Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.198
Filter
1.
Luminescence ; 39(7): e4816, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965898

ABSTRACT

Bilastine, a new second generation antihistaminic drug, has been widely used for relieving symptoms of allergic rhinitis and urticaria without a sedative effect. A simple, cost-effective, and highly sensitive fluorimetric method was developed for the estimation of bilastine in human plasma, in addition to its pure state and tablets. The suggested method depended on binary complex formation of eosin with bilastine in a buffered medium at pH 4.2. The formed complex resulted in quantitative quenching of eosin emission at 538 nm after excitation at 335 nm. This method demonstrates a broad range of linearity, spanning from 200 to 1000 ng/mL, and exhibits exceptional sensitivity, with a limit of detection and quantitation of 30.85 and 93.48 ng/mL, respectively. In addition, this spectrofluorimetric method may be employed to determine the amount of bilastine in human plasma and tablets with satisfactory accuracy and excellent precision. Furthermore, the content uniformity of bilastine in commercially available tablets was successfully tested by this approach. Compared with the reference method, there were no significant variations in terms of precision or accuracy. In conclusion, the proposed protocol is highly recommended to quantitatively estimate bilastine in different quality control settings.


Subject(s)
Benzimidazoles , Piperidines , Spectrometry, Fluorescence , Tablets , Humans , Piperidines/blood , Piperidines/chemistry , Spectrometry, Fluorescence/methods , Benzimidazoles/blood , Benzimidazoles/chemistry , Limit of Detection , Eosine I Bluish/chemistry , Hydrogen-Ion Concentration
2.
J Fluoresc ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976089

ABSTRACT

The diagnosis of prostate cancer has been evolving in the current decade, with expected mortality rates of 499,000 death by the year 2030. Apalutamide (APL) has been approved in 2018 as the first drug for the controlling of prostate cancer. APL significant success warrantied its high global sales, which are expected to surpass 58% of segment market sales (together with another drug; enzalutamide). Therefore, new, fast and environmentally friendly analytical methods are required for its determination for the quality control and biological monitoring purposes. The proposed research designs and evaluates the first fluorimetric approach based on novel porous green boron-doped carbon quantum dots (B@CDs) for the determination of APL in biopharmaceutical matrices. The synthetic approach has high quantum yield (31.15%). B@CDs were characterized using several tools, including transmission electron microscopy (TEM), dynamic light scattering (DLS), FTIR and Energy dispersive X-ray spectroscopy (EDX) which proved their improved surface properties with an average nano-diameter of 3.0 nm. The interaction between B@CDs and APL led to enhancement their fluorescence at 441 nm (excitation at 372 nm). The approach was validated for the determination of APL within concentration range of 15.0-700.0 ng mL- 1 with quantification limit LOQ 4.37 ng mL- 1 and detection limit LOD 1.44 ng mL- 1. The approach was successfully applied for the determination of APL in human plasma and pharmaceutical monitoring of its marketed tablet form. Then, the approach was assessed for its environmental impact using different metrics and proved its ecological greenness.

3.
Pract Lab Med ; 40: e00413, 2024 May.
Article in English | MEDLINE | ID: mdl-38974938

ABSTRACT

Background: D-dimer at a low level is important evidence for excluding the onset and progression of thrombosis. It is readily detectable and yields rapid results, although significant variability exists among different detection systems. Our study aims to enhance the consistency across various detection systems. Methods: Twelve detection systems were included in our study. We sought to address this inconsistency by using various calibrators (two supplied by manufacturers and two comprising pooled human plasma diluted with different diluents) to standardize D-dimer measurements. We categorized the data into three groups according to D-dimer concentration levels: low (≤0.5 mg/L), medium (>0.5 mg/L - <3 mg/L), and high (≥3 mg/L). We then analyzed the data focusing on range, consistency, comparability, negative coincidence rate, and false negative rate. Results: Calibrating with pooled human plasma led to narrower result ranges in the low and medium groups (P < 0.05). In the low group, consistency improved from weak to strong (ICC 0.4-0.7, P﹤0.05), while it remained excellent in the other groups and overall (ICCï¹¥0.75, P﹤0.05). The percentage of pairwise comparability increased in both the low and high groups. Additionally, there was an increase in the negative coincidence rate. Conclusion: These findings demonstrate that uniform calibration of D-dimer can significantly enhance the consistency of results across different detection systems.

4.
Article in English | MEDLINE | ID: mdl-38964135

ABSTRACT

Interest is increasing in the use of different liquid chromatography techniques coupled online to mass spectrometry for the quantification of platinum anticancer drugs in human plasma to inform cancer chemotherapy. We developed, validated and studied the application of a method for quantification of intact oxaliplatin in human plasma using ultra high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (UHPLC-ICP-MS). Plasma samples were processed instantly after collection from patients to preserve oxaliplatin speciation by methanol-deproteinization, and storage of diluted supernatants (plasma:methanol 1:2 v/v) at -80 °C. UHPLC separation of intact oxaliplatin and internal standard (carboplatin) was achieved using a C18 column and linear gradient mobile phase (Mobile phase A: water-methanol (97:3 v/v), 0.075 mM sodium dodecyl sulfate, 9.79 nM thallium adjusted to pH 2.5 with trifluoromethanesulfonic acid; Mobile phase B: 100 % methanol (v/v)) with ICP-MS detection to monitor platinum and thallium at m/z 195 and 205, respectively. The limit of quantification was 50 nM in methanol-deproteinized diluted plasma (1:2 v/v). Linearity was established for calibration standards ranging from 50 to 500 nM made in methanol-deproteinized diluted plasma (1:2 v/v), and for dilution of higher concentration samples in blank matrix containing internal standard (final dilution 1:29 v/v). Intra-day and inter-day accuracy ranged from 96.8 to 103 % of nominal concentration and precision from 0.62 to 2.49 % coefficient of variation. Recovery was complete and a matrix effect confirmed the requirement for matrix-matched standards. Intact oxaliplatin was stable during storage for at least 473 days, and during analysis, in methanol-deproteinized diluted plasma (1:2 v/v). The method was applied to determining the plasma concentrations of intact oxaliplatin in patients undergoing cancer chemotherapy, and studies of oxaliplatin degradation in vitro. This improved method based on UHPLC-ICP-MS will allow more specific, efficient and reliable quantification of intact oxaliplatin in human plasma.

5.
Ann Pharm Fr ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823440

ABSTRACT

A sensitive and accurate LC/MS method for the determination of elbasvir (ELB) and grazoprevir (GZP) in human plasma was established using daclatasvir (DCT) as an internal standard. The analytes were separated on a Waters Spherisorb phenyl column (150mm×4.6mm ID, 5µm particle size) maintained at 40°C±2°C. Gradient elution, at a flow rate of 0.8mLmin-1, was used. The mobile phase consists of 90% of acetonitrile mixed to 10% of a 5mM ammonium formate buffer (+0.1% v/v of trimethylamine, pH was adjusted to 3.2 by formic acid) as phase A and 10% of acetonitrile mixed to 90% of the same buffer as phase B. Liquid-liquid extraction with ethyl acetate solvent was used to recuperate compounds from plasma. The method was validated over a concentration range of 2 and 100ng/mL for GZP and between 1 and 50ng/mL for ELB. The intra- and inter-day precision and accuracy of the quality control samples at low, medium, and high concentration levels exhibited relative standard deviations (RSD)<15%, and the accuracy values ranged from 94.2 to 107.8%. The robustness of the method was established using a two-level full factorial design.

6.
Article in English | MEDLINE | ID: mdl-38924946

ABSTRACT

Tyrosine kinase inhibitors (TKIs) are commonly used to treat various cancers. Literature suggests that the blood concentration of TKIs strongly correlates with their efficacy and adverse effects. Therefore, establishing a Therapeutic Drug Monitoring (TDM) methodology for TKI drugs is crucial to improving their clinical efficacy and minimizing the treatment-related adverse effects. However, quantifying their concentrations in the plasma using existing methods to avoid potential toxicity is challenging. Herein, seven TKIs, namely sorafenib tosylate, axitinib, erlotinib, cediranib, brivanib, linifanib, and golvatinib, were successfully analyzed in human plasma by following a quick, easy, cheap, effective, rugged, and safe (QuEChERS) pretreatment method combined with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Briefly, biological samples were extracted using 1 mL of methanol, followed by the sequential addition of 250 mg of anhydrous magnesium sulfate and 25 mg of N-propylethylenediamine (PSA) for salinization and purification by adsorption, respectively. In this study, dovitinib was used as the internal standard. The seven TKIs were detected by the gradient elution method for 4 min in the positive ion electrospray mode. The mobile phase comprised methanol (phase A) and 0.1 % aqueous formic acid solution (phase B) on the Agilent Zorbax RRHD Stablebond Aq, (2.1 × 50 mm; 1.8 µm). Brivanib, linifanib, axitinib, sorafenib tosylate, and golvatinib exhibited good linearity in the range of 5-500 ng/mL, and erlotinib and cediranib exhibited good linearity in the range of 10-1000 ng/mL, with linear correlation coefficients (R2) ≥ 0.99. The limits of detection and quantification were 0.60-0.18 ng/mL and 5-10 ng/mL, respectively. The intraday and interday accuracy values ranged from -6.12 % to 7.31 %, with a precision (RSD) of ≤ 10.57 %. The method was rapid, accurate, specific, simple, reproducible, and suitable for the quantitative determination of the seven TKIs in human plasma.


Subject(s)
Carcinoma, Hepatocellular , Limit of Detection , Liver Neoplasms , Protein Kinase Inhibitors , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/chemistry , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/blood , Liver Neoplasms/drug therapy , Reproducibility of Results , Linear Models , Drug Monitoring/methods , Liquid Chromatography-Mass Spectrometry
7.
Mol Neurodegener ; 19(1): 51, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915105

ABSTRACT

BACKGROUND: Tau is aberrantly acetylated in various neurodegenerative conditions, including Alzheimer's disease, frontotemporal lobar degeneration (FTLD), and traumatic brain injury (TBI). Previously, we reported that reducing acetylated tau by pharmacologically inhibiting p300-mediated tau acetylation at lysine 174 reduces tau pathology and improves cognitive function in animal models. METHODS: We investigated the therapeutic efficacy of two different antibodies that specifically target acetylated lysine 174 on tau (ac-tauK174). We treated PS19 mice, which harbor the P301S tauopathy mutation that causes FTLD, with anti-ac-tauK174 and measured effects on tau pathology, neurodegeneration, and neurobehavioral outcomes. Furthermore, PS19 mice received treatment post-TBI to evaluate the ability of the immunotherapy to prevent TBI-induced exacerbation of tauopathy phenotypes. Ac-tauK174 measurements in human plasma following TBI were also collected to establish a link between trauma and acetylated tau levels, and single nuclei RNA-sequencing of post-TBI brain tissues from treated mice provided insights into the molecular mechanisms underlying the observed treatment effects. RESULTS: Anti-ac-tauK174 treatment mitigates neurobehavioral impairment and reduces tau pathology in PS19 mice. Ac-tauK174 increases significantly in human plasma 24 h after TBI, and anti-ac-tauK174 treatment of PS19 mice blocked TBI-induced neurodegeneration and preserved memory functions. Anti-ac-tauK174 treatment rescues alterations of microglial and oligodendrocyte transcriptomic states following TBI in PS19 mice. CONCLUSIONS: The ability of anti-ac-tauK174 treatment to rescue neurobehavioral impairment, reduce tau pathology, and rescue glial responses demonstrates that targeting tau acetylation at K174 is a promising neuroprotective therapeutic approach to human tauopathies resulting from TBI or genetic disease.


Subject(s)
Tauopathies , tau Proteins , Animals , Tauopathies/metabolism , tau Proteins/metabolism , Mice , Acetylation , Humans , Immunotherapy/methods , Disease Models, Animal , Mice, Transgenic , Brain Injuries, Traumatic/metabolism , Brain Injuries/metabolism , Brain/metabolism , Brain/pathology , Neuroprotective Agents/pharmacology
8.
Arch Pharm (Weinheim) ; : e2400313, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943448

ABSTRACT

The evident ecological impact of human actions, like air pollution, global warming, and ozone depletion, underscores the need for environmentally friendly approaches across various domains, including analytical chemistry. This study aimed to establish a validated, eco-friendly, and sustainable approach utilizing a fluorescence detector coupled with high-performance liquid chromatography for quantifying the antihyperglycemic agent dapagliflozin (DAPA), in human plasma. This method employed a C18 Microsorb MV (4.5 × 250 mm, 5 µm [particle size]) column at 40°C, with 40:60% v/v isocratic elution of acetonitrile and (0.1%) orthophosphoric acid as the mobile phase at 1 mL/min flow rate. DAPA and the internal standard demonstrated their greatest response by performing excitation at 225 nm (λex) and recording chromatograms at an emission wavelength (λem) equal to 305 nm. The presented approach demonstrated high linearity between 50 and 2000 ng/mL and full adherence to the guidelines of the US Food and Drug Administration regarding the validation of bioanalytical methods. The described technique was effectively used for quantification of DAPA in human plasma samples from a healthy male participant who received a tablet of 10 mg DAPA. Analytical Eco-Scale, Analytical GREEnness metric, and the recently created ChlorTox Scale were utilized for greenness assessment. Additionally, the "Red, Green, and Blue 12" model was used in whiteness evaluation.

9.
Anal Chim Acta ; 1312: 342750, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834264

ABSTRACT

BACKGROUND: Coated blade spray (CBS) represents an innovative approach that utilizes solid-phase microextraction principles for sampling and sample preparation. When combined with ambient mass spectrometry (MS), it can also serve as an electrospray ionization source. Therefore, it became a promising tool in analytical applications as it can significantly reduce the analysis time. However, the current CBS coatings are based on the immobilization of extractive particles in bulk polymeric glue, which constrains the diffusion of the analytes to reach the extractive phase; therefore, the full reward of the system cannot be taken at pre-equilibrium. This has sparked the notion of developing new CBS probes that exhibit enhanced kinetics. RESULTS: With this aim, to generate a new extractive phase with improved extraction kinetics, poly(divinylbenzene) (PDVB) nanoparticles were synthesized by mini-emulsion polymerization and then immobilized into sub-micrometer (in diameter) sized polyacrylonitrile fibers which were obtained by electrospinning method. Following the optimization and characterization studies, the electrospun-coated blades were used to determine cholesterol, testosterone, and progesterone in plasma spots using the CBS-MS approach. For testosterone and progesterone, 10 ng mL-1 limits of quantification could be obtained, which was 200 ng mL-1 for cholesterol in spot-sized samples without including any pre-treatment steps to samples prior to extraction. SIGNIFICANCE: The comparison of the initial kinetics for dip-coated and electrospun-coated CBS probes proved that the electrospinning process could enhance the extraction kinetics; therefore, it can be used for more sensitive analyses. The total analysis time with this method, from sample preparation to instrumental analysis, takes only 7 min, which suggests that the new probes are promising for fast diagnostic applications.


Subject(s)
Cholesterol , Humans , Cholesterol/blood , Cholesterol/analysis , Testosterone/blood , Testosterone/analysis , Progesterone/blood , Progesterone/analysis , Solid Phase Microextraction/methods , Nanoparticles/chemistry , Acrylic Resins/chemistry
10.
AMB Express ; 14(1): 66, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842656

ABSTRACT

Bacterial contamination is the most prevalent infectious complication of blood transfusion in the developed world. To mitigate this, several ultraviolet light-based pathogen reduction technologies (PRTs), some of which require photo-chemicals, have been developed to minimize infection transmission. Relative to UV light, visible 405-nm light is safer and has shown potential to be developed as a PRT for the in situ treatment of ex vivo human plasma and platelet concentrates, without the need for photo-chemicals. This study investigates the effect of 405-nm light on human plasma, with focus on the compatibility of antimicrobial light doses with essential plasma clotting factors. To determine an effective antimicrobial dose that is compatible with plasma, prebagged human plasma (up to 300 mL) was seeded with common microbial contaminants and treated with increasing doses of 405-nm light (16 mW cm-2; ≤ 403 J cm-2). Post-exposure plasma protein integrity was investigated using an AOPP assay, in vitro coagulation tests, and ELISA-based measurement of fibrinogen and Protein S. Microbial contamination in 300 mL prebagged human plasma was significantly reduced (P ≤ 0.05) after exposure to ≤ 288 J cm-2, with microbial loads reduced by > 96.2%. This dose did not significantly affect the plasma protein quality parameters tested (P > 0.05). Increased doses (≥ 345 J cm-2) resulted in a 4.3% increase in clot times with no statistically significant change in protein activity or levels. Overall, this study has demonstrated that the effective microbicidal 405 light dose shows little to no negative effect on plasma quality.

11.
J Fluoresc ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773031

ABSTRACT

Assessing medication adherence through the determination of antihypertensive drugs in biological matrices holds significant importance. Amlodipine (AP), a potent antihypertensive medication extensively prescribed for hypertensive patients, is particularly noteworthy in this context. This article aims to introduce a rapid, simple, improved sensitivity, and reproducibility in detecting AP in its pure form, tablet formulation, and spiked human plasma than the other reported methods. The proposed method utilizes a fluorescence approach, relying on the inhibition of the intramolecular photoinduced electron transfer (PET) effect of the lone pair of the N-atom in the primary amino moiety of AP. This inhibition is achieved by acidifying the surrounding medium using 0.2 M acetic acid. By blocking PET, the target AP drug is sensitively detected, at [Formula: see text] 423 nm over a concentration range 25-500 ng mL- 1 showcasing an exceptionally low quantitation limit of 1.41 ng mL- 1. Notably, this innovative technique was successfully applied to detect AP in its solid dosage form and spiked human plasma. Remarkably, matrix interference was found to be insignificant, underscoring the robustness and applicability of the established approach. The combination of speed, sensitivity, and reproducibility makes this method particularly suitable for assessing medication adherence in patients prescribed AP for hypertension.

12.
Discov Med ; 36(184): 1054-1069, 2024 May.
Article in English | MEDLINE | ID: mdl-38798264

ABSTRACT

BACKGROUND: The variations in sequence, three-dimensional structure, and post-translational modifications (PTMs) of human serum albumin (HSA) are crucial for its physiological functions. This study aims to analyze and compare the disparities in PTMs between HSA derived from human plasma and genetically recombinant sources for clinical treatments in China. METHODS: Six distinct PTMs, namely acetylation, succinylation, crotonylation, phosphorylation, beta-hydroxybutyrylation, and lactylation, were identified using pan-specific antibodies via Western blot analysis. The samples, comprising human plasma-derived HSA (pHSA) from six different manufacturers and recombinant HSA (rHSA) expressed in yeast and Oryza sativa, underwent detection for various types of PTMs. Additionally, a 4D label-free quantitative proteomic analysis was performed to identify N-glycosylation and the aforementioned PTMs in both pHSA and rHSA samples. This analysis aimed to discern disparities in modification sites and levels. RESULTS: Through Western blot analysis, all six pHSA and two rHSA samples displayed positive bands for albumin (66.5 kDa) across the six PTMs. Subsequent analysis using 4D label-free quantitative proteomics revealed 25 (29) acetylated, 30 (32) succinylated, 41 (50) malonylated, 15 (23) phosphorylated, 36 (30) beta-hydroxybutyrylated, and 27 (34) lactylated modification sites in pHSA and rHSA samples, with no N-glycosylation modification sites detected. The analysis identified 1 acetylation (ALB_K160), 2 beta-hydroxybutyrylation (ALB_K569, ALB_K426), and 3 crotonylation (ALB_K264, ALB_K581, ALB_K560) specific modification sites in pHSA, as well as 3 crotonylation (ALB_K560, ALB_K562, ALB_K75), 1 succinylation (ALB_K490), and 23 phosphorylation specific modification sites in rHSA. In pHSA (rHSA), 2 (6) acetylation, 10 (12) succinylation, 0 (9) crotonylation, 1 (9) phosphorylation, 6 (0) beta-hydroxybutyrylation, and 0 (7) lactylation specific modification sites were found. Moreover, in the shared modification sites between pHSA and rHSA, pHSA exhibited up-regulation of amberylation (16:1) and beta-hydroxybutyrylation (12:2) in more sites, and up-regulation of acetylation (7:11), crotonylation (2:11), phosphorylation (1:8), and lactylation (1:14) in fewer sites compared to rHSA. CONCLUSION: In clinical practice, both pHSA and rHSA utilized in China commonly display acetylation, succinylation, crotonylation, phosphorylation, beta-hydroxybutyrylation, and lactylation. Notably, there exist distinctions in the site characteristics and modification levels of these alterations between pHSA and rHSA. Further experimental inquiries are imperative to delve into the implications of these disparities in PTMs on the biological functionality, effectiveness, and safety of pHSA and rHSA.


Subject(s)
Protein Processing, Post-Translational , Recombinant Proteins , Serum Albumin, Human , Humans , China , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Serum Albumin, Human/metabolism , Serum Albumin, Human/chemistry , Serum Albumin, Human/genetics , Acetylation , Glycosylation , Proteomics/methods , Phosphorylation
13.
Biomed Chromatogr ; 38(7): e5903, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38783541

ABSTRACT

To support a phase 1 trial in patients with lymphomas, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for tazemetostat quantitation in 20 µL of human plasma. After protein precipitation, chromatographic separation employed a Kinetex C18 column and a gradient of 0.1% formic acid in both water and acetonitrile, during a 3-min run time. Detection was achieved using a SCIEX 6500+ tandem mass spectrometer with electrospray positive-mode ionization. Validation was based on the latest Food and Drug Administration guidance. With a stable isotopic internal standard, the assay was linear within the range of 10-5000 ng/mL and proved to be accurate (91.9%-103.7%) and precise (<4.4% imprecision). Recovery varied between 93.3% and 121.1%, and matrix effect ranged from -25.5% to -4.9%. Hemolysis, lipemia, and dilution did not impact quantitation. Plasma stability was confirmed after three freeze-thaw cycles, 24 h at room temperature, and 4 months at -80°C. Incurred sample reanalysis yielded 94.4% samples within 20% difference (n = 36). External validation showed a mean bias of -11.1%. Pharmacokinetic (PK) data obtained from three patients suggested variable concentration time profiles, warranting collection of further data. The assay proved to be suitable for tazemetostat quantitation in human plasma and will support clinical studies by defining tazemetostat PKs.


Subject(s)
Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Reproducibility of Results , Chromatography, Liquid/methods , Drug Stability , Linear Models , Sensitivity and Specificity
14.
Steroids ; 208: 109441, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38768743

ABSTRACT

When investigating endocrine disorders, it is essential to assess a comprehensive quantitative profile of sex (pro)hormones in plasma including conjugates. Thus, the present study aimed to develop and validate a comprehensive mass spectrometry-based multimethod combining the direct analysis of unconjugated sex (pro)hormones and oxidation products thereof (by GC), as well as their sulfates and glucuronides present in higher concentrations (by LC) with the indirect quantification of glucuronides present in lower concentrations after selective glucuronide hydrolysis (by GC) and its application to plasma derived from ten pre- and postmenopausal women and men each. Even guideline-compliant validation experiments cannot completely reflect overestimation of analyte concentrations due to effects depending on the individual ratio of analytes (i.e. chemical formation of analytes or incomplete removal of interfering analytes). Thus, the extent of processes not accounted for by the calibration strategy were investigated and maximum over- or underestimations of analyte concentrations were assessed for each plasma sample individually. 34 analytes were successfully calibrated, validated (median accuracy 101.1 %, median inter-day precision 8.1 %) and 31 were detected above the detection limit in plasma samples. The sporadic maximum individual over- or underestimation of analyte concentrations amounted to less than 20 %.


Subject(s)
Oxidation-Reduction , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Male , Chromatography, Liquid/methods , Female , Gonadal Steroid Hormones/blood , Gonadal Steroid Hormones/analysis , Gas Chromatography-Mass Spectrometry/methods , Middle Aged , Adult , Calibration , Reproducibility of Results , Limit of Detection , Liquid Chromatography-Mass Spectrometry
15.
Biomed Chromatogr ; 38(8): e5896, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38797868

ABSTRACT

The aim of this study was to develop a high-performance liquid chromatography-tandem mass spectrometry method for the determination of 6-cyanodopamine, 6-nitrodopamine, 6-nitrodopa, 6-nitroadrenaline and 6-bromodopamine in human plasma samples. Strata-X 33 µm solid-phase extraction cartridges were used for the extraction of the catecholamines from human plasma samples. The catecholamines were separated in a 150 × 3 mm Shim-pack GIST C18-AQ column with 3 µm particle size, placed in an oven at 40°C and perfused with 82% mobile phase A (acetonitrile-H2O; 90:10, v/v) + 0.4% acetic acid and 18% mobile phase B (deionized H2O) + 0.2% formic acid at a flow rate of 340 µl/min in isocratic mode. The injected volume was 4 µl and the run lasted 4 min. The method was linear from 0.1 to 20 ng/ml and the lower limit of quantification was 0.1 ng/ml for all analytes. The method was applied to evaluate the plasma levels of catecholamines in plasma of patients with chronic kidney disease and allowed the detection for the first time of circulating levels of the novel catecholamines 6-bromodopamine and 6-cyanodopamine.


Subject(s)
Limit of Detection , Renal Insufficiency, Chronic , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Reproducibility of Results , Linear Models , Renal Insufficiency, Chronic/blood , Chromatography, High Pressure Liquid/methods , Male , Chromatography, Liquid/methods , Solid Phase Extraction/methods , Dopamine/blood , Dopamine/analogs & derivatives , Catecholamines/blood , Middle Aged , Liquid Chromatography-Mass Spectrometry
16.
Int J Biol Macromol ; 269(Pt 2): 132169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723801

ABSTRACT

In our study, we developed a point of care electrochemical biosensing platform based on the functionalized cysteine-positioned gold electrode to diagnose yellow fever disease from human plasma samples. The developed platform underwent characterization through diverse methods encompassing cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and density-functional theory. The capacitive interaction between yellow fever virus non-structural antigen and antibody gave a cathodic signal at approximately -260 mV, and increased in proportion to the amount of non-structural antibody. The created electrochemical biosensor has an ability to detect 96 ag/mL of the yellow fever non-structural antibody with an extensive analytical range varied from 0.1 fg/mL to 1 µg/mL. The interference effects of various substances that could be found in human plasma, and the performance of the method were examined from the point of recovery and relative standard deviation for human plasma samples; hereby, the results confirmed the unprecedented selectivity and accuracy of the proposed method.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Viral Nonstructural Proteins , Yellow Fever , Humans , Biosensing Techniques/methods , Yellow Fever/diagnosis , Yellow Fever/blood , Yellow Fever/immunology , Yellow Fever/virology , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/blood , Electrochemical Techniques/methods , Point-of-Care Systems , Yellow fever virus/immunology , Density Functional Theory , Electrodes , Antibodies, Viral/blood , Antibodies, Viral/immunology , Gold/chemistry
17.
BMC Chem ; 18(1): 88, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698444

ABSTRACT

Two sensitive, straightforward and repeatable chromatographic techniques were developed for the determination of Cytarabine HCl and Dexamethazone in their pure form and spiked human plasma without prior separation. The drugs are used co-administered for the treatment of Leukemia, a certain type of blood cancer. Method (A) is an isocratic chromatographic HPLC method; separation was accomplished on C18 column using the eluting mixture of 6.9 g/L Monobasic Sodium Phosphate pH 3: methanol (70:30, v/v) and detection was at 275 nm. Concentrations were in the range of 0.2-15 µg/mL for both CYT and DEX. Method (B) is a HPTLC method in which separation was attained on HPTLC F254 plates using methanol: ethyl acetate: ammonia, (7.8:2:0.2, by volume) as eluting solvents and detection was at 275 nm. Concentrations were in the range of 0.1-4 µg/band for both CYT and DEX. The parameters for system suitability testing were evaluated to determine the effectiveness of the developed chromatographic procedures in terms of performance. The recently developed techniques were applied for the determination of the drugs under investigation in spiked human plasma. Validation parameters were examined in accordance with US-FDA criteria. All results were found to be within the acceptable ranges. To evaluate the greenness characters of the proposed methods to the environment; three greenness assessment tools including eco-scale assessments (ESA), green analytical procedure index (GAPI), and Analytical Greenness calculator (AGREE) were used. Acceptable and satisfying results that demonstrated the greenness characteristics of the suggested methods were attained.

18.
BMC Chem ; 18(1): 92, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702832

ABSTRACT

The simultaneous assay of duloxetine hydrochloride (DLX) and avanafil (AVN) in their pure forms, synthetic mixtures, and spiked human plasma was achieved using a novel, eco-friendly, sensitive, and specific HPTLC methodology that have been established and validated. Measuring the levels of co-administered antidepressants and sexual stimulants in biological fluids is an important step for individuals with depression and sexual problems. Separation was performed successfully using pre-coated silica gel 60-F254 as a stationary phase and a mobile phase composed of methanol, acetone, and 33% ammonia (8:2:0.05, v/v/v). Compact bands were produced by the optimized mobile phase that was chosen for development (Rf values were 0.23 and 0.75 for DLX and AVN, individually) after dual-wavelength detection for DLX and AVN at 232 and 253 nm, respectively. The results of polynomial regression analysis were exceptional (r = 0.9999 for both medicines) over concentration ranges of 5-800 and 10-800ng/spot for DLX and AVN, respectively. The quantitation limits were 4.69 and 9.53 ng/spot (0.31 and 0.94 µg/mL), whereas the detection limits were 1.55 and 3.15 ng/spot (0.63 and 1.91 µg/mL), for DLX and AVN, respectively. The International Council for Harmonization (ICH) criteria served as the basis for validating the established approach. Moreover, the proposed technique was evaluated in terms of greenness using four contemporary ecological metrics: The Analytical Greenness software (AGREE), the Green Analytical Procedure Index (GAPI), Eco-Scale, and the National Environmental Method Index (NEMI). Additionally, the Blue Applicability Grade Index (BAGI), a newly developed tool for evaluating the practicality (blueness) of procedures, was taken into consideration when evaluating the sustainability levels of the established approach.

19.
Sci Rep ; 14(1): 10025, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693137

ABSTRACT

The coronavirus-2 has led to a global pandemic of COVID-19 with an outbreak of severe acute respiratory syndrome leading to worldwide quarantine measures and a rise in death rates. The objective of this study is to propose a green, sensitive, and selective densitometric method to simultaneously quantify remdesivir (REM) in the presence of the co-administered drug linezolid (LNZ) and rivaroxaban (RIV) in spiked human plasma. TLC silica gel aluminum plates 60 F254 were used as the stationary phase, and the mobile phase was composed of dichloromethane (DCM): acetone (8.5:1.5, v/v) with densitometric detection at 254 nm. Well-resolved peaks have been observed with retardation factors (Rf) of 0.23, 0.53, and 0.72 for REM, LNZ, and RIV, respectively. A validation study was conducted according to ICH Q2 (R1) Guidelines. The method was rectilinear over the concentration ranges of 0.2-5.5 µg/band, 0.2-4.5 µg/band and 0.1-3.0 µg/band for REM, LNZ and RIV, respectively. The sensitivities of REM, LIN, and RIV were outstanding, with quantitation limits of 128.8, 50.5, and 55.8 ng/band, respectively. The approach has shown outstanding recoveries ranging from 98.3 to 101.2% when applied to pharmaceutical formulations and spiked human plasma. The method's greenness was assessed using Analytical Eco-scale, GAPI, and AGREE metrics.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/blood , SARS-CoV-2/drug effects , COVID-19/blood , Chromatography, Thin Layer/methods , Cost-Benefit Analysis , Alanine/blood , Linezolid/blood
20.
Saudi Pharm J ; 32(6): 102096, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38757071

ABSTRACT

The aim of the current study was to explore the potential of human plasma-derived exosomes as versatile carriers for drug delivery by employing various active and passive loading methods. Exosomes were isolated from human plasma using differential centrifugation and ultrafiltration method. Drug loading was achieved by employing sonication and freeze thaw methods, facilitating effective drug encapsulation within exosomes for delivery. Each approach was examined for its effectiveness, loading efficiency and ability to preserve membrane stability. Methotrexate (MTX), a weak acid model drug was loaded at a concentration of 2.2 µM to exosomes underwent characterization using various techniques such as particle size analysis, transmission electron microscopy and drug loading capacity. Human plasma derived exosomes showed a mean size of 162.15 ± 28.21 nm and zeta potential of -30.6 ± 0.71 mV. These exosomes were successfully loaded with MTX demonstrated a better drug encapsulation of 64.538 ± 1.54 % by freeze thaw method in comparison 55.515 ± 1.907 % by sonication. In-vitro drug release displayed 60 % loaded drug released within 72 h by freeze thaw method that was significantly different from that by sonication method i.e., 99 % within 72 h (p value 0.0045). Moreover, cell viability of exosomes loaded by freeze thaw method was significantly higher than that by sonication method (p value 0.0091) suggested that there was membrane disruption by sonication method. In conclusion, this study offers valuable insights into the potential of human plasma-derived exosomes loaded by freeze thaw method suggest as a promising carrier for improved drug loading and maintenance of exosomal membrane integrity.

SELECTION OF CITATIONS
SEARCH DETAIL
...