Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
1.
Plants (Basel) ; 13(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38475577

ABSTRACT

This study comprises the phytochemical characterization, the evaluation of the total phenolic content (TPC) and antioxidant activity (AA), and the investigation of the cyto-genotoxic and antigenotoxic potential of hydromethanolic extract derived from Salvia verticillata L. leaves. HPLC-DAD-ESI-MS and HPLC-DAD were used for the characterization of the extract and determination of the major ingredients. Afterwards, the TPC and AA were determined. The cytotoxic and genotoxic effect of the extract on cultured human lymphocytes at concentrations of 10, 25, and 50 µg mL-1 was investigated via the Cytokinesis Block MicroNucleus (CBMN) assay. Moreover, its antigenotoxic potential against the mutagenic agent mitomycin C (MMC) was assessed using the same assay. The hydromethanolic extract comprises numerous metabolites, with rosmarinic acid being the major compound. It had a high value of TPC and exerted significant AA as shown by the results of the Ferric Reducing Antioxidant Power (FRAP) and Radical Scavenging Activity by DPPH• assays. A dose-dependent cytotoxic potential was recorded, with the highest dose (50 µg mL-1) exhibiting statistically significant cytotoxicity. None of the tested concentrations induced significant micronuclei (MN) frequencies, indicating a lack of genotoxicity. All tested concentrations reduced the MMC-mediated genotoxic effects, with the two lowest showing statistically significant antigenotoxic potential.

2.
Article in English | MEDLINE | ID: mdl-38060281

ABSTRACT

The changes in dietary habit around the world have led to an increased use of additives in the food. The safety of food additives has been a main focus of research for many years due to the ongoing debate on their potential effects on health. In this study, the in vitro genotoxic effects of mannitol and lactitol, polyols used as sweetener food additives, were evaluated using chromosomal aberrations (CAs) and micronucleus (MN) assays in human peripheral lymphocytes. Additionally, the effects of these sweeteners on the mitotic index (MI) and nuclear division index (NDI) were investigated. Concentrations of 500, 1000, 2000, 4000, and 8000 µg/mL for mannitol and 250, 500, 1000, 2000, and 4000 µg/mL for lactitol were used. The results indicated that both polyols did not affect CA and MN frequency, and did not cause a significant change in NDI at all treatment concentratoins. However, mannitol (except at concentrations of 500 and 1000 µg/mL) and lactitol (except at 250 µg/mL) significantly decreased the MI compared to the control at almost all concentrations and treatment times. In conclusion, it was observed that mannitol and lactitol did not have a significant genotoxic effect at the concentrations used in human lymphocytes in vitro.


Subject(s)
Mannitol , Sweetening Agents , Humans , Mannitol/toxicity , Sweetening Agents/toxicity , Cells, Cultured , Food Additives , DNA Damage
3.
Life (Basel) ; 13(8)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37629611

ABSTRACT

Bulgarian Rosa damascena Mill. is has been known since ancient times for its high-quality oil, hydrosol, and other aromatic products. Rose hydrosol has various biological activities, but no research on its anticytotoxic/antigenotoxic effects exists. This study aimed to assess its defense potential against the genotoxin N-methyl-N'-nitro-N-nitrosoguanidine and to test its cytotoxic/genotoxic activity in plant and human lymphocyte test systems. Endpoints for cytotoxicity (mitotic index and nuclear division index) and genotoxicity (chromosome aberration and micronuclei) were used. Hydrosol was applied as a single treatment in concentrations ranging from 3% to 20% (4 h) to assess its cytotoxic and genotoxic effects. Its protective potential against MNNG was tested by applying an experimental scheme involving (i) conditioning treatment with non-toxic or slightly toxic concentrations of hydrosol, followed by genotoxin challenge (50 µg/mL) with a 4 h intertreatment time and (ii) treatment with hydrosol and mutagen with no time between the treatments. Hydrosol induces low cytotoxicity and clastogenicity, demonstrating cytoprotective/genoprotective effects against the mutagen in both applied test systems. The hydrosol defense potential was expressed by a more than twofold reduction in both chromosomal aberrations and micronuclei and by enhancing the mitotic activity compared with that of the mutagen, regardless of the experimental conditions. The results are promising for further hydrosol applications in pharmaceutical and medical practice.

4.
Strahlenther Onkol ; 199(9): 862-868, 2023 09.
Article in English | MEDLINE | ID: mdl-37479825

ABSTRACT

PURPOSE: The occurrence of acrocentric chromosome association (ACA) after radiation exposure is an interesting cytogenetic endpoint, known to show a dose-dependent increase in irradiated lymphocytes suggesting its potential use in radiation biodosimetry. Here, an attempt was made to study the complexity and correlation of the occurrence of ACA with dicentric chromosomes (DC) in lymphocytes exposed to gamma radiation. METHODS: Ninety metaphases each with DC and without DC were chosen randomly from lymphocytes irradiated with different doses (0, 1, 2, 3, 4 and 5 Gy) of gamma radiation. ACA along with chromosomal types of aberrations were scored and analyzed for complexity and co-occurrence, retrospectively. RESULTS: The number of associations between 2 and ≥ 3 acrocentric chromosomes showed an increase with each irradiation dose. Concomitantly, the total number of chromosomal type of aberrations showed an increase in number at each radiation dose studied. The number of DC showed an increase, however, metaphases containing 1DC decreased while ≥ 2DC increased as the radiation dose increased. The number of tricentric chromosomes increased at doses higher than 2 Gy. Importantly, the association of DC with an acrocentric chromosome was noticed at doses 2 Gy and above. A significant (p < 0.05) increase was noticed in ACA frequency in 1DC and ≥ 2DC metaphases at 1 and 2 Gy, in 1DC at 3 Gy, and in ≥ 2DC 4 and 5 Gy compared to the frequency in no DC metaphases. When average ACA frequency was plotted against DC frequency, a significant (p = 0.0009) correlation was observed, producing regression equation y = 0.9025x + 0.1283; R2 = 0.9522. CONCLUSION: The present analysis showed increasing ACA complexity with increasing radiation dose. Furthermore, a higher frequency of ACA in cells with 1DC or ≥ 2DC compared to the ACA in cells without DC from the same sample of irradiated lymphocytes demonstrated the co-occurrence of ACA and DC in the same cells.


Subject(s)
Lymphocytes , Radiation Exposure , Humans , Retrospective Studies , Chromosomes
5.
Drug Chem Toxicol ; : 1-10, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37334811

ABSTRACT

The aim of this study was to evaluate antioxidative features using 2,2-diphenyl-1-pycrylhydrazyl free radical (DPPH•) scavenging method, bovine serum albumin (BSA)-binding properties with usage of spectrofluorimetric method, proliferative and cyto/genotoxic status by use of chromosome aberration test, and antimicrobial potential using broth microdilution method, followed by resazurin assay of benzyl-, isopropyl-, isobutyl and phenylparaben in vitro. Our results showed that all parabens had significant antiradical scavenger activity compared to p-hydroxybenzoic acid (PHBA) precursor. Higher mitotic index for benzyl-, isopropyl and isobutylparaben (250 µg/mL) in comparison with control was demonstrated. An increase in the frequency of acentric fragments in lymphocytes treated with benzylparaben and isopropylparaben (125 and 250 µg/mL), and isobutylparaben (250 µg/mL) was observed. Isobutylparaben (250 µg/mL) induced higher number of dicentric chromosomes. An increased number of minute fragments in lymphocytes exposed to benzylparaben (125 and 250 µg/mL) was found. A significant difference in the frequency of chromosome pulverization, between phenylparaben (250 µg/mL) and control, was detected. Benzylparaben (250 µg/mL) and phenylparaben (62.5 µg/mL) caused an increase in the number of apoptotic cells, while isopropylparaben (62.5, 125 and 250 µg/mL) and isobutylparaben (62.5 and 125 µg/mL) induced higher frequency of necrosis. Minimum inhibitory concentration (MIC) of tested parabens ranged 15.62-250 µg/mL for bacteria, and 125-500 µg/mL for the yeast. Minimum microbiocidal concentration ranged 31.25 to 500 µg/mL, and 250 to 1000 µg/mL in bacteria and fungi respectively. The lowest MICs for bacteria were observed for phenyl- (15.62 µg/mL) and isopropylparaben (31.25 µg/mL) against Enterococcus faecalis.

6.
Biomedicines ; 11(4)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37189740

ABSTRACT

About 5% of patients undergoing radiotherapy (RT) develop RT-related side effects. To assess individual radiosensitivity, we collected peripheral blood from breast cancer patients before, during and after the RT, and γH2AX/53BP1 foci, apoptosis, chromosomal aberrations (CAs) and micronuclei (MN) were analyzed and correlated with the healthy tissue side effects assessed by the RTOG/EORTC criteria. The results showed a significantly higher level of γH2AX/53BP1 foci before the RT in radiosensitive (RS) patients in comparison to normal responding patients (NOR). Analysis of apoptosis did not reveal any correlation with side effects. CA and MN assays displayed an increase in genomic instability during and after RT and a higher frequency of MN in the lymphocytes of RS patients. We also studied time kinetics of γH2AX/53BP1 foci and apoptosis after in vitro irradiation of lymphocytes. Higher levels of primary 53BP1 and co-localizing γH2AX/53BP1 foci were detected in cells from RS patients as compared to NOR patients, while no difference in the residual foci or apoptotic response was found. The data suggested impaired DNA damage response in cells from RS patients. We suggest γH2AX/53BP1 foci and MN as potential biomarkers of individual radiosensitivity, but they need to be evaluated with a larger cohort of patients for clinics.

7.
Plants (Basel) ; 12(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37050163

ABSTRACT

This study investigated the beneficial properties of prickly pear peel (PPP) extracts from Opuntia ficus-indica (L.) Mill. Extracts were obtained via the Soxhlet extraction method using methanol (P1), ethanol (P2) and ethanol-water (P3) as extraction solvents. Their total phenolic and flavonoid content (TPC and TFC, respectively) and their antioxidant activity (AA) were determined. The PPP extracts were characterized in detail using mass spectrometry techniques. Their cyto-genotoxic effect and antigenotoxic potential against mitomycin C were evaluated via the cytokinesis block micronucleus (CBMN) assay on human lymphocytes. Enhanced TPC, TFC and AA values were recorded for all the extracts. Moreover, P1 and P2 were cytotoxic only at the highest concentrations, whereas P3 was found to be cytotoxic in all cases. No significant micronucleus induction was observed in the tested extracts. The PPP extracts contain bioactive compounds such as flavonoids, carboxylic acids, alkaloids, fatty acids and minerals (mainly K, Si, Mg, Ca, P and Zn). The results showed that all three extracts exerted high antigenotoxic activity. Our findings confirm the beneficial and genoprotective properties of PPP extracts and further studies on the bioactive compounds of Opuntia ficus-indica (L.) Mill. are recommended, as it constitutes a promising plant in pharmaceutical applications.

8.
Mutagenesis ; 38(3): 151-159, 2023 06 20.
Article in English | MEDLINE | ID: mdl-36882025

ABSTRACT

Several antioxidant food additives are added to oils, soups, sauces, chewing gum, potato chips, and so on. One of them is octyl gallate. The purpose of this study was to evaluate the potential genotoxicity of octyl gallate in human lymphocytes, using in vitro chromosomal abnormalities (CA), sister chromatid exchange (SCE), cytokinesis block micronucleus cytome (CBMN-Cyt), micronucleus-FISH (MN-FISH), and comet tests. Different concentrations (0.031, 0.063, 0.125, 0.25, and 0.50 µg/ml) of octyl gallate were used. A negative (distilled water), a positive (0.20 µg/ml Mitomycin-C), and a solvent control (8.77 µl/ml ethanol) were also applied for each treatment. Octyl gallate did not cause changes in chromosomal abnormalities, micronucleus, nuclear bud (NBUD), and nucleoplasmic bridge (NPB) frequency. Similarly, there was no significant difference in DNA damage (comet assay), percentage of centromere positive and negative cells (MN-FISH test) compared to the solvent control. Moreover, octyl gallate did not affect replication and nuclear division index. On the other hand, it significantly increased the SCE/cell ratio in three highest concentrations compared to solvent control at 24 h treatment. Similarly, at 48 h treatment, the frequency of SCE raised significantly compared to solvent controls at all the concentrations (except 0.031 µg/ml). An important reduction was detected in mitotic index values in the highest concentration at 24 h treatment and almost all concentrations (except 0.031 and 0.063 µg/ml) at 48 h treatment. The results obtained suggest that octyl gallate has no important genotoxicological action on human peripheral lymphocytes at the concentrations applied in this study.


Subject(s)
Antioxidants , Food Additives , Humans , Antioxidants/pharmacology , Food Additives/toxicity , DNA Damage , Micronucleus Tests/methods , Chromosome Aberrations/chemically induced , Sister Chromatid Exchange , Lymphocytes , In Vitro Techniques
9.
Viruses ; 15(3)2023 03 16.
Article in English | MEDLINE | ID: mdl-36992468

ABSTRACT

In the pathogenesis of influenza virus infection, lymphocyte apoptosis as a part of the infection and/or the immune response to the virus can be somewhat puzzling. The percentage of human T lymphocytes within the peripheral blood mononuclear cell population that becomes apoptotic greatly exceeds the percentage that are infected after exposure to the virus, consistent with substantial apoptosis of bystander T lymphocytes. Studies reveal an important role of viral neuraminidase expression by co-cultured monocyte/macrophages in induction of apoptosis, including that of uninfected bystander lymphocytes. Despite these observations, it is a reasonable perspective to recognize that the development of lymphocyte apoptosis during the response to infection does not preclude a successful immune response and recovery of the infected host in the great majority of cases. Further investigation is clearly warranted to understand its role in the pathogenesis of influenza virus infection for human subjects.


Subject(s)
Influenza, Human , Leukocytes, Mononuclear , Humans , Leukocytes, Mononuclear/pathology , Lymphocytes/pathology , T-Lymphocytes/pathology , Apoptosis
10.
J Ethnopharmacol ; 307: 116226, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36739926

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ganoderma lucidum (Curtis) P. Karst., a bioactive mushroom with medicinal properties, is known to exert immunomodulatory, anti-inflammatory, hypocholesterolemic, hypoglycemic, and hepatoprotective effects. AIM OF THE STUDY: In this study, the effects of the G. lucidum fruiting body dry extract (GLE) on human liver (HepG2/C3A) and kidney (786-O) tumor cells and peripheral blood lymphocytes were evaluated. MATERIALS AND METHODS: MTT-based cytotoxicity, trypan blue-based cell viability, comet, and cytokinesis-block micronucleus cytome assays were performed, and the production of reactive oxygen species was evaluated in vitro. RESULTS: GLE was toxic to the tumor cells, decreasing their viability by increasing their production of reactive oxygen species and inducing damage to their DNA. By contrast, only high concentrations of GLE were toxic to lymphocytes and decreased their viability, whereas low concentrations increased lymphocyte viability. Moreover, primary DNA damage was induced by GLE only at the highest concentration tested. CONCLUSIONS: G. lucidum shows potential antitumor effects against cancerous kidney and liver cells, exhibiting cytotoxic and genotoxic activity at low concentrations, whereas the same effects in lymphocytes are mediated only at high concentrations. This mushroom has the potential to be biotechnologically developed into a therapeutic agent for diseases, such as cancer.


Subject(s)
Agaricales , Kidney Neoplasms , Reishi , Humans , Reactive Oxygen Species , Kidney , Liver , Lymphocytes
11.
Food Chem Toxicol ; 173: 113626, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36682415

ABSTRACT

This study investigated the phytochemical profile of Drimia numidica leaf methanolic extract, as well as its cyto-genotoxic and cyto/genoprotective potential against mitomycin C (MMC) mediated effects on healthy human lymphocytes. Photosynthetic pigments, trace elements, and secondary metabolites were estimated and/or identified in methanolic extract of mature leaves, and the latter was further used for assessing its in vitro biological effects on MMC-free and/or MMC-treated human lymphocytes (at low, non-toxic concentrations of 0.001 and 0.01% v/v). The results showed that D. numidica leaf methanolic extract, being rich in carotenoids, phenolics, flavonoids, organic acids and bufadienolides, could be protective against MMC mediated cyto/genotoxic potential in healthy human lymphocytes. Biomolecules possessing antioxidant and antitumor potential, such as beta-carotene and lutein among others, chlorogenic acid, caffeic acid and their derivatives, minerals such as Si, as well as apigenin- and luteolin-derived glycosides, either individual or in a mixture, could be beneficial rather than harmful, at least at the extract concentrations tested. Although further in vitro and in vivo studies are still needed for elucidating the beneficial (individual and/or additive/synergistic) role of those compounds, the results of the present study are quite promising, thus encouraging new challenges for the appropriate utilization of D. numidica leaf extract.


Subject(s)
Drimia , Mitomycin , Humans , Mitomycin/toxicity , Drimia/chemistry , Plant Extracts/pharmacology , DNA Damage , Lymphocytes , Plant Leaves
12.
Drug Chem Toxicol ; 46(2): 297-303, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35016574

ABSTRACT

Hypertension is the most common cardiovascular disease and is also known as high blood pressure. The large majority of hypertensive patients need long-term administration of antihypertensive agents. Indapamide is an orally administered diuretic antihypertensive drug. The present work aimed to assess the possible genotoxic effects of indapamide using four different assays: chromosomal aberration (CA), sister chromatid exchange (SCE), micronucleus (MN), and comet. Lymphocytes from three different donors were exposed to 18.75, 37.50, 75.00, and 100.00 µg/ml indapamide. Additionally, a negative, a positive (mitomycin C = MMC, 0.20 µg/ml), and a solvent control (5.4 µl/ml methanol) were also applied. As a result, it was seen that indapamide did not cause a significant change in CAs and MN frequencies compared to the control. It caused significant damage only at the highest concentration in the comet assay. Similarly, while it did not affect the number of SCEs in the 24-h treatment, it increased the SCE frequency at the two highest concentrations in the 48-h. Mitotic index (MI) decreased at almost all concentrations. Considering all these results, this study revealed that indapamide did not have a significant genotoxic effect in these conditions. To the best of our knowledge, this is the first investigation about the genotoxic effect of indapamide in human lymphocytes in vitro.


Subject(s)
Antihypertensive Agents , Indapamide , Humans , Antihypertensive Agents/toxicity , Indapamide/toxicity , Micronucleus Tests , DNA Damage , Lymphocytes , Mitomycin
13.
Drug Chem Toxicol ; 46(5): 972-983, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36036091

ABSTRACT

The need for foodstuff that emerged with the rapidly increasing world population made fertilizers and pesticides inevitable to obtain maximum efficiency from existing agricultural areas. Sulfoxaflor is currently the only member of the new sulfoximine insecticide subclass of nicotinic acetylcholine receptor agonists. In the study, it was aimed to determine the in vitro genetic, oxidative damage potential, genotoxic and apoptotic effects of three different concentrations (10 µg/mL, 20 µg/mL and 40 µg/mL) of sulfoxaflor insecticide in the cultures of blood lymphocytes. In this study, the single-cell gel electrophoresis (comet), Cytokinesis Block Micronuclues Test (MN test), flow cytometry and measurement of Catalase (CAT) enzyme activity were used to determine genotoxic, apoptotic effects and oxidative damage potential, respectively. It found that there is a decrease in CPBI values and Live cell numbers. It was observed an increase in late apoptotic and necrotic cell numbers, Micronucleus frequency, and Comet analysis parameters (GDI and DCP). There is a significant difference between negative control and all concentration of insecticide for Cytokinesis Block Proliferation Index (CBPI) values and late apoptotic, necrotic and viable cell counts. An increase in CAT enzyme levels was observed at 10 and 20 µg/mL concentrations compared to control., It is found that CAT enzyme activity was inhibited at concentrations of 40 µg/mL. This study is crucial as it is the first study to investigate the impact of Sulfoxaflor insecticide on peripheral blood lymphocyte cells. The genotoxic, oxidative damage, and apoptotic effects of Sulfoxafluor insecticide on the results obtained and its adverse effects on other organisms raise concerns about health and safety.


Subject(s)
Antineoplastic Agents , Insecticides , Humans , Insecticides/toxicity , Micronucleus Tests/methods , Chloramphenicol O-Acetyltransferase/pharmacology , Lymphocytes , Oxidative Stress , Antioxidants/pharmacology , Antineoplastic Agents/pharmacology , DNA Damage , Cell Culture Techniques , Comet Assay
14.
Toxics ; 10(12)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36548569

ABSTRACT

Tris(chloropropyl) phosphate (TCPP) is a characteristic and widely used organophosphorus flame retardant. TCPP is comprised of four isomers and the most abundant is tris(1-chloro-2-propyl) phosphate. TCPP can be released into the environment, with potential impacts on living organisms and humans due to its extensive industrial use. Aiming to assess the potential risks of TCPP on human health and the environment, its toxic and genotoxic effects-using organisms from different trophic levels, i.e., bacteria, green microalgae, and human cells-were investigated. TCPP exposure at nominal concentrations of 10, 20, 30 and 40 µg mL-1 was studied to identify the potential risk of inducing genotoxic effects in cultured human lymphocytes. Treatment with 30 and 40 µg mL-1 of TCPP induced marginally significant micronuclei (MN) frequencies as well as cytotoxic effects. Freshwater microalgae species treated with TCPP (0.5, 1, 10, 20 and 50 µg L-1) showed different growth rates over time. All the tested microalgae species were adversely affected after exposure to TCPP during the first 24 h. However, differences among the microalgae species' sensitivities were observed. In the case of the freshwater species, the most sensitive was found to be Chlorococcum sp. The marine algal species Dunaliella tertiolecta and Tisochrysis lutea were significantly affected after exposure to TCPP. The effects of TCPP on Aliivibrio fischeri that were observed can classify this flame retardant as a "harmful" compound. Our results suggest a potential risk to aquatic organisms and humans from the wide utilization of TCPP and its consequent release into the environment. These results highlight that further research should be conducted to investigate the effects of TCPP individually and in combination with other organophosphorus flame retardants in various organisms. In addition, the concern induced by TCPP points out that measures to control the introduction of TCPP into the environment should be taken.

15.
Plants (Basel) ; 11(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36297697

ABSTRACT

Betula pendula belongs to the Betulaceae family and is most common in the northern hemisphere. Various birch species have exhibited antimicrobial, antioxidant and anticancer properties. In the present study, we investigated the genotoxic and cytotoxic activity as well as the antigenotoxic potential against the mutagenic agent mitomycin-C (MMC) of two commercial products, i.e., a Betula pendula aqueous leaf extract product (BE) and a Betula pendula product containing aqueous extract of birch leaves at a percentage of 94% and lemon juice at a percentage of 6% (BP) using the cytokinesis block micronucleus (CBMN) assay. The most prevalent compounds and elements of BE and BP were identified using UHPLC-MS and ICP-MS/MS, respectively. All mixtures of BE with MMC demonstrated a decrease in the MN frequencies, with the lowest and highest concentrations inducing a statistically significant antigenotoxic activity. BP lacked genotoxic potential, while it was cytotoxic in all concentrations. Its mixtures with MMC demonstrated statistically significant antigenotoxic activity only at the lowest concentration. UHPLC-MS and ICP-MS/MS showed the presence of various elements and phytochemicals. Our results reveal antigenotoxic and cytotoxic potential of both BE and BP, while the variations observed could indicate the importance of the interactions among different natural products and/or their compounds.

16.
Radiat Oncol ; 17(1): 144, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35986335

ABSTRACT

BACKGROUND: As one of the most common chromosomal causes, chromosome translocation leads to T-cell acute lymphoblastic leukemia (T-ALL). Ku70 is one of the key factors of error-prone DNA repair and it may end in translocation. So far, the direct correlation between Ku70 and translocation has not been assessed. This study aimed to investigate the association between Ku70 and translocation in human lymphocytes after radiation and T-ALL. METHODS: Peripheral blood lymphocytes (PBLs) from volunteers and human lymphocyte cell line AHH-1 were irradiated with X-rays to form the chromosome translocations. Phytohemagglutinin (PHA) was used to stimulate lymphocytes. The frequency of translocation was detected by fluorescence in situ hybridization (FISH). Meanwhile, the expression of Ku70 was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot. Furthermore, Ku70 interference, overexpression and chemical inhibition were used in AHH-1 cell lines to confirm the correlation. Finally, the expression of Ku70 in T-ALL samples with or without translocation was detected. RESULTS: The expression of Ku70 and frequencies of translocation were both significantly increased in PBLs after being irradiated by X-rays, and a positive correlation between the expression (both mRNA and protein level) of Ku70 and the frequency of translocation was detected (r = 0.4877, P = 0.004; r = 0.3038, P = 0.0358 respectively). Moreover, Ku70 interference decreased the frequency of translocations, while the frequency of translocations was not significantly affected after Ku70 overexpression. The expression of Ku70 and frequencies of translocation were both significantly increased in cells after irradiation, combined with chemical inhibition (P < 0.01). The protein level and mRNA level of Ku70 in T-ALL with translocation were obviously higher than T-ALL with normal karyotype (P = 0.009, P = 0.049 respectively). CONCLUSIONS: Ku70 is closely associated with the frequency of chromosome translocation in human lymphocytes after radiation and T-ALL. Ku70 might be a radiation damage biomarker and a potential tumor therapy target.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Translocation, Genetic , Humans , In Situ Hybridization, Fluorescence , Lymphocytes/radiation effects , RNA, Messenger , T-Lymphocytes
17.
Hum Exp Toxicol ; 41: 9603271221121796, 2022.
Article in English | MEDLINE | ID: mdl-36036252

ABSTRACT

BACKGROUND: Lymphocytes are a group of white blood cells with a variety of roles their integrity is crucial for the body's immune responses. Cadmium, a heavy metal and environmental pollutant, is known as a toxicant to exert its adverse effects on some sort of cells including blood cells. RESEARCH DESIGN: In this study, human lymphocytes were divided into 3 groups: (1) lymphocytes at 0-h, (2) lymphocytes at 24 h (control), (3) lymphocytes treated with cadmium chloride (15 µM). Lymphocyte viability and plasma membrane integrity were assessed in these groups. In addition, the occurrence of apoptosis was investigated by assessment of nucleus diameter and flow cytometry. Activation of caspase-3 was also detected by immunocytochemistry. RESULTS: Result showed that lymphocyte's viability and plasma membrane integrity decreased in lymphocytes treated with cadmium as compared with the control group. Decreased nucleus diameter and result of flow cytometry demonstrated cadmium-induced apoptosis in human lymphocytes. Furthermore, lymphocytes treated with cadmium displayed intensely activated caspase-3 immunoreactivity in their cytoplasm. CONCLUSION: In conclusion, cadmium not only negatively effect on viability and plasma membrane, but also induces caspase-dependent apoptosis in human lymphocytes.


Subject(s)
Cadmium Chloride , Cadmium , Apoptosis , Caspase 3 , Caspase 9 , Humans , Lymphocytes
18.
Antioxidants (Basel) ; 11(7)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35883882

ABSTRACT

The present study investigated the cyto-genotoxic and antigenotoxic effects of four different extracts of Equisetum arvense L. (common name: field horsetail) on human lymphocytes. Specifically, Soxhlet's prepared extracts from E. arvense L., using different solvents (S1: methanol (MeOH)-, S2: ethanol (EtOH)-, S3: water-, and S4: ethanol/water (EtOH-W)-) were analyzed for (a) their total phenolic and flavonoid content (TPC and TFC, respectively), (b) their antioxidant activity (AA), via the DPPH, FRAP and ABTS assays, and (c) their cyto-genotoxic and/or protective efficiency against the mutagenic agent mitomycin C, via the Cytokinesis Block MicroNucleus assay. All extracts showed increased TPC, TFC, and AA values in almost all cases. S1, S3 and S4 demonstrated no cytotoxic potential, whereas S2 was cytotoxic only at the highest concentrations. Genotoxicity was not observed in the tested extracts. The highest antigenotoxic activity was observed for EtOH-W (S4) extract, which was found to be rich in flavonoids, flavonoid-O-glycosides, phytosterols, phenolic and fatty acids as well as in minerals and mainly in K, Ca, Mg, Si and P, as assessed by using various mass spectrometry techniques. Those findings confirm that E. arvense L. extracts could be valuable candidates for medicinal applications and pharmaceutical products, thus alleviating the effects of more conventional drugs.

19.
Article in English | MEDLINE | ID: mdl-35649676

ABSTRACT

Ochratoxin A (OTA) and fumonisin B1 (FB1) are mycotoxins distributed in a wide variety of foods for human or animal consumption and are classified as possible carcinogens for humans. This study aimed to evaluate the cytotoxic, cytostatic and genotoxic effects of OTA and its main metabolite, ochratoxin α (OTα), FB1 and three combinations of OTA and FB1 at moderate and environmental doses. Cell viability was evaluated through MTT assay and the trypan blue exclusion method. The cytostatic and genotoxic effects were evaluated through the cytokinesis-block micronucleus assay. The results showed synergistic time- and concentration-dependent cytotoxic effects of one of the combinations of OTA and FB1. In contrast, significant differences were observed in the micronuclei (MN) frequency from OTA, OTα and coexposure of OTA + FB1. Some of these combinations increased the frequency of nuclear buds, nucleoplasmic bridges, donut-shaped nuclei, necrotic and apoptotic cells and MN in mononucleated cells. In conclusion, OTA and its main metabolite OTα, as well as the co-exposure of OTA and FB1, cause stable DNA damage at environmentally relevant concentrations, which was greater in metabolically competent cells. More studies are needed to understand the chemical interactions that occur due to the joint presence of mycotoxins, which occurs commonly.


Subject(s)
Cytostatic Agents , Ochratoxins , Animals , DNA Damage , Fumonisins , Hep G2 Cells , Humans , Lymphocytes , Ochratoxins/toxicity
20.
Drug Chem Toxicol ; 45(2): 940-946, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32752893

ABSTRACT

The study was designed to evaluate antigenotoxic effect of methanol Teucrium arduini and Teucrium flavum extracts against mitomycin C (MMC)-induced chromosome and DNA damage in vitro. Cytokinesis-block micronucleus (CBMN) and comet assays were used to investigate effect of plant extracts in different concentrations (125, 250, 500 and 1000 µg/mL) on human peripheral blood lymphocytes (PBLs). The obtained results showed that the all tested concentrations of T. arduini and the highest concentration of T. flavum significantly reduced the MMC-induced micronucleus (MN) frequency in comparison to positive control (only MMC). There were significantly negative correlations between the extracts concentrations and MN frequencies (Pearson, r = -0.905, p = 0.0001 for T. arduini; r = -0.861, p = 0.0001 for T. flavum). The extracts of both plants further lowered the MMC-decreased nuclear division index (NDI) in a dose dependent-manner (Pearson, r = -0.837, p = 0.001 for T. arduini; r = -0.598, p = 0.040 for T. flavum), but significantly only in the highest concentration (1000 µg/mL). Comet assay showed that extracts reduced MMC-increased genetic damage index (GDI), significantly in the concentrations of 500 and 1000 µg/mL, in comparison with positive control. Based on our results, it can be concluded that methanol T. arduini and T. flavum extracts possess protective proapoptotic and antigenotoxic effect which is indication of their medicinal relevance and use in treatment.


Subject(s)
Teucrium , Humans , Lymphocytes , Methanol , Micronucleus Tests , Mitomycin/toxicity , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...