Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
1.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892304

ABSTRACT

Glycerol-3-phosphoacyltransferase (GPAT) is an important rate-limiting enzyme in the biosynthesis of triacylglycerol (TAG), which is of great significance for plant growth, development, and response to abiotic stress. Although the characteristics of GPAT have been studied in many model plants, little is known about its expression profile and function in barley, especially under abiotic stress. In this study, 22 GPAT genes were identified in the barley genome and divided into three groups (I, II, III), with the latter Group III subdivided further into three subgroups based on the phylogenetic analysis. The analyses of conserved motifs, gene structures, and the three-dimensional structure of HvGPAT proteins also support this classification. Through evolutionary analysis, we determined that HvGPATs in Group I were the earliest to diverge during 268.65 MYA, and the differentiation of other HvGPATs emerged during 86.83-169.84 MYA. The tissue expression profile showed that 22 HvGPAT genes were almost not expressed in INF1 (inflorescence 1). Many functional elements related to stress responses and hormones in cis-element analysis, as well as qRT-PCR results, confirm that these HvGPAT genes were involved in abiotic stress responses. The expression level of HvGPAT18 was significantly increased under abiotic stress and its subcellular localization indicated its function in the endoplasmic reticulum. Various physiological traits under abiotic stress were evaluated using transgenic Arabidopsis to gain further insight into the role of HvGPAT18, and it was found that transgenic seedlings have stronger resistance under abiotic stress than to the wild-type (WT) plants. Overall, our results provide new insights into the evolution and function of the barley GPAT gene family and enable us to explore the molecular mechanism of functional diversity behind the evolutionary history of these genes.


Subject(s)
Evolution, Molecular , Gene Expression Regulation, Plant , Hordeum , Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Hordeum/genetics , Hordeum/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Glycerol-3-Phosphate O-Acyltransferase/genetics , Glycerol-3-Phosphate O-Acyltransferase/metabolism , Genome, Plant , Gene Expression Profiling
2.
Plant J ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38843114

ABSTRACT

WHIRLY1 is a chloroplast-nucleus located DNA/RNA-binding protein with functions in development and stress tolerance. By overexpression of HvWHIRLY1 in barley, one line with a 10-fold and two lines with a 50-fold accumulation of the protein were obtained. In these lines, the relative abundance of the nuclear form exceeded that of the chloroplast form. Growth of the plants was shown to be compromised in a WHIRLY1 abundance-dependent manner. Over-accumulation of WHIRLY1 in chloroplasts had neither an evident impact on nucleoid morphology nor on the composition of the photosynthetic apparatus. Nevertheless, oeW1 plants were found to be compromised in the light reactions of photosynthesis as well as in carbon fixation. The reduction in growth and photosynthesis was shown to be accompanied by a decrease in the levels of cytokinins and an increase in the level of jasmonic acid. Gene expression analyses revealed that in nonstress conditions the oeW1 plants had enhanced levels of pathogen response (PR) gene expression indicating activation of constitutive defense. During growth in continuous light of high irradiance PR gene expression increased indicating that under stress conditions oeW1 are capable to further enhance defense.

3.
BMC Plant Biol ; 24(1): 385, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724918

ABSTRACT

Waterlogging stress is one of the major abiotic stresses affecting the productivity and quality of many crops worldwide. However, the mechanisms of waterlogging tolerance are still elusive in barley. In this study, we identify key differentially expressed genes (DEGs) and differential metabolites (DM) that mediate distinct waterlogging tolerance strategies in leaf and root of two barley varieties with contrasting waterlogging tolerance under different waterlogging treatments. Transcriptome profiling revealed that the response of roots was more distinct than that of leaves in both varieties, in which the number of downregulated genes in roots was 7.41-fold higher than that in leaves of waterlogging sensitive variety after 72 h of waterlogging stress. We also found the number of waterlogging stress-induced upregulated DEGs in the waterlogging tolerant variety was higher than that of the waterlogging sensitive variety in both leaves and roots in 1 h and 72 h treatment. This suggested the waterlogging tolerant variety may respond more quickly to waterlogging stress. Meanwhile, phenylpropanoid biosynthesis pathway was identified to play critical roles in waterlogging tolerant variety by improving cell wall biogenesis and peroxidase activity through DEGs such as Peroxidase (PERs) and Cinnamoyl-CoA reductases (CCRs) to improve resistance to waterlogging. Based on metabolomic and transcriptomic analysis, we found the waterlogging tolerant variety can better alleviate the energy deficiency via higher sugar content, reduced lactate accumulation, and improved ethanol fermentation activity compared to the waterlogging sensitive variety. In summary, our results provide waterlogging tolerance strategies in barley to guide the development of elite genetic resources towards waterlogging-tolerant crop varieties.


Subject(s)
Gene Expression Profiling , Hordeum , Metabolome , Stress, Physiological , Transcriptome , Hordeum/genetics , Hordeum/physiology , Hordeum/metabolism , Stress, Physiological/genetics , Water/metabolism , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/metabolism , Plant Roots/genetics , Plant Roots/physiology , Plant Roots/metabolism , Gene Expression Regulation, Plant
4.
Genes (Basel) ; 15(5)2024 05 01.
Article in English | MEDLINE | ID: mdl-38790207

ABSTRACT

Zinc finger-homeodomain transcription factors (ZF-HDs) are pivotal in regulating plant growth, development, and diverse stress responses. In this study, we found 8 ZF-HD genes in barley genome. Theses eight HvZF-HD genes were located on five chromosomes, and classified into ZHD and MIF subfamily. The collinearity, gene structure, conserved motif, and cis-elements of HvZF-HD genes were also analyzed. Real-time PCR results suggested that the expression of HvZF-HD4, HvZF-HD6, HvZF-HD7 and HvZF-HD8 were up-regulated after hormones (ABA, GA3 and MeJA) or PEG treatments, especially HvZF-HD6 was significantly induced. These results provide useful information of ZF-HD genes to future study aimed at barley breeding.


Subject(s)
Gene Expression Regulation, Plant , Hordeum , Plant Proteins , Transcription Factors , Zinc Fingers , Hordeum/genetics , Hordeum/metabolism , Zinc Fingers/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Phylogeny , Chromosomes, Plant/genetics
5.
Plants (Basel) ; 13(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38794416

ABSTRACT

The aim of this work was to study the ability of 28-homobrassinolide (HBL) and 28-homocastasterone (HCS) to increase the resistance of barley (Hordeum vulgare L.) plants to drought and to alter their endogenous brassinosteroid status. Germinated barley seeds were treated with 0.1 nM HBL or HCS solutions for two hours. A water deficit was created by stopping the watering of 7-day-old plants for the next two weeks. Plants responded to drought through growth inhibition, impaired water status, increased lipid peroxidation, differential effects on antioxidant enzymes, intense proline accumulation, altered expression of genes involved in metabolism, and decreased endogenous contents of hormones (28-homobrassinolide, B-ketones, and B-lactones). Pretreatment of plants with HBL reduced the inhibitory effect of drought on fresh and dry biomass accumulation and relative water content, whereas HCS partially reversed the negative effect of drought on fresh biomass accumulation, reduced the intensity of lipid peroxidation, and increased the osmotic potential. Compared with drought stress alone, pretreatment of plants with HCS or HBL followed by drought increased superoxide dismutase activity sevenfold or threefold and catalase activity (by 36%). The short-term action of HBL and HCS in subsequent drought conditions partially restored the endogenous B-ketone and B-lactone contents. Thus, the steroidal phytohormones HBL and HCS increased barley plant resistance to subsequent drought, showing some specificity of action.

6.
BMC Plant Biol ; 24(1): 438, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778283

ABSTRACT

BACKGROUND: Roots play an important role during plant growth and development, ensuring water and nutrient uptake. Understanding the mechanisms regulating their initiation and development opens doors towards root system architecture engineering. RESULTS: Here, we investigated by RNA-seq analysis the changes in gene expression in the barley stem base of 1 day-after-germination (DAG) and 10DAG seedlings when crown roots are formed. We identified 2,333 genes whose expression was lower in the stem base of 10DAG seedlings compared to 1DAG seedlings. Those genes were mostly related to basal cellular activity such as cell cycle organization, protein biosynthesis, chromatin organization, cytoskeleton organization or nucleotide metabolism. In opposite, 2,932 genes showed up-regulation in the stem base of 10DAG seedlings compared to 1DAG seedlings, and their function was related to phytohormone action, solute transport, redox homeostasis, protein modification, secondary metabolism. Our results highlighted genes that are likely involved in the different steps of crown root formation from initiation to primordia differentiation and emergence, and revealed the activation of different hormonal pathways during this process. CONCLUSIONS: This whole transcriptomic study is the first study aiming at understanding the molecular mechanisms controlling crown root development in barley. The results shed light on crown root emergence that is likely associated with a strong cell wall modification, death of the cells covering the crown root primordium, and the production of defense molecules that might prevent pathogen infection at the site of root emergence.


Subject(s)
Gene Expression Regulation, Plant , Hordeum , Plant Roots , Hordeum/genetics , Hordeum/growth & development , Hordeum/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Seedlings/growth & development , Seedlings/genetics , Transcriptome , Gene Expression Profiling , Genes, Plant
7.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791258

ABSTRACT

Barley is one of the most important cereal crops in the world, and its value as a food is constantly being revealed, so the research into and the use of barley germplasm are very important for global food security. Although a large number of barley germplasm samples have been collected globally, their specific genetic compositions are not well understood, and in many cases their origins are even disputed. In this study, 183 barley germplasm samples from the Shanghai Agricultural Gene Bank were genotyped using genotyping-by-sequencing (GBS) technology, SNPs were identified and their genetic parameters were estimated, principal component analysis (PCA) was preformed, and the phylogenetic tree and population structure of the samples were also analyzed. In addition, a genome-wide association study (GWAS) was carried out for the hulled/naked grain trait, and a KASP marker was developed using an associated SNP. The results showed that a total of 181,906 SNPs were identified, and these barley germplasm samples could be roughly divided into three categories according to the phylogenetic analysis, which was generally consistent with the classification of the traits of row type and hulled/naked grain. Population structure analysis showed that the whole barley population could be divided into four sub-populations (SPs), the main difference from previous classifications being that the two-rowed and the hulled genotypes were sub-divided into two SPs. The GWAS analysis of the hulled/naked trait showed that many associated loci were unrelated to the Nud/nud locus, indicating that there might be new loci controlling the trait. A KASP marker was developed for one exon-type SNP on chromosome 7. Genotyping based on the KASP assay was consistent with that based on SNPs, indicating that the gene of this locus might be associated with the hulled/naked trait. The above work not only lays a good foundation for the future utilization of this barley germplasm population but it provides new loci and candidate genes for the hulled/naked trait.


Subject(s)
Genome-Wide Association Study , Hordeum , Phylogeny , Polymorphism, Single Nucleotide , Hordeum/genetics , Genome-Wide Association Study/methods , China , Quantitative Trait Loci , Genotype , Seed Bank , Genome, Plant , Genetic Variation , Principal Component Analysis , Phenotype
8.
J Med Food ; 27(6): 488-501, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579153

ABSTRACT

This study investigated the protective effects of a complex of Indian gooseberry and barley sprout (IB complex) on oxidative stress and skin damage caused by ultraviolet B irradiation in SHK-I hairless mice. The study examined the impact of IB complex on skin hydration, wrinkle formation, and melanogenesis using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and western blot analysis. The IB complex reduced skin hydration loss and wrinkle formation, while also demonstrating enhanced antioxidant activities. The IB complex maintained skin hydration via upregulation of hyaluronic acid and ceramide synthesis, including the regulation of hyaluronic acid synthase, long-chain ceramide formation, dihydroceramide desaturase 1 activity, and type I collagen production. The IB complex prevented wrinkle formation via downregulating JNK and upregulating TGF-ß pathways. Moreover, IB complex blocked melanin production via inhibition of protein kinase A, cAMP response element-binding protein, and microphthalmia-associated transcription factor pathways. These results suggest that IB complex is a potential agent to protect the skin against photodamage caused by exposure to UVB radiation. The research protocols underwent approval from the Institutional Animal Care and Use Committee of Kyung Hee University (KHGASP-21-577), ensuring compliance with ethical standards.


Subject(s)
Hordeum , Mice, Hairless , Oxidative Stress , Plant Extracts , Skin Aging , Skin , Ultraviolet Rays , Animals , Ultraviolet Rays/adverse effects , Oxidative Stress/radiation effects , Oxidative Stress/drug effects , Skin Aging/radiation effects , Skin Aging/drug effects , Mice , Hordeum/chemistry , Skin/radiation effects , Skin/metabolism , Plant Extracts/pharmacology , Humans , Male , Antioxidants , Melanins/metabolism
9.
Plant Physiol Biochem ; 209: 108546, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38518397

ABSTRACT

The occurrence of drought in soils, particularly in those contaminated by metals, poses a current threat to crops, as these factors can interact and induce unique stress responses. Therefore, this study mainly focused on understanding the crosstalk between drought and copper (Cu) stress in the physiology of the barley (Hordeum vulgare L.) plant. Using a bifactorial experimental design, seedlings were grown in a natural soil under the following treatments: plants continuously irrigated in uncontaminated soil for 14 days (control); plants continuously irrigated in Cu-contaminated soil (115 mg Cu kg-1) for 14 days (Cu); plants only irrigated during the initials 7 days of growth in uncontaminated soil (drought); plants co-exposed to Cu and drought (combined). After 14 days of growth, the results revealed that drought prevented Cu bioaccumulation in barley roots, which were still severely affected by the metal, both individually and in combination with the water deficit. Furthermore, individual and combined exposure to these stressors resulted in impaired photosynthetic performance in barley plants. Despite the increased activation of enzymatic and non-enzymatic antioxidant defence mechanisms, particularly in the green organs, the plants co-exposed to both stress factors still showed higher oxidative damage, severely impacting biomass production.


Subject(s)
Hordeum , Soil Pollutants , Droughts , Plants , Metals , Copper/toxicity , Soil , Soil Pollutants/toxicity
10.
Plants (Basel) ; 13(3)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38337909

ABSTRACT

The lodging of barley significantly limits its potential yield, leads to the deterioration of grain quality, and complicates mechanized harvesting. More than 30 dwarfness and semi-dwarfness genes and loci are known for barley, and their involvement in breeding can solve the problem of lodging. The most common dwarfing alleles are of the genes sdw1/denso (HvGA20ox2), uzu1 (HvBRI1), and ari-e (HvDep1). The aim of this study was the design of dCAPS markers for the sdw1.c and ari-e.GP alleles and the molecular screening of barley accessions from the VIR collection for identifying these and other dwarfing alleles commonly used in breeding. Two dCAPS markers have been developed to identify the sdw1.c allele of the HvGA20ox2 gene and ari-e.GP of HvDep1. These dCAPS markers and two known from the literature CAPS and dCAPS markers of the alleles sdw1.a/sdw1.e, sdw1.c, sdw1.d, and uzu1.a were used in the molecular screening of 32 height-contrasting barley accessions. This made it possible to identify the accessions with alleles sdw1.a/sdw1.e, sdw1.c, and sdw1.d of the HvGA20ox2 gene, as well as accessions with a combination of sdw1.c and uzu1.a alleles of the genes HvGA20ox2 and HvBRI1. A comparison of the results of genotyping and phenotyping showed that the presence of dwarfing alleles in all genotypes determines high or medium lodging resistance regardless of the influence of weather conditions. Twelve accessions were found to contain the new allele sdw1.ins of the HvGA20ox2 gene, which differs from the known allele sdw1.c by a larger size of PCR products. It is characterized by the Thalos_2 transposon insertion; the subsequent GTTA insertion, common with the sdw1.c allele; and by a single-nucleotide G→A substitution at the 165 position.

11.
Front Plant Sci ; 15: 1347842, 2024.
Article in English | MEDLINE | ID: mdl-38328701

ABSTRACT

FHY3 and its homologous protein FAR1 are the founding members of FRS family. They exhibited diverse and powerful physiological functions during evolution, and participated in the response to multiple abiotic stresses. FRF genes are considered to be truncated FRS family proteins. They competed with FRS for DNA binding sites to regulate gene expression. However, only few studies are available on FRF genes in plants participating in the regulation of abiotic stress. With wide adaptability and high stress-resistance, barley is an excellent candidate for the identification of stress-resistance-related genes. In this study, 22 HvFRFs were detected in barley using bioinformatic analysis from whole genome. According to evolution and conserved motif analysis, the 22 HvFRFs could be divided into subfamilies I and II. Most promoters of subfamily I members contained abscisic acid and methyl jasmonate response elements; however, a large number promoters of subfamily II contained gibberellin and salicylic acid response elements. HvFRF9, one of the members of subfamily II, exhibited a expression advantage in different tissues, and it was most significantly upregulated under drought stress. In-situ PCR revealed that HvFRF9 is mainly expressed in the root epidermal cells, as well as xylem and phloem of roots and leaves, indicating that HvFRF9 may be related to absorption and transportation of water and nutrients. The results of subcellular localization indicated that HvFRF9 was mainly expressed in the nuclei of tobacco epidermal cells and protoplast of arabidopsis. Further, transgenic arabidopsis plants with HvFRF9 overexpression were generated to verify the role of HvFRF9 in drought resistance. Under drought stress, leaf chlorosis and wilting, MDA and O2 - contents were significantly lower, meanwhile, fresh weight, root length, PRO content, and SOD, CAT and POD activities were significantly higher in HvFRF9-overexpressing arabidopsis plants than in wild-type plants. Therefore, overexpression of HvFRF9 could significantly enhance the drought resistance in arabidopsis. These results suggested that HvFRF9 may play a key role in drought resistance in barley by increasing the absorption and transportation of water and the activity of antioxidant enzymes. This study provided a theoretical basis for drought resistance in barley and provided new genes for drought resistance breeding.

12.
BMC Plant Biol ; 24(1): 16, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38163863

ABSTRACT

As climate change increases abiotic stresses like drought and heat, evaluating barley performance under such conditions is critical for maintaining productivity. To assess how barley performs under normal conditions, drought, and heat stress, 29 different varieties were examined, considering agronomic, physiological, and disease-related characteristics. The research was conducted in five environments: two normal environments in 2020/2021 and 2021/2022, two drought stress environments in 2020/2021 and 2021/2022, and one heat stress environment in 2021/2022. The results demonstrated that genotype and environment significantly influenced all traits (p < 0.05), except canopy temperature, while genotype x environment interaction significantly influenced most traits, except total chlorophyll content and canopy temperature. Heat and drought stress environments often resulted in reduced performance for traits like plant height, spike length, grains per spike, and 100-grain weight compared to normal conditions. Based on individual traits, genotypes 07UT-44, 06WA-77, 08AB-09, and 07N6-57 exhibited the highest grain yield (4.1, 3.6, 3.6, and 3.6 t/ha, respectively). Also, these genotypes demonstrated enhanced stability in diverse drought and heat stress conditions, as assessed by the mean performance vs. stability index (Weighted Average of Absolute Scores, WAASB). The multi-trait stability index (MTSI) identified 07UT-44, 07UT-55, 07UT-71, and 08AB-09 as the most stable genotypes in terms of the performance of all traits. The imported lines demonstrated superior performance and stability, highlighting their potential as valuable genetic resources for developing climate-resilient barley.


Subject(s)
Hordeum , Resilience, Psychological , Hordeum/genetics , Quantitative Trait Loci , Genotype , Phenotype , Edible Grain/genetics
13.
Braz J Microbiol ; 55(1): 843-854, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38270795

ABSTRACT

Soil contamination by heavy metals is one of the major problems that adversely decrease plant growth and biomass production. Inoculation with the plant growth-promoting rhizobacteria (PGPR) can attenuate the toxicity of heavy metals and enhancing the plant growth. In this study, we evaluated the potential of a novel extremotolerant strain (IS-2 T) isolated from date palm rhizosphere to improve barley seedling growth under heavy metal stress. The species-level identification was carried out using morphological and biochemical methods combined with whole genome sequencing. The bacterial strain was then used in vitro for inoculating Hordeum vulgare L. exposed to three different Cr, Zn, and Ni concentrations (0.5, 1, and 2 mM) in petri dishes and different morphological parameters were assessed. The strain was identified as Bacillus glycinifermentans species. This strain showed high tolerance to pH (6-11), salt stress (0.2-2 M), and heavy metals. Indeed, the minimum inhibitory concentrations at which bacterium was unable to grow were 4 mM for nickel, 3 mM for zinc, more than 8 mM for copper, and 40 mM for chromium, respectively. It was observed that inoculation of Hordeum vulgare L. under metal stress conditions with Bacillus glycinifermentans IS-2 T stain improved considerably the growth parameters. The capacity of the IS-2 T strain to withstand a range of abiotic stresses and improve barley seedling development under lab conditions makes it a promising candidate for use as a PGPR in zinc, nickel, copper, and chromium bioremediation.


Subject(s)
Bacillus , Hordeum , Metals, Heavy , Phoeniceae , Soil Pollutants , Copper/pharmacology , Nickel/toxicity , Rhizosphere , Metals, Heavy/toxicity , Bacteria , Chromium/toxicity , Biodegradation, Environmental , Seeds , Zinc , Soil , Plant Roots/microbiology
14.
J Agric Food Chem ; 72(1): 108-115, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38146912

ABSTRACT

Barley (Hordeum vulgare L.) is a common cereal crop in agricultural production and is often included in legume-cereal intercropping. Flavonoids, a major class of secondary metabolites found in barley, are involved in plant defense and protection. However, the effect of intercropping on barley flavonoids remains unknown. Herein, an intercropping system involving barley and lupin (Lupinus angustifolius L.) was studied. Intercropping increased the level of luteolin in lupin roots. Lupin-barley intercropping considerably increased genistein, rutin, and apigenin in barley shoots. Genistein and apigenin were also detected in intercropped barley roots and rhizosphere soil. The three flavonoids have been reported as defense compounds, suggesting that lupin triggers a defense response in barley to strengthen its survival ability.


Subject(s)
Hordeum , Lupinus , Flavonoids/metabolism , Lupinus/metabolism , Genistein/metabolism , Apigenin/metabolism
15.
Environ Res ; 246: 118045, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38160969

ABSTRACT

Present study included technological methods that made it possible to synthesize CdO nanoparticles and carry out their qualitative and quantitative diagnostics, confirming the as-prepared CdO nanoparticles (NPs) were spherical and had a size of 25 nm. Then, under the conditions of the model experiment the effect of CdO in macro and nanosized particles on absorption, transformation, and structural and functional changes occurring in cells and tissues of Hordeum vulgare L. (spring barley) during its ontogenesis was analyzed. Different analytical techniques were used to detect the transformation of CdO forms: Fourier-transform infrared spectroscopy (FTIR), Dynamic light scattering (DLS), X-ray fluorescence analysis (XRF), Scanning electron microscopy (SEM-EDXMA and TEM), X-ray diffraction (XRD), and X-ray absorption fine structure, consists of XANES - X-ray absorption near edge structure, and EXAFS - Extended X-ray absorption fine structure. Quantitative differences in the elemental chemical composition of barley root and leaf samples were observed. The predominant root uptake of Cd was revealed. CdO-NPs were found to penetrate deeply into barley plant tissues, where they accumulated and formed new mineral phases such as Cd5(PO4)3Cl and CdSO4 according to XRD analysis. The molecular-structural state of the local Cd environment in plant samples corresponding to Cd-O and Cd-Cd. The toxicity of CdO-NPs was found to significantly affect the morphology of intracellular structures are the main organelles of photosynthesis therefore, destructive changes in them obviously reduce the level of metabolic processes ensuring the growth of plants. This study is an attempt to show results how it is possible to combine some instrumental techniques to characterize and behavior of NPs in complex matrices of living organisms.


Subject(s)
Cadmium Compounds , Hordeum , Metal Nanoparticles , Nanoparticles , Hordeum/metabolism , Cadmium , Oxides/chemistry , Nanoparticles/toxicity , Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry
16.
Int J Mol Sci ; 24(22)2023 Nov 12.
Article in English | MEDLINE | ID: mdl-38003420

ABSTRACT

The production of crops is severely limited by water scarcity. We still do not fully understand the underlying mechanism of exogenous melatonin (MT)-mediated water stress tolerance in barley. This study is the first of its kind to show how MT can potentially mitigate changes in barley's physio-biochemical parameters caused by water deficiency. Barley was grown under three irrigation levels (100%, 70%, and 30% of field capacity) and was foliar sprayed with 70 µM MT. The results showed that exogenously applied MT protected the photosynthetic apparatus by improving photosynthetic pigment content, photochemical reactions of photosynthesis, Calvin cycle enzyme activity, gas exchange capacity, chlorophyll fluorescence system, and membrane stability index. Furthermore, the increased levels of salicylic acid, gibberellins, cytokinins, melatonin, and indole-3-acetic acid, as well as a decrease in abscisic acid, indicated that foliar-applied MT greatly improved barley water stress tolerance. Additionally, by increasing the activity of antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase and decreasing hydrogen peroxide content, lipid peroxidation, and electrolyte leakage, MT application lessened water stress-induced oxidative stress. According to the newly discovered data, MT application improves barley water stress tolerance by reprogramming endogenous plant hormone production and antioxidant activity, which enhances membrane stability and photosynthesis. This study unraveled MT's crucial role in water deficiency mitigation, which can thus be applied to water stress management.


Subject(s)
Hordeum , Melatonin , Antioxidants/metabolism , Melatonin/pharmacology , Plant Growth Regulators , Hordeum/metabolism , Dehydration , Droughts , Photosynthesis
17.
Comput Struct Biotechnol J ; 21: 4923-4932, 2023.
Article in English | MEDLINE | ID: mdl-37867969

ABSTRACT

Net blotch (NB) and powdery mildew (PM) are major barley diseases with the potential to cause a dramatic loss in grain yield. Breeding for resistant barley genotypes in combination with identifying candidate resistant genes will accelerate the genetic improvement for resistance to NB and PM. To address this challenge, a set of 122 highly diverse barley genotypes from 34 countries were evaluated for NB and PM resistance under natural infection for in two growing seasons. Moreover, four yield traits; plant height (Ph), spike length (SL), spike weight (SW), and the number of spikelets per spike (NOS) were recorded. High genetic variation was found among genotypes in all traits scored in this study. No significant phenotypic correlation was found in the resistance between PM and NB. Immune genotypes for NB and PM were identified. A total of 21 genotypes were immune to both diseases. Of the 21 genotypes, the German genotype HOR_9570 was selected as the most promising genotype that can be used for future breeding programs. Furthermore, a genome-wide association study (GWAS) was used to identify resistant alleles to PM and NB. The results of GWAS revealed a set of 14 and 25 significant SNPs that were associated with increased resistance to PM and NB, respectively. This study provided very important genetic resources that are highly resistant to the Egyptian PM and NB pathotypes and revealed SNP markers that can be utilized to genetically improve resistance to PM and NB.

18.
Front Plant Sci ; 14: 1159016, 2023.
Article in English | MEDLINE | ID: mdl-37346141

ABSTRACT

Low-temperature stress (LTS) is among the major abiotic stresses affecting the geographical distribution and productivity of the most important crops. Understanding the genetic basis of photosynthetic variation under cold stress is necessary for developing more climate-resilient barley cultivars. To that end, we investigated the ability of chlorophyll fluorescence parameters (FVFM, and FVF0) to respond to changes in the maximum quantum yield of Photosystem II photochemistry as an indicator of photosynthetic energy. A panel of 96 barley spring cultivars from different breeding zones of Canada was evaluated for chlorophyll fluorescence-related traits under cold acclimation and freeze shock stresses at different times. Genome-wide association studies (GWAS) were performed using a mixed linear model (MLM). We identified three major and putative genomic regions harboring 52 significant quantitative trait nucleotides (QTNs) on chromosomes 1H, 3H, and 6H for low-temperature tolerance. Functional annotation indicated several QTNs were either within the known or close to genes that play important roles in the photosynthetic metabolites such as abscisic acid (ABA) signaling, hydrolase activity, protein kinase, and transduction of environmental signal transduction at the posttranslational modification levels. These outcomes revealed that barley plants modified their gene expression profile in response to decreasing temperatures resulting in physiological and biochemical modifications. Cold tolerance could influence a long-term adaption of barley in many parts of the world. Since the degree and frequency of LTS vary considerably among production sites. Hence, these results could shed light on potential approaches for improving barley productivity under low-temperature stress.

19.
Biology (Basel) ; 12(6)2023 May 29.
Article in English | MEDLINE | ID: mdl-37372072

ABSTRACT

Depending on their habitat conditions, plants can greatly change the growth rate of their roots. However, the mechanisms of such responses remain insufficiently clear. The influence of a low level of illumination on the content of endogenous auxins, their localization in leaves and transport from shoots to roots were studied and related to the lateral root branching of barley plants. Following two days' reduction in illumination, a 10-fold reduction in the emergence of lateral roots was found. Auxin (IAA, indole-3-acetic acid) content decreased by 84% in roots and by 30% in shoots, and immunolocalization revealed lowered IAA levels in phloem cells of leaf sections. The reduced content of IAA found in the plants under low light suggests an inhibition of production of this hormone under these conditions. At the same time, two-fold downregulation of the LAX3 gene expression, facilitating IAA influx into the cells, was detected in the roots, as well as a decline in auxin diffusion from shoots through the phloem by about 60%. It was suggested that the reduced emergence of lateral roots in barley under a low level of illumination was due to a disturbance of auxin transport through the phloem and down-regulation of the genes responsible for auxin transport in plant roots. The results confirm the importance of the long distance transport of auxins for the control of the growth of roots under conditions of low light. Further study of the mechanisms that control the transport of auxins from shoots to roots in other plant species is required.

20.
Plants (Basel) ; 12(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37376001

ABSTRACT

Barley (Hordeum vulgare L.) is one of the most produced cereal crops in the world. It has traditionally been used for the production of animal feed and for malting, as well as for human consumption. However, its production is highly affected by biotic stress factors, particularly the fungal pathogen Blumeria graminis (DC.) f. sp. hordei (Bgh), which causes powdery mildew (PM). In this study, a collection of 406 barley accessions from the USA, Kazakhstan, Europe, and Africa were assessed for resistance to PM over a 3-year period in southeastern Kazakhstan. The collection was grown in the field in 2020, 2021, and 2022 and was genotyped using the 9K SNP Illumina chip. A genome-wide association study (GWAS) was conducted to identify the quantitative trait loci (QTLs) associated with PM resistance. As a result, seven QTLs for PM resistance were detected on chromosomes 4H, 5H, and 7H (FDR p-values < 0.05). Genetic positions of two QTLs were similar to those of PM resistance QTLs previously reported in the scientific literature, suggesting that the five remaining QTLs are novel putative genetic factors for the studied trait. Haplotype analysis for seven QTLs revealed three haplotypes which were associated with total PM resistance and one haplotype associated with the high PM severity in the barley collection. Identified QTLs and haplotypes associated with the PM resistance of barley may be used for further analysis, trait pyramiding, and marker-assisted selection.

SELECTION OF CITATIONS
SEARCH DETAIL
...