Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Chin Herb Med ; 16(2): 274-281, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38706818

ABSTRACT

Objective: Rheumatoid arthritis (RA) is a chronic inflammatory and destructive arthritis, characterized by inflammatory infiltration and bone destruction. Huangqi Guizhi Wuwu Decoction (HGWD) is traditional Chinese medicine, which has been applied in the treatment of RA in clinical. The aim of this study was to investigate the therapeutic effect of HGWD on collagen-induced arthritis (CIA) mouse model. Methods: DBA/1J female mice were used to establish the collagen-induced arthritis (CIA) model. HGWD was administered intragastrically once a day for four weeks starting on the 22nd day after the first immunization. The body weight, hind paw thickness and clinical score were measured every five days. Gait analysis, histopathological staining, enzyme-linked immunosorbent assay (ELISA), ultrasound imaging and micro-computed tomography imaging were performed to determine the effects of HGWD treatment on inflammation and bone structure in this model. Moreover, Real-time PCR and Western blot analysis were used to detect inflammatory factors mRNA and protein levels after HGWD intervention in RAW 264.7 cells. Results: HGWD attenuated symptoms of arthritis, suppressed inflammatory synovium area and the serum levels of inflammatory factors, inhibited joint space enlargement in the knee and ankle joints, reduced numbers of osteoclasts, protected bone destruction, as well as improved motor function. HGWD decreased the expression of mRNA for inflammatory factors and the protein expression levels of p-NF-кB and IL-17. Conclusion: These results suggested that HGWD suppresses inflammation, attenuates bone erosion and maintains motor function in collagen-induced arthritis mice.

2.
Biomed Pharmacother ; 175: 116653, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688172

ABSTRACT

Huangqi Guizhi Wuwu Decoction (HQGZWWD) has shown promising potential in treating various cardiovascular diseases. This study aimed to elucidate the molecular basis and therapeutic role of HQGZWWD in the treatment of doxorubicin (DOX)-induced myocardial injury. The HPLC fingerprint of HQGZWWD was used to analyze the active components. A DOX-induced myocardial damage rat model was developed, and the therapeutic effects of HQGZWWD were evaluated using echocardiography, myocardial enzyme levels, and hematoxylin and eosin staining. Network pharmacology was used to screen treatment targets, and western blotting and immunohistochemistry were performed to assess cellular pyroptosis levels. Oxidative stress levels were measured using assay kits, and mitochondrial damage was examined using transmission electron microscopy. An in vitro model of DOX-induced cell damage was established, and treatment was administered using serum containing HQGZWWD and N-acetylcysteine (NAC). Oxidative stress levels were detected using assay kits and DCFH-DA, whereas cellular pyroptosis levels were assessed through WB, immunofluorescence, and ELISA assays. HQGZWWD ameliorated DOX-induced myocardial injury. Network pharmacology identified IL-1ß and IL-18 as crucial targets. HQGZWWD downregulated the protein levels of the inflammatory factors IL-1ß and IL-18, inhibited the expression of GSDMD-NT, and simultaneously suppressed the synthesis of Caspase-1, ASC, NLRP3, and Caspase-11. Additionally, HQGZWWD inhibited oxidative stress, and the use of NAC as an oxidative stress inhibitor resulted in significant inhibition of the GSDMD-NT protein in H9C2 cells. These findings highlight the myocardial protective effects of HQGZWWD by inhibiting oxidative stress and suppressing both canonical and non-canonical pyroptotic pathways.


Subject(s)
Cardiotoxicity , Doxorubicin , Drugs, Chinese Herbal , Oxidative Stress , Pyroptosis , Rats, Sprague-Dawley , Animals , Doxorubicin/toxicity , Pyroptosis/drug effects , Drugs, Chinese Herbal/pharmacology , Oxidative Stress/drug effects , Cardiotoxicity/drug therapy , Cardiotoxicity/metabolism , Cardiotoxicity/prevention & control , Rats , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Cell Line , Network Pharmacology
3.
Phytomedicine ; 125: 155239, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38308917

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is a demyelination disorder caused by an overactive immune response. Its pathological characteristics include CNS inflammation, white matter demyelination, glial cell proliferation, and so on. Huangqi-Guizhi-Wuwu Decoction (HGWD), which is recorded in the Synopsis of the Golden Chamber, is used clinically for the therapy of MS, but its mechanism is still elusive. PURPOSE: This study was aimed to investigate the impact of HGWD on the classical animal model for MS, experimental autoimmune encephalomyelitis (EAE), and explore the underlying action mechanism. RESULTS: HGWD ameliorated the pathogenesis of EAE mice, and improved their neurobehavior and pathological tissue damage. Network pharmacology predictions revealed the action mechanism of HGWD in EAE mice might be related to its effect on the immune system of mice. HGWD effectively suppressed the inflammatory infiltration in CNS, while also preventing the elevation of CD4+T cells of mice with EAE. HGWD could increase the ratio of Treg cells, up-regulate the secretion of IL-10 and Foxp3 mRNA expression, inhibit the ratio of Th1 and Th17 cells, down-regulate the IFN-γ and IL-17 protein expression, as well as the RORγT and T-bet gene expression in EAE mice. In addition, HGWD-containing serum modulated Th1/Th17/Treg cell differentiation in vitro. Moreover, HGWD inhibited the p-JAK1, p-JAK2, p-STAT1, p-STAT3 and p-STAT4 proteins and elevated the p-STAT5 protein in lymphoid tissues of EAE mice. CONCLUSION: HGWD improved the progress of EAE by regulating the proportion of CD4+T cell subtype differentiation, which might be exerted through JAK/STAT signaling pathway, providing a pharmacological basis for the clinical treatment of MS.


Subject(s)
Astragalus propinquus , Drugs, Chinese Herbal , Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Mice , Animals , Drugs, Chinese Herbal/therapeutic use , Multiple Sclerosis/drug therapy , T-Lymphocytes, Regulatory/metabolism , Cell Differentiation , Mice, Inbred C57BL , Th17 Cells
4.
BMC Complement Med Ther ; 24(1): 4, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166916

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by the destruction of synovial tissue and articular cartilage. Huangqi-Guizhi-Wuwu-Decoction (HGWD), a formula of Traditional Chinese Medicine (TCM), has shown promising clinical efficacy in the treatment of RA. However, the synergistic effects of key response components group (KRCG) in the treatment of RA have not been well studied. METHODS: The components and potential targets of HGWD were extracted from published databases. A novel node influence calculation model that considers both the node control force and node bridging force was designed to construct the core response space (CRS) and obtain key effector proteins. An increasing coverage coefficient (ICC) model was employed to select the KRCG. The effectiveness and potential mechanism of action of KRCG were confirmed using CCK-8, qPCR, and western blotting. RESULTS: A total of 796 key effector proteins were identified in CRS. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses confirmed their effectiveness and reliability. In addition, 59 components were defined as KRCG, which contributed to 85.05% of the target coverage of effective proteins. Of these, 677 targets were considered key reaction proteins, and their enriched KEGG pathways accounted for 84.89% of the pathogenic genes and 87.94% of the target genes. Finally, four components (moupinamide, 6-Paradol, hydrocinnamic acid, and protocatechuic acid) were shown to inhibit the inflammatory response in RA by synergistically targeting the cAMP, PI3K-Akt, and HIF-1α pathways. CONCLUSIONS: We have introduced a novel model that aims to optimize and analyze the mechanisms behind herbal formulas. The model revealed the KRCG of HGWD for the treatment of RA and proposed that KRCG inhibits the inflammatory response by synergistically targeting cAMP, PI3K-Akt, and HIF-1α pathways. Overall, the novel model is plausible and reliable, offering a valuable reference for the secondary development of herbal formulas.


Subject(s)
Arthritis, Rheumatoid , Neuroprotective Agents , Humans , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Reproducibility of Results , Arthritis, Rheumatoid/drug therapy , Neuroprotective Agents/therapeutic use
5.
Biomed Chromatogr ; 38(2): e5783, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38014563

ABSTRACT

Huangqi Guizhi Wuwu decoction (HGWWD) is a widely used traditional Chinese medicine (TCM) preparation for the treatment of ischemic stroke and diabetes peripheral neuropathy. However, the material basis for the efficacy of HGWWD remains unclear. In this study, a rapid, sensitive and selective ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) method was developed to separate and identify the absorbed components and metabolites of HGWWD in rat plasma after oral administration for the first time. By comparing the retention time, high-resolution mass spectrometry primary and secondary mass spectrometry data of blank plasma and drug-containing plasma, a total of 42 constituents, including 24 prototype compounds and 18 metabolites, were identified or tentatively characterized. The results indicated that monoterpenes, flavonoids, organic acids, amino acids, gingerols and alkaloids were main prototype compounds in rat plasma, and flavonoid-related metabolites, organic acid-related metabolites and gingerol-related metabolites were major metabolites. It is concluded the developed UHPLC-Q-TOF-MS method with high sensitivity and resolution is suitable for identifying and characterizing the absorbed components and metabolites of HGWWD, and the results will provide important data for further study on the relationship between the chemical constituents and pharmacological activities of HGWWD.


Subject(s)
Astragalus propinquus , Drugs, Chinese Herbal , Rats , Animals , Rats, Sprague-Dawley , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Mass Spectrometry/methods , Chromatography, Liquid , Flavonoids/analysis
6.
J Ethnopharmacol ; 319(Pt 3): 117301, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37820997

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Huangqi Guizhi Wuwu Decoction (HGWD) is a classic traditional Chinese herbal formula from "Synopsis of Golden Chamber," which is used to treat blood stagnation and has been used for alleviating diabetic peripheral neuropathy (DPN) in the clinic. However, the mechanisms of HGWD intervention DPN are still to be discovered. AIM OF THE STUDY: This study aims to explore the mechanism of HGWD intervention DPN by integrating plasma metabolomics and gut microbiome. MATERIALS AND METHODS: BKS Cg-m+/+Leprdb/J (db/db) mice with DPN were at 16 weeks of age. The indices of DPN phenotypes in db/db mice, pathomorphology of the sciatic nerve, intraepithelial nerve fibers (IENF) of the foot pad, levels of blood lipids and oxidative stress, and inflammatory reaction were used to appraise the HGWD efficacy. Finally, the pharmacological mechanisms of HGWD intervening DPN were explored by metabolomics and 16S rRNA gene sequencing. RESULTS: HGWD reversed DPN phenotypes in db/db mice, improved peripheral nerve structure, ameliorated the level of blood lipids and nerve growth factor in plasma, enhanced antioxidant capacity, and alleviated inflammatory responses. Plasma metabolomics disclosed that HGWD remarkably regulated the unusual levels of thirty-seven metabolites involved in sphingolipid metabolism, biosynthesis of unsaturated fatty acids, arachidonic acid metabolism, and amino acid biosynthesis pathways. The gut microbiome showed that nine bacteria were highly correlated with the efficacy of HGWD in DPN. Integrating analysis of microbiome and metabolomics demonstrated that the interaction of four bacteria with four metabolic pathways might be the significant mechanism of HGWD intervention in DPN. CONCLUSIONS: The mediation of gut microbiota and plasma metabolism may be the potential mechanism of HGWD ameliorating DPN in db/db mice. The interaction of Lactobacillus, Alloprevotella, Bacteroides, and Desulfovibio with four metabolic pathways might be the critical mechanism for HGWD treating DPN.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Gastrointestinal Microbiome , Animals , Mice , Diabetic Neuropathies/drug therapy , RNA, Ribosomal, 16S , Metabolomics , Lipids
7.
J Ethnopharmacol ; 319(Pt 3): 117325, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37852340

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Huangqi Guizhi Wuwu Decoction (HGWD), a classical Chinese formula originally recorded in Jin Kui Yao Lue, was used for the treatment of human "blood impediment" (a type of "Bi" syndrome). In clinical practice, HGWD has been applied to treat rheumatoid arthritis (RA). AIM OF THE STUDY: The characterization of chemical markers reflecting both efficacy and chemical characteristics is of great significance for TCM quality control. With the anti-RA effects of HGWD as an example, the aim of this study was to develop a comprehensive strategy combining the overall chemical profile and biological activity data to identify chemical markers. MATERIALS AND METHODS: First, an ultra-performance liquid chromatography-diode array detector (UPLC-DAD) fingerprint was established and validated to evaluate the holistic quality of HGWD of different origins. Characteristic markers associated with HGWD from different geographical origins were screened by a combination of UPLC-DAD fingerprint and chemometrics methods. Second, the chemical profiles of the 15 batches of HGWD samples were characterized by UPLC coupled tohybrid linear ion trap-Orbitrap mass spectrometry (UPLC-HRMS). The in vitro anti-RA activities of the 15 HGWD samples were then evaluated. Third, spectrum-effect relationship analysis was performed to identify bioactive compounds that could potentially be used as quality markers. Finally, a UPLC-triple quadrupole tandem mass spectrometry approach was optimized and established for quantitative analysis of the characteristic and quality markers in 15 batches of HGWD. RESULTS: In total, 30 common peaks were assigned in the UPLC-DAD fingerprint. Nine peaks were recognized and considered characteristic markers: protocatechuic acid, coumarin, cinnamic acid, oxypaeoniflorin, paeoniflorin, calycosin, formononetin, catechin, and albiflorin. Furthermore, ninety-five common compounds were identified in the UPLC-HRMS chemical profile. The pharmacological analysis indicated that the anti-RA activities of the 15 HGWD samples were vastly different. The spectrum-effect relationship analysis revealed 30 potential bioactive constituents positively correlated with anti-RA activity. Among them, five compounds with relative amounts >1%, paeoniflorin, astragaloside IV, hexahydrocurcumin, formononetin and calycosin-7-glucoside, were selected as quality markers, and their activity was verified in LPS-induced RAW264.7 macrophages. Finally, the above 12 representative components were simultaneously quantified in the 15 batches of HGWD samples. CONCLUSION: Combining a holistic chemical profile with representative component evaluation, this systematic strategy could be a reliable and effective method to improve quality evaluations of HGWD.


Subject(s)
Arthritis, Rheumatoid , Chemometrics , Humans , Glucosides , Monoterpenes , Arthritis, Rheumatoid/drug therapy , Chromatography, Liquid
8.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5438-5449, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114137

ABSTRACT

Huangqi Guizhi Wuwu Decoction is a classic prescription in traditional Chinese medicine(TCM) and is known for its effects of tonifying Qi, warming the meridians, and promoting blood circulation to alleviate obstruction. It is primarily used to treat conditions characterized by Qi stagnation, Yang deficiency, and obstruction, and it exhibits pharmacological effects such as immune regulation, anti-inflammation, analgesia, protection of the cardiovascular and cerebrovascular systems, itch relief, reduction of frostbite symptoms, antioxidative stress, promotion of cell apoptosis, and kidney protection. In modern clinical practice, it is commonly used to treat acute myocardial infarction, sequelae of cerebral infarction, cervical spondylosis, frozen shoulder, lower limb arteriosclerosis, lower limb vascular disorders, peripheral neuropathy in diabetes, and lupus nephritis. Recent research has focused on the chemical components, pharmacological effects, and clinical applications of Huangqi Guizhi Wuwu Decoction. Based on the "five principles" of quality markers(Q-markers) in TCM, this study predicted and analyzed the Q-markers of Huangqi Guizhi Wuwu Decoction. It suggested that astragaloside Ⅳ, formononetin, kaempferol, quercetin, cinnamic acid, cinnamaldehyde, 6-gingerol, paeoniflorin, albiflorin, and gallic acid could serve as Q-markers for Huangqi Guizhi Wuwu Decoction. The findings of this study can provide references for quality control of Huangqi Guizhi Wuwu Decoction and the development of new Chinese medicinal formulations.


Subject(s)
Drugs, Chinese Herbal , Frostbite , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Astragalus propinquus , Frostbite/drug therapy
9.
J Sep Sci ; 46(21): e2300337, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37654058

ABSTRACT

Huangqi Guizhi Wuwu decoction (HGWWD) is a classic traditional Chinese medicine prescription for the treatment of ischemic stroke, etc. However, the material basis of its efficacy remains unclear, seriously affecting drug development and clinical applications. In the present study, an ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry method was developed to separate and identify the chemical components of HGWWD. A total of 81 compounds were identified and tentatively characterized. Eight compounds were accurately identified by comparing the retention time and mass spectrometry data with those of reference substances, the remaining compounds were characterized by comparing the mass spectrometry data and reference information. Based on the results of compound attribution, 35 compounds were from Astragali Radix, six compounds were from Cinnamomi Ramulus, 23 compounds were from Paeoniae Radix Alba, eight compounds were from Zingiberis Rhizoma Recens and nine compounds were from Jujubae Fructus. The results showed that monoterpenoids, flavonoids, organic acids, triterpenes, amino acids, gingerols, alkaloids, and glycosides were the main chemical components of HGWWD. This analytical method is suitable for characterizing the chemical constituents of HGWWD, and the results provide important information for elucidating its pharmacodynamic material basis and mechanism of action.


Subject(s)
Drugs, Chinese Herbal , Plant Extracts , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/analysis , Mass Spectrometry
10.
Anal Bioanal Chem ; 415(26): 6399-6410, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37707668

ABSTRACT

Huangqi Guizhi Wuwu decoction (HGWD), as a classical formula, has been used for thousands of years in China. In this work, a comprehensive strategy was proposed for characterizing the chemical profile of HGWD based on online two-dimensional hydrophilic interaction and reversed-phase liquid chromatography coupled with hybrid linear ion trap-Orbitrap mass spectrometry (online HILIC × RP-ESI/HRMS/MSn). The compounds in HGWD were first separated by the combined use of an XBridge amide column (150 × 4.6 mm, 3.5 µm) and Accucore C18 column (50 mm × 4.6 mm, 2.6 µm). Modulation with assistant technology, including trap columns and online dilution, was optimized and developed to decrease potential analyte loss and improve the resolution of the system. Subsequently, the accurate mass was determined by high-resolution Orbitrap and MSn fragment data by a hybrid linear ion trap (LTQ). In total, 170 chemical constituents were unambiguously identified or tentatively characterized in both positive and negative ion modes. Our study demonstrated that the proposed online HILIC × RP system coupled to the LTQ-Orbitrap MS platform is an efficient analytical technique for characterizing the chemical profile of multicomponent systems.

11.
Chin Med ; 18(1): 114, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37679804

ABSTRACT

BACKGROUND: Oxaliplatin-induced peripheral neurotoxicity (OIPN) limits the dose of chemotherapy and seriously affects the quality of life. Huangqi Guizhi Wuwu Decoction (HGWD) is a classical Traditional Chinese Medicine (TCM) formula for the prevention of OIPN. However, its specific pharmacological mechanism of action remains unknown. Our study found that HGWD can effectively alleviate chronic OIPN and regulate intestinal flora. Therefore, we explored the mechanism of action of HGWD in alleviating chronic OIPN from the perspective of intestinal flora. METHODS: In this study, we established an OIPN model in C57BL/6 mice treated with different concentrations of HGWD. Mechanical pain and cold pain were assessed at certain time points, and samples of mice colon, dorsal root ganglion (DRG), serum, and feces were collected. Associated inflammation levels in the colon and DRG were detected using immunohistochemical techniques; the serum lipopolysaccharide (LPS) levels and associated inflammation were assessed using the appropriate kits; and 16S rRNA sequencing was used to examine the dynamic changes in gut microorganisms. Finally, established fecal microbiota transplantation (FMT) and antibiotic (ABX) pretreatment models were used to validate flora's role in HGWD for chronic OIPN by pain scoring and related pathological analysis. RESULTS: HGWD treatment significantly alleviated pain sensitivity in chronic OIPN mice. Pathological results showed that HGWD treatment improved intestinal ZO-1 expression and reduced serum LPS levels and associated inflammatory factors in the colon, serum, and DRG. The 16S rRNA results showed that HGWD restored the composition of the intestinal flora in a time-dependent manner to alleviate OIPN. FMT and ABX experiments demonstrated that HGWD can alleviate chronic OIPN by regulating intestinal flora homeostasis. CONCLUSIONS: HGWD prevents chronic OIPN by dynamically regulating intestinal flora homeostasis, thereby ameliorating intestinal barrier damage and reducing serum LPS and relevant inflammatory factor levels in the colon, serum, and DRG.

12.
Aging (Albany NY) ; 15(19): 10031-10056, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37650573

ABSTRACT

Huangqi Guizhi Wuwu decoction (HGWD) has been demonstrated to ameliorate cerebral ischemia-reperfusion injury in clinical application. Nevertheless, the exact mechanisms of HGWD have not been conclusively elucidated. This study aimed to investigate the potential role and mechanism of HGWD on neurological deficits in a rat model of middle cerebral artery occlusion (MCAO). Our results showed that HGWD significantly alleviated neurological deficits in MCAO rats, evidenced by high mNSS score, reduced cerebral infarction area, and improved brain pathological injury. Besides, HGWD reduced the levels of TNF-α, IL-1ß, IL-6, SOD, MDA and GSH in the brain tissue. Further study suggested that HGWD promoted microglia polarization towards M2 by inhibiting M1 activation (Iba1+/CD16+, iNOS) and enhancing M2 activation (Iba1+/CD206+, Arg-1). Additionally, HGWD increased dendritic spine density and enhanced levels of synapse marker proteins (PSD95, Synapsin I). HGWD also up-regulated Sirt1 expression while inhibited p-NF-κB, NLRP3, ASC, and cleaved caspase-1 level in the hippocampus of MCAO rats. Sirt1 specific inhibitor EX527 notably weakened the neuroprotective efficacy of HGWD against cerebral ischemia, and significantly abolished its modulation on microglia polarization and synaptic plasticity in vivo. Collectively, our findings suggested that HGWD ameliorated neuronal injury in ischemic stroke by modulating M2 microglia polarization and synaptic plasticity, at least partially, via regulating Sirt1/NF-κB/NLRP3 pathway, further supporting HGWD as a potential therapy for neuroprotection after ischemic stroke.


Subject(s)
Ischemic Stroke , Neuroprotective Agents , Rats , Animals , NF-kappa B/metabolism , Infarction, Middle Cerebral Artery/pathology , Microglia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sirtuin 1/metabolism , Neuroprotective Agents/therapeutic use , Ischemic Stroke/pathology , Neuronal Plasticity
13.
Biomed Chromatogr ; 37(10): e5715, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37607558

ABSTRACT

Huangqi Guizhi Wuwu decoction (HGWD) is an effective traditional Chinese medicine prescription, which is used for treating blood arthralgia in the clinic. However, its material basis has not been studied yet. Herein, a new and highly sensitive ultra-high-performance liquid chromatography-quadrupole-time of flight-MS (UHPLC-Q-TOF-MS) technique is proposed and used for the high-resolution and accurate identification of the material basis of HGWD. Seventy-eight compounds have been identified in HGWD. The advantages of information-dependent acquisition (IDA), sequential window acquisition of all theoretical fragment-ion spectra (SWATH), and MSALL in the quantitative and qualitative analyses of compounds were compared. For the identification of compounds, the best mode with the highest accuracy is the IDA. For the quantification of compounds, MSALL shows the best repeatability and linearity. This research provides a theoretical basis for the study of quality control of traditional Chinese medicine preparations.


Subject(s)
Neuroprotective Agents , Chromatography, High Pressure Liquid , Medicine, Chinese Traditional , Quality Control , Tandem Mass Spectrometry
14.
J Clin Med ; 12(2)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36675434

ABSTRACT

Objective: This study aimed to evaluate the efficacy and safety of Huangqi Guizhi Wuwu decoction (HGWD), which is composed of five crude drugs (Astragali Radix, Cinnamomi Ramulus, Paeoniae Radix Alba, Zingiberis Rhizoma Recens, and Jujubae Fructus), in the treatment of albumin-bound paclitaxel (nab-PTX)-induced peripheral neuropathy (PN) in Chinese patients with breast cancer (BC). Methods: This trial was conducted at the National Cancer Center in China from January 2020 to June 2022. The eligible participants were assigned randomly in a 1:1 ratio to an HGWD group or a control group. The outcome measure was EORTC QLQ-CIPN20 questionnaire. Results: 92 patients diagnosed with BC were enrolled and randomized to either HGWD group (n = 46) or control group (n = 46). There were no significant differences in baseline characteristics between the two groups (p > 0.05). A statistical analysis of the sensory and motor functions of the EORTC QLQ-CIPN20 scores showed that patients in the HGWD group reported a larger decrease in CIPN sensory scores than those in the control group (p < 0.001). The EORTC QLQ-CIPN20 autonomic scores showed no statistical significance between the two groups (p > 0.05). Conclusions: HGWD packs could significantly improve patients' nab-PTX-induced PN, increase the tolerance for nab-PTX-containing chemotherapy, and further improve the quality of life of patients with BC.

15.
BMC Complement Med Ther ; 23(1): 8, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36624435

ABSTRACT

BACKGROUND: Huangqi Guizhi Wuwu decoction (HQGZWWD) is a traditional Chinese herbal medicine formulation with significant anti-inflammatory activity. However, its underlying mechanism remains unknown. Through network pharmacology and experimental validation, this study aimed to examine the potential mechanism of HQGZWWD in regulating macrophage polarization and inflammation. METHODS: The active components were obtained from the Traditional Chinese Medicine Systems Pharmacology database and Analysis Platform (TCMSP), whereas the corresponding targets were obtained from the TCMSP and Swiss Target Prediction database. The GeneCards database identified targets associated with macrophage polarization and inflammation. Multiple networks were developed to identify the key compounds, principal biological processes, and pathways of HQGZWWD that regulate macrophage polarization and inflammation. Autodock Vina is utilized to assess the binding ability between targets and active compounds. Finally, confirm the experiment's central hypothesis. Human histiocytic lymphoma (U-937) cells were transformed into M1 macrophages following stimulation with Lipopolysaccharide (LPS) to evaluate the effect of HQGZWWD drug-containing mouse serum (HQGZWWD serum) on regulating macrophage polarization and inflammation. RESULTS: A total of 54 active components and 859 HQGZWWD targets were obtained. There were 9972 targets associated with macrophage polarization and 11,109 targets associated with inflammation. After screening, 34 overlapping targets were identified, of which 5 were identified as central targets confirmed by experiments, including the α7 nicotinic acetylcholine receptor (α7 nAchR), interleukin 6 (IL-6), Interleukin-1 beta (IL-1ß), interleukin 10 (IL-10) and growth factor beta (TGF-ß1). Pathway enrichment analysis revealed that 34 overlapping targets were enriched in multiple pathways associated with macrophage polarization and inflammation, including the TGF beta signaling pathway, NF-kappa B signaling pathway, JAK-STAT signaling pathway, and TNF signaling pathway. Molecular docking confirmed that the majority of HQGZWWD's compounds can bind to the target. In vitro experiments, HQGZWWD serum was shown to up-regulate the expression of α7 nAchR, reduce the number of M1 macrophages, stimulate the production of M2 macrophages, inhibit the expression of pro-inflammatory cytokines IL-6 and IL1-ß, and increase the expression of anti-inflammatory cytokines IL-10 and TGF-ß1. CONCLUSION: HQGZWWD can regulate the number of M1/M2 macrophages and the level of inflammatory cytokines, and the underlying mechanism may be related to the up-regulation of α7 nAchR expression.


Subject(s)
Drugs, Chinese Herbal , Inflammation , Macrophages , Animals , Humans , Mice , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Interleukin-10 , Interleukin-6/metabolism , Lipopolysaccharides , Molecular Docking Simulation , Network Pharmacology , Transforming Growth Factor beta1/metabolism , Drugs, Chinese Herbal/pharmacology
16.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1008741

ABSTRACT

Huangqi Guizhi Wuwu Decoction is a classic prescription in traditional Chinese medicine(TCM) and is known for its effects of tonifying Qi, warming the meridians, and promoting blood circulation to alleviate obstruction. It is primarily used to treat conditions characterized by Qi stagnation, Yang deficiency, and obstruction, and it exhibits pharmacological effects such as immune regulation, anti-inflammation, analgesia, protection of the cardiovascular and cerebrovascular systems, itch relief, reduction of frostbite symptoms, antioxidative stress, promotion of cell apoptosis, and kidney protection. In modern clinical practice, it is commonly used to treat acute myocardial infarction, sequelae of cerebral infarction, cervical spondylosis, frozen shoulder, lower limb arteriosclerosis, lower limb vascular disorders, peripheral neuropathy in diabetes, and lupus nephritis. Recent research has focused on the chemical components, pharmacological effects, and clinical applications of Huangqi Guizhi Wuwu Decoction. Based on the "five principles" of quality markers(Q-markers) in TCM, this study predicted and analyzed the Q-markers of Huangqi Guizhi Wuwu Decoction. It suggested that astragaloside Ⅳ, formononetin, kaempferol, quercetin, cinnamic acid, cinnamaldehyde, 6-gingerol, paeoniflorin, albiflorin, and gallic acid could serve as Q-markers for Huangqi Guizhi Wuwu Decoction. The findings of this study can provide references for quality control of Huangqi Guizhi Wuwu Decoction and the development of new Chinese medicinal formulations.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Astragalus propinquus , Frostbite/drug therapy
17.
Front Pharmacol ; 13: 1043252, 2022.
Article in English | MEDLINE | ID: mdl-36313348

ABSTRACT

Huangqi Guizhi Wuwu Decoction (HGWD), as a classic Chinese herbal decoction, has been widely used in treating various diseases for hundreds of years. However, systematically elucidating its mechanisms of action remains a great challenge to the field. In this study, taking advantage of the network pharmacology approach, we discovered a potential new use of HGWD for patients with colon cancer (CC). Our in vivo result showed that orally administered HGWD markedly inhibited the growth of CC xenografts in mice. The subsequent enrichment analyses for the core therapeutic targets revealed that HGWD could affect multiple biological processes involving CC growth, such as metabolic reprogramming, apoptosis and immune regulation, through inhibiting multiple cell survival-related signalings, including MAPK and PI3K-AKT pathways. Notably, these in silico analysis results were most experimentally verified by a series of in vitro assays. Furthermore, our results based on serum metabolomics showed that the lipid metabolic pathways, including fatty acid biosynthesis and cholesterol metabolism, play key roles in delivery of the anti-CC effect of HGWD on tumor-bearing mice, and that cytochrome P450 family 2 subfamily E member 1 (CYP2E1) is a potential therapeutic target. Together, our integrated approach reveals a therapeutic effect of HGWD on CC, providing a valuable insight into developing strategies to predict and interpret the mechanisms of action for Chinese herbal decoctions.

18.
Aging (Albany NY) ; 14(12): 5013-5022, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35759577

ABSTRACT

OBJECTIVE: This study explored the effects and mechanisms of Huangqi Guizhi Wuwu Decoction on chemotherapy-induced neuropathic pain (CINP). METHODS: Bodyweight and related behavioral testing of the rat model were utilized to investigate the effects of Huangqi Guizhi Wuwu Decoction on CINP. ELISA was used to measure the levels of TNF-α, IL-1ß, and IL-6, in the serum of chronic CINP rats. Immunohistochemistry and Western blot analysis were performed to detect the expression of MAPK pathway related-proteins namely ERK1/2, p38, and JNK, and the expression of downstream essential proteins such as c-Fos, CREB, and NF-κB. RESULTS: Body weight and related behavioral testing of the rat model suggests that Huangqi Guizhi Wuwu Decoction can improve the slow weight gain of oxaliplatin-induced chronic CINP model rats and effectively prevent and treat oxaliplatin-induced regular CIPN rat model of hyperalgesia. It can also oppress the mechanical pain threshold, cold pain threshold, and heat pain threshold decreased. Furthermore, by ELISA, immunohistochemistry, and western blot analysis, we found that Huangqi Guizhi Wuwu Decoction can down-regulate the levels of TNF-α, IL-1ß, and IL-6 in the serum of chronic CINP rats induced by oxaliplatin. It also suppresses the expression of MAPK pathway related-proteins ERK1/2, p38, and JNK. This results in a decrease in the expression of downstream essential proteins, c-Fos, CREB, and Nf-κB. CONCLUSIONS: In conclusion, we found that Huangqi Guizhi Wuwu Decoction can combat nerve cell injury, reduce pain sensitization, and prevent and repair the damage of nerve cells in the oxaliplatin CINP model rats via TNFα/IL-1ß/IL-6/MAPK/NF-kB pathway.


Subject(s)
Drugs, Chinese Herbal , Neuralgia , Neuroprotective Agents , Signal Transduction , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Interleukin-6 , NF-kappa B/metabolism , Neuralgia/chemically induced , Neuralgia/drug therapy , Neuralgia/prevention & control , Oxaliplatin/toxicity , Rats , Tumor Necrosis Factor-alpha
19.
Front Pharmacol ; 13: 871481, 2022.
Article in English | MEDLINE | ID: mdl-35600883

ABSTRACT

Background: Huangqi Guizhi Wuwu Decoction (HGWD) is a traditional and effective Chinese medicine compound decoction for the treatment of rheumatoid arthritis (RA). However, there is few research on the treatment of rheumatoid cardiopulmonary complications. The present study was to study whether HGWD can alleviate the pathological changes caused by rheumatoid arthritis and cardiopulmonary complications. Methods: Five 3-month-old TNF-Tg mice were treated with HGWD (9.1 g/kg) once a day or the same dose of normal saline lasted for 8 weeks, and wild-type littermates of the same age were used as a negative control, and methotrexate (MTX) was intraperitoneally administered as a positive control. After the treatment, pathological staining was performed on the mouse ankle joints, heart, and lungs. Result: It was found that HGWD reduced the inflammation of the ankle joint synovium in TNF-Tg mice, and reduced myocardial hypertrophy, inflammatory infiltration and fibrosis of heart, as well as lung inflammation and fibrosis. Immunohistochemical staining with anti-TNF-α antibody showed that HGWD reduced the expression of TNF-α in the heart of TNF-Tg mice. Conclusion: In conclusion, HGWD alleviates joint inflammation in TNF-Tg mice and reduces the pathological changes of the heart and lungs.

20.
Ibrain ; 8(2): 127-140, 2022.
Article in English | MEDLINE | ID: mdl-37786887

ABSTRACT

Huangqi Guizhi Wuwu Decoction (HGWD) has a definite effect on neuropathic pain (NP), whereas the specific mechanism has not been elucidated. The components and targets in HGWD were collected and identified through System Pharmacology Database (Traditional Chinese Medicine Database and Analysis Platform). Genecards and Online Mendelian Inheritance in Man databases were used to search for NP-related genes. The Venn diagram was drawn to get the intersection target. Cytoscape 3.8.0 software was used to construct the compound-disease-target-pathway networks. STRING database was applied to analyze protein-protein interaction of potential targets. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were used to identify the function of genes related to NP. Finally, molecular docking was performed to visualize the binding mode and affinity between proteins and active ingredients. According to the intersection target of the Venn diagram, the network graph is constructed by Cytoscape and the results show the five compounds, ß-sitosterol, (+)-catechin, quercetin, Stigmasterol, kaempferol, and 15 genes (CASP3, FOS, GSK3B, HSP90AA1, IKBKB, IL6, MAPK8, RELA, ICAM1, SELE, ELK1, HSPB1, PRKACA, PRKCA, RAF1) were highly correlated with NP. KEGG and GO of 15 genes results that TNF, IL-17 and MAPK signaling pathway were Significantly related to the pathological mechanism of NP. Molecular docking showed that core genes in this network were IL-6 (TNF and IL-17 signaling pathways), ICAM1 (TNF signaling pathway), and CASP3 (three signal pathways). This study found that the five active compounds, three core genes, and three signaling pathways may be the key to the treatment of NP by HGWD.

SELECTION OF CITATIONS
SEARCH DETAIL
...