grown under phosphate (Pi) deficiency are still very scarce, especially in barley. Therefore, the present work was undertaken to investigate the potential role of Si in mitigating the adverse impacts of Pi deficiency in barley Hordeum vulgare L. (var. BH902). Further, the involvement of two key regulatory signaling molecules--auxin and nitric oxide (NO)--in Si-induced tolerance against Pi deficiency in barley was tested. Morphological attributes, photosynthetic parameters, oxidative stress markers (O2·-, H2O2, and MDA), antioxidant system (enzymatic--APX, CAT, SOD, GR, DHAR, MDHAR as well as non-enzymatic--AsA and GSH), NO content, and proline metabolism were the key traits that were assessed under different treatments. The P deficiency distinctly declined growth of barley seedlings, which was due to enhancement in oxidative stress leading to inhibition of photosynthesis. These results were also in parallel with an enhancement in antioxidant activity, particularly SOD and CAT, and endogenous proline level and its biosynthetic enzyme (P5CS). The addition of Si exhibited beneficial effects on barley plants grown in Pi-deficient medium as reflected in increased growth, photosynthetic activity, and redox balance through the regulation of antioxidant machinery particularly ascorbate-glutathione cycle. We noticed that auxin and NO were also found to be independently participating in Si-mediated improvement of growth and other parameters in barley roots under Pi deficiency. Data of gene expression analysis for PHOSPHATE TRANSPORTER1 (HvPHT1) indicate that Si helps in increasing Pi uptake as per the need of Pi-deficient barley seedlings, and also auxin and NO both appear to help Si in accomplishing this task probably by inducing lateral root formation. These results are suggestive of possible application of Si as a fertilizer to correct the negative effects of nutritional stresses in plants. Further research at genetic level to understand Si-induced mechanisms for mitigating Pi deficiency can be helpful in the development of new varieties with improved tolerance against Pi deficiency, especially for cultivation in areas with Pi-deficient soils.


Subject(s)
Hordeum , Indoleacetic Acids , Nitric Oxide , Oxidative Stress , Phosphates , Photosynthesis , Plant Roots , Silicon , Hordeum/metabolism , Hordeum/genetics , Hordeum/drug effects , Hordeum/growth & development , Hordeum/physiology , Silicon/pharmacology , Silicon/metabolism , Indoleacetic Acids/metabolism , Phosphates/deficiency , Phosphates/metabolism , Nitric Oxide/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Plant Roots/genetics , Photosynthesis/drug effects , Antioxidants/metabolism , Seedlings/growth & development , Seedlings/metabolism , Seedlings/genetics , Seedlings/drug effects , Seedlings/physiology
13.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791258

ABSTRACT

Barley is one of the most important cereal crops in the world, and its value as a food is constantly being revealed, so the research into and the use of barley germplasm are very important for global food security. Although a large number of barley germplasm samples have been collected globally, their specific genetic compositions are not well understood, and in many cases their origins are even disputed. In this study, 183 barley germplasm samples from the Shanghai Agricultural Gene Bank were genotyped using genotyping-by-sequencing (GBS) technology, SNPs were identified and their genetic parameters were estimated, principal component analysis (PCA) was preformed, and the phylogenetic tree and population structure of the samples were also analyzed. In addition, a genome-wide association study (GWAS) was carried out for the hulled/naked grain trait, and a KASP marker was developed using an associated SNP. The results showed that a total of 181,906 SNPs were identified, and these barley germplasm samples could be roughly divided into three categories according to the phylogenetic analysis, which was generally consistent with the classification of the traits of row type and hulled/naked grain. Population structure analysis showed that the whole barley population could be divided into four sub-populations (SPs), the main difference from previous classifications being that the two-rowed and the hulled genotypes were sub-divided into two SPs. The GWAS analysis of the hulled/naked trait showed that many associated loci were unrelated to the Nud/nud locus, indicating that there might be new loci controlling the trait. A KASP marker was developed for one exon-type SNP on chromosome 7. Genotyping based on the KASP assay was consistent with that based on SNPs, indicating that the gene of this locus might be associated with the hulled/naked trait. The above work not only lays a good foundation for the future utilization of this barley germplasm population but it provides new loci and candidate genes for the hulled/naked trait.


Subject(s)
Genome-Wide Association Study , Hordeum , Phylogeny , Polymorphism, Single Nucleotide , Hordeum/genetics , Genome-Wide Association Study/methods , China , Quantitative Trait Loci , Genotype , Seed Bank , Genome, Plant , Genetic Variation , Principal Component Analysis , Phenotype
14.
Plants (Basel) ; 13(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38732384

ABSTRACT

Hordeum vulgare genes NUD (HvNUD) and WIN1 (HvWIN1) play a regulatory role in cuticle organization. Because the cuticle is a key evolutionary acquisition of plants for protection against environmental factors, a knockout (KO) of each gene may alter their ability to adapt to unfavorable conditions. A potential pleiotropic effect of HvNUD or HvWIN1 gene mutations can be assessed under salt stress. Initial developmental stages are the most sensitive in living organisms; therefore, we evaluated salt tolerance of nud KO and win1 KO barley lines at the seedling stage. Air-dried barley grains of the KO lines and of a wild-type (WT) line were germinated in NaCl solutions (50, 100, or 150 mM). Over 30 physiological and morphological parameters of seedlings were assessed. Potential pleiotropic effects of the HvNUD gene KO under salt stress included the stimulation of root growth (which was lower under control conditions) and root necrosis. The pleiotropic effects of the HvWIN1 gene KO under the stressful conditions manifested themselves as maintenance of longer root length as compared to the other lines; stable variation of most of morphological parameters; lack of correlation between root lengths before and after exposure to NaCl solutions, as well as between shoot lengths; and the appearance of twins. Salt tolerance of the analyzed barley lines could be ranked as follows: nud KO > win1 KO ≈ WT, where nud KO lines were the most salt-tolerant. A comparison of effects of salinity and ionizing radiation on nud KO and win1 KO barley lines indicated differences in tolerance of the lines to these stressors.

15.
J Med Food ; 27(6): 488-501, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579153

ABSTRACT

This study investigated the protective effects of a complex of Indian gooseberry and barley sprout (IB complex) on oxidative stress and skin damage caused by ultraviolet B irradiation in SHK-I hairless mice. The study examined the impact of IB complex on skin hydration, wrinkle formation, and melanogenesis using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and western blot analysis. The IB complex reduced skin hydration loss and wrinkle formation, while also demonstrating enhanced antioxidant activities. The IB complex maintained skin hydration via upregulation of hyaluronic acid and ceramide synthesis, including the regulation of hyaluronic acid synthase, long-chain ceramide formation, dihydroceramide desaturase 1 activity, and type I collagen production. The IB complex prevented wrinkle formation via downregulating JNK and upregulating TGF-ß pathways. Moreover, IB complex blocked melanin production via inhibition of protein kinase A, cAMP response element-binding protein, and microphthalmia-associated transcription factor pathways. These results suggest that IB complex is a potential agent to protect the skin against photodamage caused by exposure to UVB radiation. The research protocols underwent approval from the Institutional Animal Care and Use Committee of Kyung Hee University (KHGASP-21-577), ensuring compliance with ethical standards.


Subject(s)
Hordeum , Mice, Hairless , Oxidative Stress , Plant Extracts , Skin Aging , Skin , Ultraviolet Rays , Animals , Ultraviolet Rays/adverse effects , Oxidative Stress/radiation effects , Oxidative Stress/drug effects , Skin Aging/radiation effects , Skin Aging/drug effects , Mice , Hordeum/chemistry , Skin/radiation effects , Skin/metabolism , Plant Extracts/pharmacology , Humans , Male , Antioxidants , Melanins/metabolism
16.
Phytopathology ; 114(7): 1542-1553, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38619562

ABSTRACT

Spot form net blotch, caused by Pyrenophora teres f. maculata, is a significant necrotrophic disease of barley that spread worldwide in the twentieth century. Genetic relationships were analyzed to determine the diversity, survival, and dispersal of a diverse collection of 346 isolates from Australia, Southern Africa, North America, Asia Minor, and Europe. The results, based on genome-wide DArTseq data, indicated that isolates from Turkey were the most differentiated with regional sub-structuring, together with individuals closely related to geographically distant genotypes. Elsewhere, population subdivision related to country of origin was evident, although low levels of admixturing was found that may represent rare genotypes or migration from unsampled populations. Canadian isolates were the next most diverged, and Australian and South African the most closely related. With the exception of Turkish isolates, multiple independent Cyp51A mutation events (which confer insensitivity to demethylation inhibitor fungicides) between countries and within regions was evident, with strong selection for a transposable element insertion at the 3' end of the promoter and counterselection elsewhere. Individuals from Western Australia shared genomic regions and Cyp51A haplotypes with South African isolates, suggesting a recent common origin. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Ascomycota , Hordeum , Plant Diseases , Hordeum/microbiology , Plant Diseases/microbiology , Ascomycota/genetics , Ascomycota/isolation & purification , Genetic Variation , Genotype , Haplotypes , Australia , Mutation , Phylogeny
17.
Plant Physiol ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630859

ABSTRACT

Thousands of barley (Hordeum vulgare L.) mutants have been isolated over the last century, and many are stored in gene banks across various countries. In the present work, we developed a pipeline to efficiently identify causal mutations in barley. The pipeline is also efficient for mutations located in centromeric regions. Through bulked-segregant analyses using whole genome sequencing of pooled F2 seedlings, we mapped two mutations and identified a limited number of candidate genes. We applied the pipeline on F2-mapping populations made from xan-j.59 (unknown mutation) and xan-l.82 (previously known). The Xantha-j (xan-j) gene was identified as encoding chlorophyll synthase, which catalyzes the last step in the chlorophyll biosynthetic pathway: the addition of a phytol moiety to the propionate side chain of chlorophyllide. Key amino-acid residues in the active site, including the binding sites of the isoprenoid and chlorophyllide substrates, were analyzed in an AlphaFold2-generated structural model of the barley chlorophyll synthase. Three allelic mutants, xan-j.19, xan-j.59, and xan-j.64 were characterized. While xan-j.19 is a one-base pair deletion and xan-j.59 is a nonsense mutation, xan-j.64 causes an S212F substitution in chlorophyll synthase. Our analyses of xan-j.64 and treatment of growing barley with clomazone, an inhibitor of chloroplastic isoprenoid biosynthesis, suggest that binding of the isoprenoid substrate is a prerequisite for the stable maintenance of chlorophyll synthase in the plastid. We further suggest that chlorophyll synthase is a sensor for coordinating chlorophyll and isoprenoid biosynthesis.

18.
Front Plant Sci ; 15: 1367271, 2024.
Article in English | MEDLINE | ID: mdl-38606065

ABSTRACT

Introduction: Ramularia leaf spot (RLS) disease is a growing threat to barley cultivation, but with no substantial resistance identified to date. Similarly, the understanding of the lifestyle of Ramularia collo-cygni (Rcc) and the prediction of RLS outbreak severity remain challenging, with Rcc displaying a rather untypical long endophytic phase and a sudden change to a necrotrophic lifestyle. The aim of this study was to provide further insights into the defense dynamics during the different stages of colonization and infection in barley in order to identify potential targets for resistance breeding. Methods: Utilizing the strength of proteomics in understanding plant-pathogen interactions, we performed an integrative analysis of a published transcriptome dataset with a parallel generated proteome dataset. Therefore, we included two spring barley cultivars with contrasting susceptibilities to Rcc and two fungal isolates causing different levels of RLS symptoms. Results: Interestingly, early responses in the pathogen recognition phase of the host were driven by strong responses differing between isolates. An important enzyme in this process is a xylanase inhibitor, which protected the plant from cell wall degradation by the fungal xylanase. At later time points, the differences were driven by cultivar-specific responses, affecting mostly features contributing to the pathogenesis- and senescence-related pathways or photosynthesis. Discussion: This supports the hypothesis of a hemibiotrophic lifestyle of Rcc, with slight differences in trophism of the two analyzed isolates. The integration of these data modalities highlights a strength of protein-level analysis in understanding plant-pathogen interactions and reveals new features involved in fungal recognition and susceptibility in barley cultivars.

19.
Plants (Basel) ; 13(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38611480

ABSTRACT

Under salinity conditions, growth and productivity of grain crops decrease, leading to inhibition and limited absorption of water and elements necessary for plant growth, osmotic imbalance, ionic stress, and oxidative stress. Microorganisms in bio-fertilizers have several mechanisms to provide benefits to crop plants and reduce the harmful effect of salinity. They can be effective in dissolving phosphate, fixing nitrogen, promoting plant growth, and can have a combination of all these qualities. During two successful agricultural seasons, two field experiments were conducted to evaluate the effect of bio-fertilizer applications, including phosphate solubilizing bacteria (PSB), nitrogen fixation bacteria and a mix of phosphate-solubilizing bacteria and nitrogen fixation bacteria with three rates, 50, 75 and 100% NPK, of the recommended dose of minimal fertilizer on agronomic traits, yield and nutrient uptake of barley (Hordeum vulgare) under saline condition in Village 13, Farafra Oasis, New Valley Governorate, Egypt. The results showed that the application of Microbein + 75% NPK recorded the highest values of plant height, spike length, number of spikes/m2, grain yield (Mg ha-1), straw yield (Mg ha-1), biological yield (Mg ha-1), protein content %, nitrogen (N), phosphorus (P), potassium (K) uptakes in grain and straw (kg ha-1), available nitrogen (mg/kg soil), available phosphorus (mg/kg soil), total microbial count of soil, antioxidant activity of soil (AOA), dehydrogenase, nitrogen fixers, and PSB counts. The application of bio-fertilizers led to an increase in plant tolerance to salt stress, plant growth, grain yield, and straw yield, in addition to the application of the bio-fertilizers, which resulted in a 25% saving in the cost of mineral fertilizers used in barley production.

20.
Front Microbiol ; 15: 1360571, 2024.
Article in English | MEDLINE | ID: mdl-38577688

ABSTRACT

Spot blotch disease incited by Bipolaris sorokiniana severely affects the cultivation of barley. The resistance to B. sorokiniana is quantitative in nature and its interaction with the host is highly complex which necessitates in-depth molecular analysis. Thus, the study aimed to conduct the transcriptome analysis to decipher the mechanisms and pathways involved in interactions between barley and B. sorokiniana in both the resistant (EC0328964) and susceptible (EC0578292) genotypes using the RNA Seq approach. In the resistant genotype, 6,283 genes of Hordeum vulgare were differentially expressed out of which 5,567 genes were upregulated and 716 genes were downregulated. 1,158 genes of Hordeum vulgare were differentially expressed in the susceptible genotype, out of which 654 genes were upregulated and 504 genes were downregulated. Several defense-related genes like resistant gene analogs (RGAs), disease resistance protein RPM1, pathogenesis-related protein PRB1-2-like, pathogenesis-related protein 1, thaumatin-like protein PWIR2 and defensin Tm-AMP-D1.2 were highly expressed exclusively in resistant genotype only. The pathways involved in the metabolism and biosynthesis of secondary metabolites were the most prominently represented pathways in both the resistant and susceptible genotypes. However, pathways involved in MAPK signaling, plant-pathogen interaction, and plant hormone signal transduction were highly enriched in resistant genotype. Further, a higher number of pathogenicity genes of B. sorokiniana was found in response to the susceptible genotype. The pathways encoding for metabolism, biosynthesis of secondary metabolites, ABC transporters, and ubiquitin-mediated proteolysis were highly expressed in susceptible genotype in response to the pathogen. 14 and 11 genes of B. sorokiniana were identified as candidate effectors from susceptible and resistant host backgrounds, respectively. This investigation will offer valuable insights in unraveling the complex mechanisms involved in barley- B. sorokiniana interaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...