Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Publication year range
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(2): 214-228, mar. 2024. tab, graf
Article in Spanish | LILACS | ID: biblio-1552134

ABSTRACT

Cancer cells modify lipid metabolism to proliferate, Passiflora edulis ( P. edulis ) fruit juice (ZuFru) has antitumor activity, but whether a mechanism is through modulation of cell lipids is unknown. T o establish if ZuFru modifies cholesterol and triglycerides in SW480 and SW620. ZuFru composition was studied by phytochemical march; antiproliferative activity by sulforhodamine B, cholesterol , and triglycerides by Folch method. Z ufru contains anthocyanins, flavonoids, alkaloids , and tannins. Cell lines showed differences in their growth rate ( p =0.049). At 39.6 µg/m L of ZuFru, cell viability was decreased: SW480 (45.6%) and SW620 (45.1%). In SW480, cholesterol (44.6%) and triglycerides (46.5%) decreased; In SW620, cholesterol decreased 14.8% and triglycerides increased 7%, with significant differences for both lines. A ntiproliferative activity of ZuFru could be associated with the inhibition of intracellular biosynthesis of cholesterol and triglycerides in SW480. Action mechanisms need to be further investigated.


Las células cancerosas modifican el metabolismo lipídico para proliferar; el zumo de fruta (ZuFru) de Passiflora edulis ( P. edulis ) tiene activida d antitumoral, sin embargo, se desconoce si se involucran los lípidos celulares. E stablecer si ZuFru modifica colesterol y triglicéridos en células SW480 y SW620. C omposición del ZuFru, actividad antiproliferativa, colesterol y triglicéridos. Se encontraro n antocianinas, flavonoides, alcaloides y taninos. Las líneas celulares mostraron diferencias en su tasa de crecimiento ( p =0 . 049); ZuFru 39,6 µg/ml se disminuyó la viabilidad celular; SW480 (45,6%) y SW620 (45,1%); en SW480 colesterol (44,6%) y triglicérid os (46,5%) en SW620, colesterol (14,8%) y los triglicéridos aumentaron 7%, con diferencias significativas para ambas líneas. La actividad antiproliferativa del ZuFru podría estar asociada a la inhibición de la biosíntesis intracelular de colesterol y de tr iglicéridos en SW480, pero no en SW620. Estos mecanismos de acción deben ser fuertemente investigados.


Subject(s)
Plant Extracts/administration & dosage , Colorectal Neoplasms/drug therapy , Passiflora/chemistry , Fruit and Vegetable Juices/analysis , Phenols/analysis , Polysaccharides/analysis , Triglycerides , Flavonoids/analysis , Plant Extracts/chemistry , Cell Survival/drug effects , Cholesterol , Anticarcinogenic Agents , Cell Line, Tumor/drug effects , Cell Proliferation/drug effects , Antioxidants
2.
Plants (Basel) ; 12(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38140490

ABSTRACT

This study aimed to evaluate the response of Toona ciliata seedlings to sublethal doses of glyphosate. The increasing use of glyphosate in agriculture concerns the scientific community, as the drift of this pollutant into aquatic systems or atmospheric currents can affect non-target species. Therefore, we need to understand how non-target species respond to small doses of this herbicide. T. ciliata seedlings (clone BV-1110) were exposed to sublethal doses of glyphosate (0, 9.6, 19.2, 38.4, 76.8 g ae ha-1). Anatomical, physiological, and photochemical analyses were performed 60 days after herbicide application, and growth assessments were carried out after 160 days of cultivation. We found that sublethal doses of glyphosate above 19.2 g ae ha-1 induced toxicity symptoms in Toona ciliata leaves. These symptoms were mild in some cases, such as chlorosis, but severe in other cases, such as tissue necrosis. We observed a positive relationship between increased plant height and photochemical yield with plant exposure to sub-doses 9.6 and 19.2 g ae ha-1. A sublethal dose of 38.4 g ae ha-1 improved the photosynthetic rate and carboxylation efficiency. Thus, we confirmed the hypothesis of a hormetic effect when T. ciliata was exposed to sub-doses of glyphosate equal to or lower than 38.4 g ae ha-1. However, the sublethal dose of 76.8 g ae ha-1 must be considered toxic, impacting photosynthetic activity and, consequently, the height of T. ciliata. The stem diameter of T. ciliata responded positively to increasing glyphosate doses. This occurs to compensate for the negative effect of glyphosate on water absorption. Further research will provide valuable information for harnessing the potential benefits of hormesis to improve the productivity of T. ciliata.

3.
Redox Rep ; 27(1): 259-269, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36356189

ABSTRACT

Encephalic vascular accident, or stroke, is the most common pathology of the central nervous system in humans, the second leading cause of death and physical and cognitive disabilities, in developing countries. It presents as an ischemic (more common) or hemorrhagic form. Ozone therapy has been shown to be effective in neuromodulation, neuroprotection, and nerve regeneration. The present study aimed to evaluate the effect of targeted mild ozone after inducing cerebral ischemia in vitro. Neuroblastoma lineage cells (SH-SY5Y) and canine amniotic membrane stem cells were subjected to 24 hours of hypoxia in an incubator culture chamber. The cells were evaluated by MTT assay, colorimetric assay spectrophotometry, fluorescence microscopy, and flow cytometry. Treatment with low concentrations of ozone (2-10 µg/mL), indicated a possible neuroregenerative effect at low concentrations, correlated with lower levels of apoptosis and oxidative stress compared to cells not subjected to hypoxia. High concentrations of ozone (18-30 µg/mL) promoted an increase in rate of apoptosis and cell death. We developed a novel protocol that mimics ozone therapy for ischemic stroke, using ozonized culture medium after hypoxia induction. Although more studies are needed, we conclude that ozone has a dose-dependent hormetic effect and can reverse the effect of ischemia in vitro at low concentrations.


Subject(s)
Neuroblastoma , Ozone , Humans , Animals , Dogs , Ozone/therapeutic use , Ozone/pharmacology , Oxygen , Oxidative Stress , Apoptosis , Ischemia , Hypoxia , Cell Line, Tumor
4.
J Hazard Mater ; 384: 121434, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31812481

ABSTRACT

Tolerance level to cadmium (Cd) toxicity is generally associated with reductions of the internal Cd accumulation in living organisms. In plants, Cd exposure frequently triggers negative effects on their growth and productivity. However, an increased number of studies has reported the improved performance of some plant species (or their accessions/genotypes/varieties/cultivars/clones) to Cd exposure, despite Cd accumulation in their roots and shoots. These results indicate that plants have developed protective strategies to neutralize the side-effects from Cd toxicity or, more controversially, mechanisms that employ Cd as beneficial element. Here, we gathered information about Cd-induced hormetic effects on plants, and explored the potential mechanisms that allow them to have a better performance under Cd exposure. The promotion of plant development depends on both direct and indirect Cd-induced alterations in the metabolism of plants and their surround environment. In addition, the mechanisms behind the positive Cd-induced transgenerational effects were also discussed in the present paper.


Subject(s)
Cadmium/pharmacology , Hormesis , Magnoliopsida/drug effects , Cadmium/toxicity , Hormesis/drug effects , Magnoliopsida/growth & development , Magnoliopsida/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL