ABSTRACT
INTRODUCTION: Cluster of differentiation 166 (CD166), a cancer stem cell (CSC) marker, and human epidermal growth factor receptor 2 (HER-2) are expressed in a diversity of malignancies and is associated with tumor progression. Although studies regarding the importance of CSC markers and HER-2 in gastric cancer (GC) have rapidly developed, their clinicopathological, prognosis, and diagnosis value still remain unsatisfying in GC. Therefore, the present study aims to investigate the clinical, prognostic, and diagnostic significance of CD166 and HER-2 in different histological types of GC. MATERIALS AND METHODS: Bioinformatic analysis was applied to determine the clinical importance of CD166 and HER-2 expression based on their tissue localization in primary GC tumors and the normal adjacent samples. The expression patterns, clinical significance, prognosis, and diagnosis value of CD166 and HER-2 proteins in tissue microarrays (TMAs) of 206 GC samples, including Signet Ring Cell (SRC) and intestinal types and also 28 adjacent normal tissues were evaluated using immunohistochemistry (IHC). RESULTS: The results indicated that the expression of CD166 (membranous and cytoplasmic) and HER-2 were significantly up-regulated in tumor cells compared to adjacent normal tissues (P = 0.010, P < 0.001, and P = 0.011, respectively). A statistically significant association was detected between a high level of membranous expression of CD166 and lymphovascular invasion (P = 0.006); We also observed a statistically significant association between high cytoplasmic expression of CD166 protein and more invasion of the subserosa (P = 0.040) in the SRC type. In contrast, there was no correlation between the expression of HER-2 and clinicopathologic characteristics. Both CD166 and HER-2 showed reasonable accuracy and high specificity as diagnostic markers. CONCLUSION: Our results confirmed that increased membranous and cytoplasmic expression of CD166 showed clinical significance in the SRC type and is associated with the progression of the disease and more aggressive tumor behaviors. These findings can be used to assist in designating subgroups of patients that require different follow-up strategies, and also, they might be utilized as the prognostic or diagnostic biomarkers in these types of GC for prospective clinical application.
Subject(s)
Clinical Relevance , Receptor, ErbB-2 , Stomach Neoplasms , Humans , Biomarkers, Tumor/metabolism , Stomach Neoplasms/pathology , Prospective Studies , PrognosisABSTRACT
Experimental and theoretical studies have provided structural information regarding the shift from inactive to active EGFR, throughout which both conformations are linked via binding to specific tyrosine kinase inhibitors. For HER2, an intermediate active-inactive receptor conformation is present in the PDB, which has been co-crystallized with tak-285. The affinity of HER2 in monomeric state to tak-285 has been previously reported. However, the lack of structural knowledge of HER2 limits our capacity to understand whether tak-285, or other known HER2 inhibitors, selectively bind active, inactive, or intermediate forms of HER2. To elucidate mechanisms by which tak-285 binds to HER2, we first obtained information regarding the structural features of the active state of HER2 via microsecond MD simulations from the crystallized intermediate structure previously determined. Based on these HER2 conformers, together with the inactive HER2 conformer obtained in a previous study, we used docking and MD simulations coupled to MMGBSA approach to assess binding of tak-285 and lapatinib, known HER2/EGFR dual inhibitors, to HER2. Structural and energetic studies revealed that tak-285 binds with a greater affinity than lapatinib to active and intermediate active-inactive forms of HER2. This is in accordance with experimental findings that showed the tak-285 inhibitor has increased activity relative to lapatinib in breast cancer cell lines.
Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemistry , Hydroxybutyrates/chemistry , Lapatinib/chemistry , Models, Molecular , Receptor, ErbB-2/chemistry , Antineoplastic Agents/chemistry , Humans , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics SimulationABSTRACT
Hepatoid adenocarcinoma of the stomach is an uncommon subtype of gastric cancer remarkably similar to hepatocellular carcinoma in histopathological analysis. It is also commonly associated with high serum alfa-fetoprotein and a poorer prognosis, despite the emergence of new therapeutic options. In recent years, next generation sequencing (NGS) technology has made it possible to identify and describe the genes and molecular alterations common to gastric cancer thereby contributing to the advancement of targeted therapies. A 62-year-old patient, with no prior risk factor for hepatocellular carcinoma (HCC), presented to the emergency room with dysphagia for solids, abdominal pain and weight loss of about 3 kilograms over 3 months. Histopathological analysis presented with disparities regarding HER2 and programmed death-ligand 1 (PD-L1) status in the primary and metastatic sites. We describe a case of a de novo metastatic, human epidermal growth factor receptor 2 (HER2) positive esophagogastric junction hepatoid adenocarcinoma. Although this is a rare subgroup of gastric cancer, treatment strategies were based in recent studies in immunotherapy and guided therapy, taking into consideration the molecular findings from the patient's tumor NGS analysis. Data about HER2 and PDL1 heterogeneity were also reviewed. Despite the aggressiveness and rarity of this histology, the patient had a good response to treatment.