Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Biochem Biophys Res Commun ; 731: 150371, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39004065

ABSTRACT

Vascular endothelial cytoskeletal disruption leads to increased vascular permeability and is involved in the pathogenesis and progression of various diseases. Oxidative stress can increase vascular permeability by weakening endothelial cell-to-cell junctions and decrease intracellular nicotinamide adenine dinucleotide (NAD+) levels. However, it remains unclear how intracellular NAD+ variations caused by oxidative stress alter the vascular endothelial cytoskeletal organization. In this study, we demonstrated that oxidative stress activates poly (ADP-ribose [ADPr]) polymerase (PARP), which consume large amounts of intracellular NAD+, leading to cytoskeletal disruption in vascular endothelial cells. We found that hydrogen peroxide (H2O2) could transiently disrupt the cytoskeleton and reduce intracellular total NAD levels in human umbilical vein endothelial cells (HUVECs). H2O2 stimulation led to rapid increase in ADPr protein levels in HUVECs. Pharmaceutical PARP inhibition counteracted H2O2-induced total NAD depletion and cytoskeletal disruption, suggesting that NAD+ consumption by PARP induced cytoskeletal disruption. Additionally, supplementation with nicotinamide mononucleotide (NMN), the NAD+ precursor, prevented both intracellular total NAD depletion and cytoskeletal disruption induced by H2O2 in HUVECs. Inhibition of the NAD+ salvage pathway by FK866, a nicotinamide phosphoribosyltransferase inhibitor, maintained H2O2-induced cytoskeletal disruption, suggesting that intracellular NAD+ plays a crucial role in recovery from cytoskeletal disruption. Our findings provide further insights into the potential application of PARP inhibition and NMN supplementation for the treatment and prevention of diseases involving vascular hyperpermeability.

2.
Cell Tissue Bank ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38944663

ABSTRACT

An injury that affects the integrity of the skin, either inside or externally, is called a wound. Damaged tissue is repaired by a set of cellular and molecular mechanisms known as wound healing. Quercetin, a naturally occurring flavonoid, may hasten the healing of wounds. The study's objective was to investigate any potential impacts of quercetin on the wound-healing process. Human umbilical vein endothelial cells (HUVECs) were treated to varying dose ranges of quercetin (5-320 nM) for 24 and 48 h. Cultured cells were evaluated by using the MTT analysis, wound scratch assay and vascular tube formation. Furthermore the gene expression of VEGF and FGF were evaluated by qRT-PCR to determine the effects of quercetin on angiogenezis and wound repair. Positive effects of quercetin on cellular viability were demonstrated by the MTT experiment. In HUVECs quercetin promoted tube formation, migration, and proliferation while also averting wound breakage. Moreover, quercetin increased the expression of the FGF and VEGF genes, which aid in the healing of wounds in HUVECs. Quercetin may be bioactive molecule that successfully speeds up wound healing by regulating the vasculogenezis and healing cells.

3.
Photodiagnosis Photodyn Ther ; 47: 104196, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710260

ABSTRACT

SIGNIFICANCE: Hemoporfin-mediated photodynamic therapy (HMME-PDT) has been recognized as a safe and effective treatment for port wine stain (PWS). However, some patients show limited improvement even after multiple treatments. Herein, we aim to explore the effect of autophagy on HMME-PDT in human umbilical vein endothelial cells (HUVECs), so as to provide theoretical basis and treatment strategies to enhance clinical effectiveness. METHODS: Establish the in vitro HMME-PDT system by HUVECs. Apoptosis and necrosis were identified by Annexin Ⅴ-FITC/PI flow cytometry, and autophagy flux was detected by monitoring RFP-GFP-LC3 under the fluorescence microscope. Hydroxychloroquine and rapamycin were employed in the mechanism study. Specifically, the certain genes and proteins were qualified by qPCR and Western Blot, respectively. The cytotoxicity was measured by CCK-8, VEGF-A secretion was determined by ELISA, and the tube formation of HUVECs was observed by angiogenesis assay. RESULTS: In vitro experiments revealed that autophagy and apoptosis coexisted in HUVECs treated by HMME-PDT. Apoptosis was dominant in early stage, while autophagy gradually increased in the middle and late stage. AMPK, AKT and mTOR participated in the regulation of autophagy induced by HMME-PDT, in which AMPK was positive regulation, while AKT and mTOR were negative regulation. Hydroxychloroquine could not inhibit HMME-PDT-induced autophagy, but capable of blocking the fusion of autophagosomes with lysosome. Rapamycin might cooperate with HMME-PDT to enhance autophagy in HUVECs, leading to increased cytotoxicity, reduced VEGF-A secretion, and weakened angiogenesis ability. CONCLUSIONS: Both autophagy and apoptosis contribute to HMME-PDT-induced HUVECs death. Pretreatment of HUVECs with rapamycin to induce autophagy might enhance the photodynamic killing effect of HMME-PDT on HUVECs. The combination of Rapamycin and HMME-PDT is expected to further improve the clinical efficacy.


Subject(s)
Apoptosis , Autophagy , Human Umbilical Vein Endothelial Cells , Photochemotherapy , Photosensitizing Agents , Sirolimus , Humans , Human Umbilical Vein Endothelial Cells/drug effects , Photochemotherapy/methods , Autophagy/drug effects , Photosensitizing Agents/pharmacology , Apoptosis/drug effects , Sirolimus/pharmacology , Hydroxychloroquine/pharmacology , Porphyrins/pharmacology , Vascular Endothelial Growth Factor A/metabolism
4.
International Eye Science ; (12): 508-514, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1012812

ABSTRACT

AIM: To investigate the effect of inhibiting Ca2+/calmodulin-dependent protein kinase Ⅱ(CAMKⅡ)expression in adult retinal pigment epithelial cell line-19(ARPE-19)cells on the migration, invasion, and tube formation of human umbilical vein endothelial cells(HUVECs)in a non-contact co-culture system.METHODS: RNA sequencing was performed on ARPE-19 cells overexpressing CAMKⅡ-δ, and bioinformatics was used to analyze the biological functions of the differentially expressed genes. Transwell inserts was used to construct a non-contact co-culture system of ARPE-19 and HUVECs. The experimental groups included: blank group: only HUVECs were inoculated without ARPE-19 cells; control group: ARPE-19 and HUVECs cells were co-cultured with complete medium; AIP group(CAMKⅡ inhibition group): ARPE-19 cells in AIP(160 nmol/L)were co-cultured with HUVECs in complete medium. The migration, invasion and tube formation abilities of HUVECs were detected. The protein expression levels of CAMKⅡ/AMPK/mTOR/VEGFA were detected by Western blotting.RESULTS:Bioinformatics analysis found that the differentially expressed genes could affect biological processes such as cell growth and death and cell movement. The scratch test and transwell migration test showed that the relative mobility of HUVECs in the AIP group was significantly lower than that in the control group(all P<0.05). However, the invasion and tube formation assay showed that the relative invasion rate and tube formation rate of the AIP group were not significantly different from those of the control group(both P>0.05). Western blotting results showed that the expression levels of CAMKⅡ, P-mTOR, and VEGFA proteins in the AIP group were significantly lower than those in the control group, while the expression level of the P-AMPK protein was significantly higher than that in the control group(all P<0.05).CONCLUSION:In the non-contact co-culture system, inhibition of CAMKⅡ expression in ARPE-19 cells significantly reduced the migration ability of HUVECs, but it cannot change the invasion and tube formation ability, which may be achieved by AMPK/mTOR/VEGFA.

5.
J Appl Toxicol ; 43(11): 1748-1760, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37408164

ABSTRACT

Lysine-specific demethylase 1 (LSD1) inhibitors are being developed for cancer therapy, but their bioeffects on vasculatures are not clear. In this study, we compared the influences of ORY-1001 (an LSD1 inhibitor being advanced into clinical trials) and 199 (a novel LSD1 inhibitor recently developed by us) to human umbilical vein endothelial cells (HUVECs) in vitro and further verified the bioeffects of ORY-1001 to zebrafish (Danio rerio) larvae in vivo. The results showed that up to 10 µM ORY-1001 or 199 did not significantly affect the cellular viability of HUVECs but substantially reduced the release of inflammatory interleukin-8 (IL-8) and IL-6. The signaling molecule in vasculatures, NO, was also increased in HUVECs. As the mechanism, the protein levels of endothelial NO synthase (eNOS) or p-eNOS, and their regulators Kruppel-like factor 2 (KLF2) or KLF4, were also increased after drug treatment. In vivo, 24 h treatment with up to 100 nM ORY-1001 reduced blood speed without changing morphologies or locomotor activities in zebrafish larvae. ORY-1001 treatment reduced the expression of il8 but promoted the expression of klf2a and nos in the zebrafish model. These data show that LSD1 inhibitors were not toxic but capable to inhibit inflammatory responses and affect the function of blood vessels through the up-regulation of the NOS-KLF pathway.

6.
Biol Res ; 56(1): 18, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37081568

ABSTRACT

BACKGROUND: Isolation of nuclei or nuclear proteins is a prerequisite for western blot, nuclear proteome profiling, and other evaluations of nuclear proteins. Here, we developed a simple method for in situ isolation of nuclei or nuclear proteins by in situ removing the extranuclear part of adherent cells via a classical nonionic detergent triton X-100. RESULTS: First, the feasibility of our method was confirmed by confocal microscopy, atomic force microscopy, scanning electron microscopy, dynamic light scattering, immunofluorescence imaging, and time-lapse dynamic observation. Next, the optimal concentration range (approximately 0.1-1% for ~ 10 min) of triton X-100 and the optimal treatment time (< 30 min) of 0.1-1% Triton X-100 for our method were determined via western blotting of eight extra-/intra-nuclear proteins. Subsequently, the effectiveness, sensitivity, and cytoplasmic contamination of our method were tested by investigating the levels of phosphorylated p65 (a NF-κB subunit) in the nuclei of endothelial or tumor cells treated with/without lipopolysaccharide (LPS) via western blotting and by comparing with a commercial nuclear protein extraction kit (a classical detergent-based method). The data show that compared with the commercial kit our method obtained a higher yield of total nuclear proteins, a higher pP65 level in both control and LPS groups, and much lower content of GAPDH (as a reference for cytoplasmic contamination) in nuclei. CONCLUSIONS: The in situ isolation of nuclei or nuclear proteins from adherent cells in this study is a simple, effective method with less cytoplasmic contamination. This method/strategy has the potential of improving the quality of downstream evaluations including western blotting and proteomic profiling.


Subject(s)
Lipopolysaccharides , Nuclear Proteins , Detergents/pharmacology , Octoxynol/pharmacology , Proteomics , NF-kappa B/metabolism
7.
Micromachines (Basel) ; 14(3)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36984982

ABSTRACT

The endothelialization of gas exchange membranes can increase the hemocompatibility of extracorporeal membrane oxygenators and thus become a long-term lung replacement option. Cell seeding on large or uneven surfaces of oxygenator membranes is challenging, with cell aerosolization being a possible solution. In this study, we evaluated the endothelial cell aerosolization for biohybrid lung application. A Vivostat® system was used for the aerosolization of human umbilical vein endothelial cells with non-sprayed cells serving as a control. The general suitability was evaluated using various flow velocities, substrate distances and cell concentrations. Cells were analyzed for survival, apoptosis and necrosis levels. In addition, aerosolized and non-sprayed cells were cultured either static or under flow conditions in a dynamic microfluidic model. Evaluation included immunocytochemistry and gene expression via quantitative PCR. Cell survival for all tested parameters was higher than 90%. No increase in apoptosis and necrosis levels was seen 24 h after aerosolization. Spraying did not influence the ability of the endothelial cells to form a confluent cell layer and withstand shear stresses in a dynamic microfluidic model. Immunocytochemistry revealed typical expression of CD31 and von Willebrand factor with cobble-stone cell morphology. No change in shear stress-induced factors after aerosolization was reported by quantitative PCR analysis. With this study, we have shown the feasibility of endothelial cell aerosolization with no significant changes in cell behavior. Thus, this technique could be used for efficient the endothelialization of gas exchange membranes in biohybrid lung applications.

8.
Gene ; 852: 147051, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36427678

ABSTRACT

BACKGROUND: Since the discovery of the Proprotein Convertase Subtilisin/Kexin Type 9(PCSK9) gene has been involved in regulating low-density lipoprotein metabolism and cardiovascular disease (CVD), many therapeutic strategies directly targeting PCSK9 have been introduced. PCSK9 gain of function (GoF) mutations are associated with autosomal dominant hypercholesterolemia (ADH) and premature atherosclerosis. In contrast, PCSK9 loss of function (LOF) mutations have cardioprotective effects and can lead to familial hypo cholesterol in some instances. However, its potential impacts beyond the typical effects on lipid metabolism have not been elucidated. Therefore the study aimed to identify and verify PCSK9's possible effects beyond its traditional role in lipid metabolism. METHODS: The S127R is a PCSK9 gain of function mutation. Firstly, We used the data of the gene expression Omnibus(GEO) database to identify the differentially expressed genes between S127R mutation carriers and ordinary people. Secondly, the identification and analysis of significant genes were performed with various bioinformatics programs. Thirdly, to verify the possible effect and the potential pathways of PCSK9 on angiogenesis, we constructed PCSK9 low and high expression models by transfecting PCSK9-siRNA (small interfering RNA) and PCSK9-plasmid complex into human umbilical vein endothelial cells (HUVECs), respectively. Furthermore, Wound-Healing Assay and Capillary tube formation assay were applied to measure the effect of PCSK9 on angiogenesis. Fourthly, the expression level of VEGFR2 and the significant genes between PCSK9 low and high expression models were verified by quantitative real-time PCR. All data were analysed by GraphPad Prism 8 software. RESULTS: 88 DEGs were identified, including 45 up-regulated and 43 down-regulated DEGs. Furthermore, we identified the six genes (MMP9, CASP3, EGR1, NGFR, LEFTY1 and NODAL) as significantly different genes between PCSK9-S127R and Control hiPSC. Further, we found that these significant difference genes were mainly associated with angiogenesis after enrichment analysis. To verify the possible effect of PCSK9 on angiogenesis, we constructed low and high-expression PCSK9 models by transfecting siRNA and PCSK9-plasmid complex into human umbilical vein endothelial cells (HUVECs), respectively. The tubule formation test and Wound healing assays showed that overexpression of PCSK9 had an inhibitory effect on angiogenesis, which could be reversed by decreasing the expression of PCSK9. Moreover, bioinformatics analysis indicated that the six hub genes (MMP9, CASP3, EGR1, NGFR, LEFTY1 and NODAL) might play a vital role in the biological function of PCSK9 in angiogenesis. Real-time quantitative PCR was applied to clarify the expression profiles of these critical genes in overexpression/knockdown PCSK9. Finally, the expression levels of MMP9, Caspase3, LEFTY1, and NODAL were suppressed by overexpression of PCSK9 and could be alleviated by PCSK9 knockdown. Otherwise, EGR1 had the opposite expression trend, and there was no specific trend of NGFR after repeated experiments. CONCLUSION: PCSK9 might play an essential role in angiogenesis, unlike its typical role in lipid metabolism, and MMP9, Caspase3, LEFTY1, NODAL, and EGR1 may be involved in the regulation of angiogenesis as critical genes.


Subject(s)
Proprotein Convertase 9 , Serine Endopeptidases , Humans , Proprotein Convertase 9/genetics , Serine Endopeptidases/genetics , Proprotein Convertases/genetics , Proprotein Convertases/metabolism , Caspase 3/genetics , Matrix Metalloproteinase 9/genetics , Endothelial Cells/metabolism , Mutation , RNA, Small Interfering , Receptors, LDL/genetics , Receptors, LDL/metabolism
9.
Biol. Res ; 56: 18-18, 2023. ilus, graf
Article in English | LILACS | ID: biblio-1439485

ABSTRACT

BACKGROUND: Isolation of nuclei or nuclear proteins is a prerequisite for western blot, nuclear proteome profiling, and other evaluations of nuclear proteins. Here, we developed a simple method for in situ isolation of nuclei or nuclear proteins by in situ removing the extranuclear part of adherent cells via a classical nonionic detergent triton X-100. RESULTS: First, the feasibility of our method was confirmed by confocal microscopy, atomic force microscopy, scanning electron microscopy, dynamic light scattering, immunofluorescence imaging, and time-lapse dynamic observation. Next, the optimal concentration range (approximately 0.1-1% for ~ 10 min) of triton X-100 and the optimal treatment time (< 30 min) of 0.1-1% Triton X-100 for our method were determined via western blotting of eight extra-/ intra-nuclear proteins. Subsequently, the effectiveness, sensitivity, and cytoplasmic contamination of our method were tested by investigating the levels of phosphorylated p65 (a NF-κB subunit) in the nuclei of endothelial or tumor cells treated with/without lipopolysaccharide (LPS) via western blotting and by comparing with a commercial nuclear protein extraction kit (a classical detergent-based method). The data show that compared with the commercial kit our method obtained a higher yield of total nuclear proteins, a higher pP65 level in both control and LPS groups, and much lower content of GAPDH (as a reference for cytoplasmic contamination) in nuclei. CONCLUSIONS: The in situ isolation of nuclei or nuclear proteins from adherent cells in this study is a simple, effective method with less cytoplasmic contamination. This method/strategy has the potential of improving the quality of downstream evaluations including western blotting and proteomic profiling.


Subject(s)
Nuclear Proteins , Lipopolysaccharides , NF-kappa B/metabolism , Octoxynol/pharmacology , Proteomics , Detergents/pharmacology
10.
Sensors (Basel) ; 22(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36502120

ABSTRACT

Angiogenesis is the development of new blood vessels from the existing vasculature. Its malfunction leads to the development of cancers and cardiovascular diseases qualified by the WHO as a leading cause of death worldwide. A better understanding of mechanisms regulating physiological and pathological angiogenesis will potentially contribute to developing more effective treatments for those urgent issues. Therefore, the main goal of the following study was to design and manufacture an angiogenesis-on-a-chip microplatform, including cylindrical microvessels created by Viscous Finger Patterning (VFP) technique and seeded with HUVECs. While optimizing the VFP procedure, we have observed that lumen's diameter decreases with a diminution of the droplet's volume. The influence of Vascular Endothelial Growth Factor (VEGF) with a concentration of 5, 25, 50, and 100 ng/mL on the migration of HUVECs was assessed. VEGF's solution with concentrations varying from 5 to 50 ng/mL reveals high angiogenic potential. The spatial arrangement of cells and their morphology were visualized by fluorescence and confocal microscopy. Migration of HUVECs toward loaded angiogenic stimuli has been initiated after overnight incubation. This research is the basis for developing more complex vascularized multi-organ-on-a-chip microsystems that could potentially be used for drug screening.


Subject(s)
Neovascularization, Physiologic , Vascular Endothelial Growth Factor A , Humans , Neovascularization, Physiologic/physiology , Human Umbilical Vein Endothelial Cells , Microvessels
11.
Front Pharmacol ; 13: 974216, 2022.
Article in English | MEDLINE | ID: mdl-36210813

ABSTRACT

Background: The florets of Carthamus tinctorius L. (Safflower) is an important traditional medicine for promoting blood circulation and removing blood stasis. However, its bioactive compounds and mechanism of action need further clarification. Objective: This study aims to investigate the effect and possible mechanism of 6-hydroxykaempferol 3,6-di-O-glucoside-7-O-glucuronide (HGG) from Safflower on endothelial injury in vitro, and to verify its anti-thrombotic activity in vivo. Methods: The endothelial injury on human umbilical vein endothelial cells (HUVECs) was induced by oxygen-glucose deprivation followed by reoxygenation (OGD/R). The effect of HGG on the proliferation of HUVECs under OGD/R was evaluated by MTT, LDH release, Hoechst-33342 staining, and Annexin V-FITC apoptosis assay. RNA-seq, RT-qPCR, Enzyme-linked immunosorbent assay and Western blot experiments were performed to uncover the molecular mechanism. The anti-thrombotic effect of HGG in vivo was evaluated using phenylhydrazine (PHZ)-induced zebrafish thrombosis model. Results: HGG significantly protected OGD/R induced endothelial injury, and decreased HUVECs apoptosis by regulating expressions of hypoxia inducible factor-1 alpha (HIF-1α) and nuclear factor kappa B (NF-κB) at both transcriptome and protein levels. Moreover, HGG reversed the mRNA expression of pro-inflammatory cytokines including IL-1ß, IL-6, and TNF-α, and reduced the release of IL-6 after OGD/R. In addition, HGG exhibited protective effects against PHZ-induced zebrafish thrombosis and improved blood circulation. Conclusion: HGG regulates the expression of HIF-1α and NF-κB, protects OGD/R induced endothelial dysfunction in vitro and has anti-thrombotic activity in PHZ-induced thrombosis in vivo.

12.
J Funct Biomater ; 13(3)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35997445

ABSTRACT

The wound healing process is much more complex than just the four phases of hemostasis, inflammation, proliferation, and maturation. Three-dimensional (3D) scaffolds made of biopolymers or ECM molecules using bioprinting can be used to promote the wound healing process, especially for complex 3D tissue lesions like chronic wounds. Here, a 3D-printed mold has been designed to produce customizable collagen type-I sheets containing human umbilical vein endothelial cells (HUVECs) and adipose stromal cells (ASCs) for the first time. In these 3D collagen sheets, the cellular activity leads to a restructuring of the collagen matrix. The upregulation of the growth factors Serpin E1 and TIMP-1 could be demonstrated in the 3D scaffolds with ACSs and HUVECs in co-culture. Both growth factors play a key role in the wound healing process. The capillary-like tube formation of HUVECs treated with supernatant from the collagen sheets revealed the secretion of angiogenic growth factors. Altogether, this demonstrates that collagen type I combined with the co-cultivation of HUVECs and ACSs has the potential to accelerate the process of angiogenesis and, thereby, might promote wound healing.

13.
Cells ; 11(13)2022 07 05.
Article in English | MEDLINE | ID: mdl-35805198

ABSTRACT

Natural naphthoquinones and their derivatives exhibit a broad spectrum of pharmacological activities and have thus attracted much attention in modern drug discovery. However, it remains unclear whether naphthoquinones are potential drug candidates for anti-angiogenic agents. The aim of this study was to evaluate the anti-angiogenic properties of a novel naphthoquinone derivative, PPE8, and explore its underlying mechanisms. Determined by various assays including BrdU, migration, invasion, and tube formation analyses, PPE8 treatment resulted in the reduction of VEGF-A-induced proliferation, migration, and invasion, as well as tube formation in human umbilical vein endothelial cells (HUVECs). We also used an aorta ring sprouting assay, Matrigel plug assay, and immunoblotting analysis to examine PPE8's ex vivo and in vivo anti-angiogenic activities and its actions on VEGF-A signaling. It has been revealed that PPE8 inhibited VEGF-A-induced micro vessel sprouting and was capable of suppressing angiogenesis in in vivo models. In addition, PPE8 inhibited VEGF receptor (VEGFR)-2, Src, FAK, ERK1/2, or AKT phosphorylation in HUVECs exposed to VEGF-A, and it also showed significant decline in xenograft tumor growth in vivo. Taken together, these observations indicated that PPE8 may target VEGF-A-VEGFR-2 signaling to reduce angiogenesis. It also supports the role of PPE8 as a potential drug candidate for the development of therapeutic agents in the treatment of angiogenesis-related diseases including cancer.


Subject(s)
Ethylenediamines/pharmacology , Naphthoquinones/pharmacology , Vascular Endothelial Growth Factor Receptor-2 , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Cell Movement , Cell Proliferation , Human Umbilical Vein Endothelial Cells , Humans , Neovascularization, Pathologic/drug therapy , Vascular Endothelial Growth Factor A
14.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3215-3223, 2022 Jun.
Article in Chinese | MEDLINE | ID: mdl-35851114

ABSTRACT

Advanced glycation end products(AGEs) can lead to many diseases such as diabetes and its complications. In this study, an in vitro non-enzymatic glycosylation reaction model-bovine serum albumin/methylglyoxal(BSA/MGO) reaction system was constructed and incubated with Cortex Moutan extract. High performance liquid chromatography(HPLC) and ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) were used to detect and identify the active components that inhibited the formation of AGEs in the co-incubation solution of Cortex Moutan extract and MGO, and differential components such as salvianan, paeoniside, benzoylpaeoniflorin, mudanpioside J, galloyloxypaeoniflorin, benzoyloxy-paeoniflorin, 5-hydroxy-3 s-hydroxymethyl-6-methyl-2,3-dihydro benzofuran, and galloylpaeoniflorin were screened out, which were inferred to be the potential active components of Cortex Moutan extract to capture MGO. In addition, BSA-glucose reaction system was performed to investigate the influence of different concentrations of Cortex Moutan extract(decoction concentrations: 40, 80, 120, 160, and 200 mg·mL~(-1)) on inhibiting the production of AGEs in vitro. The inhibitory effects of Cortex Moutan extract and the differential components galloylpaeoniflorin and benzoyl paeoniflorin on the production of AGEs in human umbilical vein endothelial cells(HUVECs) induced by high glucose was further evaluated. Cell apoptosis was observed by acridine orange and ethidium bromide(AO/EB) double fluorescence staining. The results showed that Cortex Moutan Cortex extract and its differential components had certain inhibitory effects on the formation of AGEs, and could reduce cell apoptosis. This study provided reference for the treatment of diabetic vascular complications by Cortex Moutan inhibiting the toxic AGEs.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Glucose , Glycation End Products, Advanced , Human Umbilical Vein Endothelial Cells , Humans , Magnesium Oxide
15.
Graefes Arch Clin Exp Ophthalmol ; 260(12): 3857-3867, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35695913

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) is still the fastest growing cause of blindness in working aged adults, and its typical characteristics are endothelial cell dysfunction and pericytes loss. Transcription factor fork head box P1 (FOXP1) is a member of FOX family involved in diabetes progression and is expressed in endothelial cells. The purpose of this study was to investigate the role and mechanism of FOXP1 in DR. METHODS: The vitreous of DR patients and non-DR patients were collected, and the expression of FOXP1 was detected by real-time polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). Human umbilical vein endothelial cells (HUVECs) cultured in high glucose simulated DR environment, and the expressions of FOXP1, vascular endothelial growth factor (VEGF), and pigment epithelium derived factor (PEDF) were detected by RT-qPCR and western blot (WB) after transfection of small interfering RNA (siRNA) to knock out FOXP1. At the same time, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay (MTT), 5-ethynyl-2'-deoxyuridine assay (EDU), flow cytometry, Transwell assay, and tube-forming experiment were performed to determine cell proliferation, migration, and tube-forming ability. RESULTS: We found that FOXP1 was highly expressed in the vitreous of DR patients and HUVECs under high glucose condition. After FOXP1 was decreased, the activation of VEGF expression and inhibition of PEDF expression in HUVECs induced by high glucose were reversed; meanwhile, cell proliferation, migration, and tube formation decreased, and apoptosis was promoted. CONCLUSION: Generally, FOXP1 is highly expressed in the vitreous of DR patients, and its silence prevented VEGF/PEDF signaling pathway stimulated by high glucose and also reduced the proliferation, migration, and tube formation of endothelial cell, thus improving vascular endothelial dysfunction caused by DR. The results indicate that FOXP1 may be a therapeutic target of DR.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Adult , Humans , Middle Aged , Diabetic Retinopathy/genetics , Diabetic Retinopathy/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Transcription Factors , Endothelial Cells/metabolism , Cell Proliferation , Vascular Endothelial Growth Factors , Glucose/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Repressor Proteins , Forkhead Transcription Factors/genetics
16.
Int J Mol Sci ; 23(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35563373

ABSTRACT

Neutrophils, the most abundant subset of leukocytes in the blood, play a pivotal role in host response against invading pathogens. However, in respiratory diseases, excessive infiltration and activation of neutrophils can lead to tissue damage. Tanimilast-international non-proprietary name of CHF6001-is a novel inhaled phosphodiesterase 4 (PDE4) inhibitor in advanced clinical development for the treatment of chronic obstructive pulmonary disease (COPD), a chronic inflammatory lung disease where neutrophilic inflammation plays a key pathological role. Human neutrophils from healthy donors were exposed to pro-inflammatory stimuli in the presence or absence of tanimilast and budesonide-a typical inhaled corticosteroid drug-to investigate the modulation of effector functions including adherence to endothelial cells, granule protein exocytosis, release of extracellular DNA traps, cytokine secretion, and cell survival. Tanimilast significantly decreased neutrophil-endothelium adhesion, degranulation, extracellular DNA traps casting, and cytokine secretion. In contrast, it promoted neutrophil survival by decreasing both spontaneous apoptosis and cell death in the presence of pro-survival factors. The present work suggests that tanimilast can alleviate the severe tissue damage caused by massive recruitment and activation of neutrophils in inflammatory diseases such as COPD.


Subject(s)
Neutrophils , Pulmonary Disease, Chronic Obstructive , Sulfonamides , para-Aminobenzoates , Cytokines/metabolism , Endothelial Cells/metabolism , Extracellular Traps/metabolism , Humans , Neutrophils/drug effects , Neutrophils/metabolism , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/pathology , Sulfonamides/therapeutic use , para-Aminobenzoates/therapeutic use
17.
Methods Mol Biol ; 2475: 113-124, 2022.
Article in English | MEDLINE | ID: mdl-35451752

ABSTRACT

The endothelial response to vascular endothelial growth factor A (VEGF-A) regulates many aspects of animal physiology in health and disease. Such VEGF-A-regulated phenomena include vasculogenesis, angiogenesis, tumor growth and progression. VEGF-A binding to receptor tyrosine kinases such as vascular endothelial growth factor receptor 2 (VEGFR2 ) activates multiple signal transduction pathways and changes in homeostasis, metabolism, gene expression, cell proliferation, migration, and survival. One such VEGF-A-regulated response is a rapid rise in cytosolic calcium ion levels which modulates different biochemical events and impacts on endothelial-specific responses. Here, we present a series of detailed and robust protocols for evaluating ligand-stimulated cytosolic calcium ion flux in endothelial cells. By monitoring an endogenous endothelial transcription factor (NFATc2 ) which displays calcium-sensitive redistribution, we can assess the relevance of cytosolic calcium to protein function. This protocol can be easily applied to both adherent and non-adherent cultured cells to evaluate calcium ion flux in response to exogenous stimuli such as VEGF-A.


Subject(s)
Endothelial Cells , Vascular Endothelial Growth Factor A , Animals , Calcium/metabolism , Cell Movement , Cells, Cultured , Endothelial Cells/metabolism , Neovascularization, Physiologic/physiology , Phosphorylation , Signal Transduction/physiology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor Receptor-2/metabolism
18.
Methods Mol Biol ; 2419: 193-212, 2022.
Article in English | MEDLINE | ID: mdl-35237966

ABSTRACT

Lipid particles found in circulating extracellular fluids such as blood or lymph are essential for cellular homeostasis, metabolism and survival. Such particles provide essential lipids and fats which enable cells to synthesize new membranes and regulate different biochemical pathways. Imbalance in lipid particle metabolism can cause pathological states such as atherosclerosis. Here, elevated low-density lipoprotein (LDL) accumulation leads to fat-filled lesions or plaques in arterial walls. In this chapter, we provide a detailed set of protocols for the rapid and safe purification of lipid particles from human blood using high-speed ultracentrifugation. We provide a detailed set of assays for further analysis of the biochemical and cellular properties of these lipid particles. By combining these assays, we can better understand the complex roles of different lipid particles in normal physiology and disease pathology.


Subject(s)
Atherosclerosis , Lipoproteins, LDL , Humans , Lipid Metabolism , Lipoproteins, LDL/chemistry , Ultracentrifugation
19.
Cell Tissue Res ; 388(1): 105-116, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35091805

ABSTRACT

Mesenchymal stem cells (MSCs) are considered a promising treatment for ischemic diseases, but their use is limited due to poor survival after injection. Hypoxia can significantly enhance the survival of MSCs. This study aimed to investigate hypoxia pretreatment of bone marrow mesenchymal stem cells (BM-MSCs) in hindlimb ischemia (HI) and the underlying mechanism. The HI mouse model was established and human BM-MSCs were injected into ischemic skeletal muscles. The blood flow reperfusion and capillary density were measured. In vitro, human BM-MSC cells were treated with hypoxia. The expression of NRG-1 and associated angiogenic factors were measured after knockdown or overexpression of NRG-1. The conditioned medium (CdM) of BM-MSCs was prepared and co-cultured with human umbilical vein endothelial cells (HUVECs), and then, the proliferation, migration, and angiogenesis of HUVECs were detected. After hypoxia pretreatment, NRG-1 expression, clone formation, proliferation, and angiogenic factor secretion from BM-MSCs were increased, while knockdown of NRG-1 reversed these results. In normoxia condition, overexpression of NRG-1 enhanced above factors. Additionally, hypoxia pretreatment of BM-MSCs induced the proliferation and migration of HUVECs and angiogenesis. Moreover, the injection of hypoxia pretreatment of BM-MSCs improved blood reperfusion and capillary density in HI mice, while knockdown of NRG-1 reversed the effect. Furthermore, the PI3K inhibitor and activator reversed the effect of NRG-1 overexpression and knockdown on angiogenesis. We concludes that hypoxia pretreatment of BM-MSCs facilitates angiogenesis and alleviates HI injury via NRG-1/PI3K/AKT pathway.


Subject(s)
Cell Hypoxia , Ischemia , Mesenchymal Stem Cell Transplantation , Neuregulin-1 , Animals , Bone Marrow Cells/metabolism , Cells, Cultured , Hindlimb , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Ischemia/therapy , Mesenchymal Stem Cells/cytology , Mice , Neovascularization, Physiologic , Neuregulin-1/genetics , Phosphatidylinositol 3-Kinases/metabolism , Up-Regulation
20.
J Appl Toxicol ; 42(4): 651-659, 2022 04.
Article in English | MEDLINE | ID: mdl-34633093

ABSTRACT

Recently, we reported that titanium dioxide (TiO2 ) materials activated endothelial cells via Kruppel-like factor (KLF)-mediated nitric oxide (NO) dysfunction, but the roles of physical properties of materials are not clear. In this study, we prepared nanobelts from P25 particles and compared their adverse effects to human umbilical vein endothelial cells (HUVECs). TiO2 nanobelts had belt-like morphology but comparable surface areas as P25 particles. When applied to HUVECs, P25 particles or nanobelts did not induce cytotoxicity, although nanobelts were much more effective to increase intracellular Ti element concentrations compared the same amounts of P25 particles. Only nanobelts significantly induced THP-1 adhesion onto HUVECs. Consistently, nanobelts were more significant to induce the expression of intracellular adhesion molecule-1 (ICAM1) and the release of soluble ICAM-1 (sICAM-1), indicating that nanobelts were more potent to induce endothelial activation in vitro. As the mechanisms for endothelial activation, both P25 and nanobelts reduced the generation of intracellular NO as well as the expression of NO regulators KLF2 and KLF4. Combined, the results from this study indicated that the different morphologies of P25 particles and nanobelts only changed their internalization into HUVECs but showed minimal impact on KLF-mediated NO signaling pathways.


Subject(s)
Kruppel-Like Transcription Factors , Nitric Oxide , Human Umbilical Vein Endothelial Cells , Humans , Kruppel-Like Transcription Factors/genetics , Nitric Oxide/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...