Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Front Neurosci ; 18: 1402996, 2024.
Article in English | MEDLINE | ID: mdl-38975245

ABSTRACT

Huntingtin-associated protein 1 (HAP1) was the first protein discovered to interact with huntingtin. Besides brain, HAP1 is also expressed in the spinal cord, dorsal root ganglion, endocrine, and digestive systems. HAP1 has diverse functions involving in vesicular transport, receptor recycling, gene transcription, and signal transduction. HAP1 is strongly linked to several neurological diseases, including Huntington's disease, Alzheimer's disease, epilepsy, ischemic stroke, and depression. In addition, HAP1 has been proved to participate in cancers and diabetes mellitus. This article provides an overview of HAP1 regarding the tissue distribution, cell localization, functions, and offers fresh perspectives to investigate its role in diseases.

3.
Brain Sci ; 13(2)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36831801

ABSTRACT

Huntingtin-associated protein 1 (HAP1) is a determinant marker for the stigmoid body (STB), a neurocytoplasmic physiological inclusion. STB/HAP1 enriched areas in the brain/spinal cord are usually protected from neurodegenerative diseases, whereas the regions with tiny amounts or no STB/HAP1 are affected. In addition to the brain/spinal cord, HAP1 is highly expressed in the myenteric/submucosal plexuses of the enteric nervous system in the gastrointestinal tract. The tongue is attached to the pharynx by the hyoid bone as an extension of the gastrointestinal system. To date, the immunohistochemical distribution and neurochemical characterization of HAP1 have not been elucidated in the lingual ganglia. Using immunohistochemistry and light microscopy, our current study demonstrates the expression and immunohistochemical phenotype of HAP1 in the lingual ganglia of adult mice. We showed that HAP1 was profoundly distributed in the intralingual ganglion (ILG) and the ganglia near the root of the tongue (which we coined as "lingual root ganglion"; LRG). Neurons in ILG and LRG exhibited high coexpression of HAP1 with NOS or ChAT. Furthermore, most HAP1-immunoreactive neurons contained SP, CGRP, and VIP immunoreactivity in both ILG and LRG. The current results might serve as an essential base for future studies to elucidate the pathological/physiological functions of HAP1 in the lingual ganglia.

4.
Front Aging Neurosci ; 15: 1100395, 2023.
Article in English | MEDLINE | ID: mdl-36824265

ABSTRACT

Huntingtin-associated protein 1 (HAP1), the first identified HTT-binding partner, is highly expressed in the central nervous system, and has been found to associated with neurological diseases. Mounting evidence suggests that HAP1 functions as a component of cargo-motor molecules to bind various proteins and participates in intracellular trafficking. It is known that the failure of intracellular transport is a key contributor to the progression of neurodegenerative disorders (NDs) including Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), spinal and bulbar muscular atrophy (SBMA) and spinocerebellar ataxia (SCA). The link between HAP1 and various NDs is supported by growing evidence. This review aims to provide a comprehensive overview of the intracellular trafficking function of HAP1 and its involvement in NDs.

5.
Mol Biol Rep ; 50(2): 1517-1531, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36509909

ABSTRACT

BACKGROUND: Gastric cancer is heterogeneous cancer and the causes of this disease are complex. New diagnostic and therapeutic targets are urgently needed to explore. Huntingtin-associated protein 1 (HAP1) is directly related to Huntington's disease (HD). However, patients with Huntington's disease have a lower incidence of cancer. Therefore, we are committed to studying the correlation between HAP1 and gastric carcinogenesis and development. METHODS AND RESULTS: Immunohistochemical staining, western blot analysis, and RT-qPCR were conducted to explore the localization and expression of HAP1 in gastric cancer. To study the biological significance of HAP1, we overexpressed HAP1 in both MKN28 and AGS cell lines by lentivirus infection. To explore the role of HAP1 in cell proliferation, the cells counting assay, EdU incorporation assay, and colony formation assay were carried out. We performed the wound healing assay and transwell assay to study the cell migration and invasion. To further investigate whether HAP1 could regulate gastric cancer cell death during glucose deprivation, Annexin V-FITC/PI staining was performed. In our study, we elucidated that HAP1 was downregulated in gastric cancer. What's more, overexpressing HAP1 inhibited cell proliferation, cell migration and invasion, and triggered apoptosis during glucose deprivation. More importantly, the antitumor properties and mechanisms of HAP1 have been elucidated further in gastric cancer. CONCLUSIONS: Taken together, the available evidence implies that HAP1 may serve as a potential tumor suppressor, making it a significant target in preventing and treating gastric cancer. This research provides a theoretical basis for the early diagnosis, clinical targeted therapy, and prognosis evaluation of gastric cancer.


Subject(s)
Huntington Disease , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Nerve Tissue Proteins/metabolism , Huntington Disease/metabolism , Apoptosis/genetics , Cell Death , Cell Proliferation/genetics , Cell Line, Tumor
6.
Neuroscience ; 499: 40-63, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35870563

ABSTRACT

Huntingtin-associated protein 1 (HAP1) is a core component of stigmoid body (STB) and is known as a neuroprotective interactor with causal agents for various neurodegenerative diseases. Brain regions rich in STB/HAP1 immunoreactivity are usually spared from cell death, whereas brain regions with negligible STB/HAP1 immunoreactivity are the major neurodegenerative targets. Recently, we have shown that STB/HAP1 is abundantly expressed in the spinal preganglionic sympathetic/parasympathetic neurons but absent in the motoneurons of spinal cord, indicating that spinal motoneurons are more vulnerable to neurodegenerative diseases. In light of STB/HAP1 neuroprotective effects, it is also essential to clarify the distribution of STB/HAP1 in another major neurodegenerative target, the brainstem. Here, we examined the expression and detailed immunohistochemical distribution of STB/HAP1 and its relationships with choline acetyltransferase (ChAT) in the midbrain, pons, and medulla oblongata of adult mice. Abundant STB/HAP1 immunoreactive neurons were disseminated in the periaqueductal gray, Edinger-Westphal nucleus, raphe nuclei, locus coeruleus, pedunculopontine tegmental nucleus, superior/inferior salivatory nucleus, and dorsal motor nucleus of vagus. Double-label immunohistochemistry of HAP1 with ChAT (or with urocortin-1 for Edinger-Westphal nucleus centrally projecting population) confirmed that STB/HAP1 was highly present in parasympathetic preganglionic neurons but utterly absent in cranial nerve motor nuclei throughout the brainstem. These results suggest that due to deficient putative STB/HAP1-protectivity, cranial nerve motor nuclei might be more vulnerable to certain neurodegenerative stresses than STB/HAP1-expressing brainstem nuclei, including preganglionic parasympathetic nuclei. Our current results also lay a basic foundation for future studies that seek to clarify the physiological/pathological roles of STB/HAP1 in the brainstem.


Subject(s)
Brain Stem , Choline O-Acetyltransferase , Animals , Brain Stem/metabolism , Choline O-Acetyltransferase/metabolism , Cranial Nerves/metabolism , Medulla Oblongata , Mice , Motor Neurons/metabolism , Nerve Tissue Proteins/metabolism
7.
Acta Anatomica Sinica ; (6): 182-188, 2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1015482

ABSTRACT

Objective To investigate the expression and role of Huntingtin-associated protein-1 (HAP-1) in the process of valproate acid (VP A) inducing neural stem cells (NSCs) into neurons. Methods The hippocampus NSCs of SD rats were isolated and cultured, Real-time PCR and Western blotting were used to detect HAP-1 mRNA and protein expression at day 0, day 1, day 3 and day 5 during the induction of VPA on NSCs differentiation into neurons ; Real-time PCR was used to detect the expression level of HAP-1 mRNA in multiple tissues of adult SD rats, as well as NSCs, neurons and astrocytes. After applying small interfering RNA technology to down-regulate the expression of HAP-1 mRNA in NSCs, Real-time PCR was used to detect the mRNA expression levels of neuron-specific molecules stathmin-2 ( Stmn-2), neuronal differentiation-1 (Neurod-1), microtubule-associated protein-2 (Map-2) and synapsin-1 (Syn-1), and Western blotting was used to detect the protein expression levels of neuron-specific marker β-tubulin III (Tuj-1). Immunofluorescence was used to detect the proportion of NSCs differentiated into Tuj-1 positive neurons, and to observe the development of neurons. Results At day 1 and day 3 after VPA treatment, the expression of HAP-1 mRNA and protein in the VPA group was significantly up-regulated; HAP-1 mRNA was predominantly expressed in the hippocampus, and its expression was higher in neurons, followed by NSCs, and minimally in astrocytes. After down-regulating HAP-1 with small interference technology, the proportion of NSCs differentiated into Tuj-1 positive neurons reduced, and neuron development became worse. Conclusion VPA may promote the differentiation of NSCs into neurons by up-regulating HAP-1 expression.

8.
Acta Histochem ; 122(8): 151650, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33161374

ABSTRACT

Huntingtin-associated protein 1 (HAP1) is a neuronal cytoplasmic protein that is predominantly expressed in the brain and spinal cord. In addition to the central nervous system, HAP1 is also expressed in the peripheral organs including endocrine system. Different types of enteroendocrine cells (EEC) are present in the digestive organs. To date, the characterization of HAP1-immunoreactive (ir) cells remains unreported there. In the present study, the expression of HAP1 in pyloric stomach in adult male rats and its relationships with different chemical markers for EEC [gastrin, marker of gastrin (G) cells; somatostatin, marker of delta (D) cells; 5-HT, marker of enterochromaffin (EC) cells; histamine, marker of enterochromaffin-like (ECL) cells] were examined employing single- or double-labelled immunohistochemistry and with light-, fluorescence- or electron-microscopy. HAP1-ir cells were abundantly expressed in the glandular mucosa but were very few or none in the surface epithelium. Double-labelled immunofluorescence staining for HAP1 and markers for EECs showed that almost all the G-cells expressed HAP1. In contrast, HAP1 was completely lacking in D-cells, EC-cells or ECL-cells. Our current study is the first to clarify that HAP1 is selectively expressed in G-cells in rat pyloric stomach, which probably reflects HAP1's involvement in regulation of the secretion of gastrin.


Subject(s)
Enterochromaffin Cells/metabolism , Enterochromaffin-like Cells/metabolism , Gastric Mucosa/metabolism , Nerve Tissue Proteins/genetics , Pylorus/metabolism , Somatostatin-Secreting Cells/metabolism , Animals , Biomarkers/metabolism , Enterochromaffin Cells/cytology , Enterochromaffin-like Cells/cytology , Gastric Mucosa/cytology , Gastrins/biosynthesis , Gene Expression , Histamine/biosynthesis , Immunohistochemistry , Male , Nerve Tissue Proteins/metabolism , Organ Specificity , Pylorus/cytology , Rats , Rats, Wistar , Somatostatin/biosynthesis , Somatostatin-Secreting Cells/cytology
9.
IBRO Rep ; 9: 258-269, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33089002

ABSTRACT

Huntingtin-associated protein 1 (HAP1) is a polyglutamine (polyQ) length-dependent interactor with causal agents in several neurodegenerative diseases and has been regarded as a protective factor against neurodegeneration. In normal rodent brain and spinal cord, HAP1 is abundantly expressed in the areas that are spared from neurodegeneration while those areas with little HAP1 are frequent targets of neurodegeneration. We have recently showed that HAP1 is highly expressed in the spinal dorsal horn and may participate in modification/protection of certain sensory functions. Neurons in the dorsal root ganglia (DRG) transmits sensory stimuli from periphery to spinal cord/brain stem. Nevertheless, to date HAP1 expression in DRG remains unreported. In this study, the expression of HAP1 in cervical, thoracic, lumbar and sacral DRG in adult male mice and its relationships with different chemical markers for sensory neurons were examined using Western blot and immunohistochemistry. HAP1-immunoreactivity was detected in the cytoplasm of DRG neurons, and the percentage of HAP1-immunoreactive (ir) DRG neurons was ranged between 28-31 %. HAP1-immunoreactivity was comparatively more in the small cells (47-58 %) and medium cells (40-44 %) than that in the large cells (9-11 %). Double-immunostaining for HAP1 and markers for nociceptive or mechanoreceptive neurons showed that about 70-80 % of CGRP-, SP-, CB-, NOS-, TRPV1-, CR- and PV-ir neurons expressed HAP1. In contrast, HAP1 was completely lacking in TH-ir neurons. Our current study is the first to clarify that HAP1 is highly expressed in nociceptive/proprioceptive neurons but absent in light-touch-sensitive TH neurons, suggesting the potential importance of HAP1 in pain transduction and proprioception.

10.
Mol Neurobiol ; 57(4): 1966-1977, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31900863

ABSTRACT

Alzheimer's (or Alzheimer) disease (AD) is the most prevalent subset of dementia, affecting elderly populations worldwide. The cumulative costs of the AD care are rapidly accelerating as the average lifespan increases. Onset and risk factors for AD and AD-like dementias have been largely unknown until recently. Studies show that chronic type II diabetes mellitus (DM) is closely associated with neurodegeneration, especially AD. Type II DM is characterized by the cells' inability to take up insulin, as well as chronic hyperglycemia. In the central nervous system, insulin has crucial regulatory roles, while chronic hyperglycemia leads to formation and accumulation of advanced glycation end products (AGEs). AGEs are the major contributor to insulin resistance in diabetic cells, due to their regulatory role on sirtuin expression. Insulin activity in the central nervous system is known to interact with key proteins affected in neurodegenerative conditions, such as amyloid-ß precursor protein (AßPP or APP), huntingtin-associated protein-1 (HAP1), Abelson helper integration site-1 (AHI1 or Jouberin), kinesin, and tau. Sirtuins have been theorized to be the mechanism for insulin resistance, and have been found to be affected in neurodegenerative conditions as well. There are hints that all these neuronal proteins may be closely related, although the mechanisms remain unclear. This review will gather existing research on these proteins and highlight the link between neurodegenerative conditions and diabetes mellitus.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Insulin/metabolism , Signal Transduction , Animals , Humans , Insulin Resistance , Nerve Degeneration/pathology
11.
Front Cell Dev Biol ; 8: 611735, 2020.
Article in English | MEDLINE | ID: mdl-33425919

ABSTRACT

Huntington's disease (HD) is a progressive neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric problems. It is caused by a polyglutamine expansion in the huntingtin protein that leads to striatal degeneration via the transcriptional dysregulation of several genes, including genes that are involved in the calcium (Ca2+) signalosome. Recent research has shown that one of the major Ca2+ signaling pathways, store-operated Ca2+ entry (SOCE), is significantly elevated in HD. SOCE refers to Ca2+ flow into cells in response to the depletion of endoplasmic reticulum Ca2+ stores. The dysregulation of Ca2+ homeostasis is postulated to be a cause of HD progression because the SOCE pathway is indirectly and abnormally activated by mutant huntingtin (HTT) in γ-aminobutyric acid (GABA)ergic medium spiny neurons (MSNs) from the striatum in HD models before the first symptoms of the disease appear. The present review summarizes recent studies that revealed a relationship between HD pathology and elevations of SOCE in different models of HD, including YAC128 mice (a transgenic model of HD), cellular HD models, and induced pluripotent stem cell (iPSC)-based GABAergic medium spiny neurons (MSNs) that are obtained from adult HD patient fibroblasts. SOCE in MSNs was shown to be mediated by currents through at least two different channel groups, Ca2+ release-activated Ca2+ current (ICRAC) and store-operated Ca2+ current (ISOC), which are composed of stromal interaction molecule (STIM) proteins and Orai or transient receptor potential channel (TRPC) channels. Their role under physiological and pathological conditions in HD are discussed. The role of Huntingtin-associated protein 1 isoform A in elevations of SOCE in HD MSNs and potential compounds that may stabilize elevations of SOCE in HD are also summarized. Evidence is presented that shows that the dysregulation of molecular components of SOCE or pathways upstream of SOCE in HD MSN neurons is a hallmark of HD, and these changes could lead to HD pathology, making them potential therapeutic targets.

12.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 50(3): 298-304, 2019 May.
Article in Chinese | MEDLINE | ID: mdl-31631593

ABSTRACT

OBJECTIVE: To determine the effect of Huntingtin-associated protein 1 ( Hap1) on fibroblast proliferation. METHODS: Hap1 knockout ( Hap1 -/-) primary fibroblasts were isolated and cultured in vitro. The proliferation of Hap1 -/- fibroblasts was detected by EdU proliferation assay and cell flow assay. Transcriptome sequencing of the wild-type and Hap1 -/- fibroblasts was screened for proliferation-related genes. Real-time quantitative PCR (qPCR) was performed to verify changes in expressions of related genes. Skin repair was examined in Hap1 knockdown mice with skin wounds. The proliferation of fibroblasts during wound repair was detected by PCNA immunohistochemical staining. RESULTS: Hap1 -/- fibroblasts were successfully cultured. Compared with WT, EdU-positive fibroblasts decreased in Hap1 -/-,with less cells entering the S phase. Transcriptome sequencing of primary fibroblasts identified genes of Cdc25C, E2f7, E2f8 and Ccl5. qPCR confirmed that Hap1 knockout increased E2f7 expression. Hap1 +/- mice had larger skin lesions, slower healing and lower positive density of fibroblast proliferation than those of wild type mice. CONCLUSION: Hap1 may positively regulate fibroblast proliferation by inhibiting the expression of cell cycle negative regulator E2f7.Its deletion inhibits fibroblasts entering the S phase, thereby reducing cell proliferation and affecting wound repair.


Subject(s)
Cell Proliferation , Fibroblasts/cytology , Nerve Tissue Proteins/genetics , Wound Healing , Animals , Cells, Cultured , Gene Knockout Techniques , Mice , Mice, Knockout , Skin/pathology
13.
Cell Calcium ; 83: 102076, 2019 11.
Article in English | MEDLINE | ID: mdl-31491643

ABSTRACT

L-asparaginase treatment is used in the clinic to treat acute lymphoblastic leukemia (ALL) patients. Lee et al. (2019, Blood 133:2222-2232) demonstrated that L-asparaginase induces apoptosis by activating inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ signaling in a Huntingin-associated protein 1 (HAP1)-dependent manner. Moreover, HAP1 levels inversely correlate with the sensitivity of the ALL cells to L-asparaginase. HAP1 can therefore be used as biomarker for evaluating L-asparaginase resistance.


Subject(s)
Asparaginase/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Inositol 1,4,5-Trisphosphate/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Antineoplastic Agents/therapeutic use , Apoptosis , Asparaginase/therapeutic use , Biomarkers, Pharmacological/metabolism , Calcium Signaling , Humans , Nerve Tissue Proteins/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Tumor Cells, Cultured
14.
Mol Neurobiol ; 56(11): 7572-7582, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31062249

ABSTRACT

A hallmark of Alzheimer's disease (AD) pathogenesis is the accumulation of extracellular plaques mainly composed of amyloid-ß (Aß) derived from amyloid precursor protein (APP) cleavage. Recent reports suggest that transport of APP in vesicles with huntingtin-associated protein-1 (HAP1) negatively regulates Aß production. In neurons, HAP1 forms a stable complex with Abelson helper integration site-1 (AHI1), in which mutations cause neurodevelopmental and psychiatric disorders. HAP1 and AHI1 interact with tropomyosin receptor kinases (Trks), which are also associated with APP and mediate neurotrophic signaling. In this study, we hypothesize that AHI1 participates in APP trafficking and processing to rescue AD pathology. Indeed, AHI1 was significantly reduced in mouse neuroblastoma N2a cells expressing human Swedish and Indiana APP (designed as AD model cells) and in 3xTg-AD mouse brain. The AD model cells as well as Ahi1-knockdown cells expressing wild-type APP-695 exhibited a significant reduction in viability. In addition, the AD model cells were reduced in neurite outgrowth. APP C-terminal fragment-ß (CTFß) and Aß42 were increased in the AD cell lysates and the culture media, respectively. To investigate the mechanism how AHI1 alters APP activities, we overexpressed human AHI1 in the AD model cells. The results showed that AHI1 interacted with APP physically in mouse brain and transfected N2a cells despite APP genotypes. AHI1 expression facilitated intracellular translocation of APP and inhibited APP amyloidogenic process to reduce the level of APP-CTFß in the total lysates of AD model cells as well as Aß in the culture media. Consequently, AHI1-APP interactions enhanced neurotrophic signaling through Erk activation and led to restored cell survival and differentiation.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid/metabolism , Models, Biological , Amyloid beta-Protein Precursor/metabolism , Animals , Cell Differentiation , Cell Line , Cell Survival , Humans , Mice, Inbred C57BL , Nerve Growth Factors/metabolism , Neuroprotection , Protein Binding
15.
Toxicol Lett ; 306: 1-10, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30742882

ABSTRACT

Chronic lead (Pb) exposure has been shown to reduce the expression of some synaptic proteins which are involved in vesicular trafficking and affect presynaptic neurotransmitter release. However, the precise mechanisms by Pb impairs neurotransmitter release are still not well defined. In the current study, we aimed to elucidate the changes of Huntingtin-associated protein 1 (HAP1) in Pb exposed rats and PC12 cells models and its molecular mechanism. Repressor element-1 silencing transcription (REST) modulates the expression of genes containing the repressor element 1 (RE-1) cis-regulatory DNA sequence. HAP1 promoter region contains a RE-1 binding motif. We also observed whether Pb exposure regulated the HAP1 transcription level through influencing the expression of REST. Mother rats were exposed to 0.5 and 2 g/L Pb acetate (PbAc) in drinking water from the first day of gestation until postnatal 21 days, then the offspring rats were continued to drink PbAc for 1 year, while the control groups received drinking water. PC12 cells were divided into 3 groups: 0 µM, 1 µM and 100 µM PbAc. The results revealed that Pb levels in blood and brain of Pb exposed groups were significantly higher than that of the control group. The ability of learning and memory in Pb exposed rats was decreased. Pb exposure reduced the expression of HAP1 and increased the REST expression. Silencing REST could reverse the decreasing of HAP1 in Pb exposed PC12 cells. Our findings raise a possibility that the decreasing of HAP1 expression by Pb exposure may affect neurotransmitter release and results in impairments in spatial learning and memory ability.


Subject(s)
Lead Poisoning/metabolism , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/drug effects , Nuclear Receptor Co-Repressor 1/drug effects , Repressor Proteins/biosynthesis , Repressor Proteins/drug effects , Animals , Brain/metabolism , Female , Gene Expression/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Lead/blood , Lead/metabolism , Lead Poisoning/genetics , Lead Poisoning/psychology , Male , Maze Learning/drug effects , Memory/drug effects , PC12 Cells , Pregnancy , RNA, Small Interfering/pharmacology , Rats , Rats, Sprague-Dawley , Repressor Proteins/genetics
16.
Dig Dis Sci ; 64(6): 1486-1492, 2019 06.
Article in English | MEDLINE | ID: mdl-30560333

ABSTRACT

BACKGROUND: Huntingtin-associated protein 1 (HAP1) is a neuronal protein that is predominantly expressed in neurons in the brain. HAP1 is critical for maintenance of neuronal survival as well as regulation of food intake and body weight in animals. In addition to the criticalrole of HAP1 in the central nervous system, HAP1 is also found in endocrine cells, raising an interesting issue of whether HAP1 is expressed in the digestive system. AIMS: To examine the expression and localization of HAP1 in the human gastrointestinal tract and to compare the differences of the HAP1 expression between benign and malignant tissues in the digestive system. METHODS: We used Western blot and immunohistochemistry to examine the expression and distribution of HAP1 in the human gastrointestinal tract tissues. RESULTS: We observed that the presence of HAP1-positive cells in the gastrointestinal tract was not uniform with immunohistochemistry staining. Western blot revealed that only one isoform (75KD) HAP1 was present in the human gastrointestinal system. Interestingly, the expression of HAP1 was higher in the stomach than other regions of the gastrointestinal tract and was at the lowest level in the intestine. We also found that HAP1 was unlikely altered in benign gastric polyps, but was downregulated in pancreatic cancer. CONCLUSIONS: This is the first study showing the differential expression and location of HAP1 in the human digestive system. These findings suggested that HAP1 may have cell-type-dependent function in the gastrointestinal tract and may serve as a diagnostic marker for pancreatic cancer.


Subject(s)
Adenocarcinoma/chemistry , Biomarkers, Tumor/analysis , Gastrointestinal Tract/chemistry , Nerve Tissue Proteins/analysis , Pancreatic Neoplasms/chemistry , Adenocarcinoma/pathology , Adult , Aged , Aged, 80 and over , Down-Regulation , Female , Gastrointestinal Tract/pathology , Humans , Male , Middle Aged , Pancreatic Neoplasms/pathology
17.
Front Cell Neurosci ; 12: 381, 2018.
Article in English | MEDLINE | ID: mdl-30455632

ABSTRACT

Huntington's disease (HD) is a hereditary neurodegenerative disease that is caused by polyglutamine expansion within the huntingtin (HTT) gene. One of the cellular activities that is dysregulated in HD is store-operated calcium entry (SOCE), a process by which Ca2+ release from the endoplasmic reticulum (ER) induces Ca2+ influx from the extracellular space. HTT-associated protein-1 (HAP1) is a binding partner of HTT. The aim of the present study was to examine the role of HAP1A protein in regulating SOCE in YAC128 mice, a transgenic model of HD. After Ca2+ depletion from the ER by the activation of inositol-(1,4,5)triphosphate receptor type 1 (IP3R1), we detected an increase in the activity of SOC channels when HAP1 protein isoform HAP1A was overexpressed in medium spiny neurons (MSNs) from YAC128 mice. A decrease in the activity of SOC channels in YAC128 MSNs was observed when HAP1 protein was silenced. In YAC128 MSNs that overexpressed HAP1A, an increase in activity of IP3R1 was detected while the ionomycin-sensitive ER Ca2+ pool decreased. 6-Bromo-N-(2-phenylethyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine hydrochloride (C20H22BrClN2), identified in our previous studies as a SOCE inhibitor, restored the elevation of SOCE in YAC128 MSN cultures that overexpressed HAP1A. The IP3 sponge also restored the elevation of SOCE and increased the release of Ca2+ from the ER in YAC128 MSN cultures that overexpressed HAP1A. The overexpression of HAP1A in the human neuroblastoma cell line SK-N-SH (i.e., a cellular model of HD (SK-N-SH HTT138Q)) led to the appearance of a pool of constitutively active SOC channels and an increase in the expression of STIM2 protein. Our results showed that HAP1A causes the activation of SOC channels in HD models by affecting IP3R1 activity.

18.
Neuroscience ; 394: 109-126, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30367943

ABSTRACT

Huntingtin-associated protein 1 (HAP1) is a neural interactor of huntingtin in Huntington's disease and interacts with gene products in a number of other neurodegenerative diseases. In normal brains, HAP1 is expressed abundantly in the hypothalamus and limbic-associated regions. These areas tend to be spared from neurodegeneration while those with little HAP1 are frequently neurodegenerative targets, suggesting its role as a protective factor against apoptosis. In light of the relationship between neurodegenerative diseases and deterioration of higher nervous activity, it is important to definitively clarify HAP1 expression in a cognitively important brain region, the retrosplenial-retrohippocampal area. Here, HAP1 expression was evaluated immunohistochemically over the retrosplenial cortex, the subicular complex, and the entorhinal and perirhinal cortices. HAP1-immunoreactive (ir) cells were classified into five discrete groups: (1) a distinct retrosplenial cell cluster exclusive to the superficial layers of the granular cortex, (2) a conspicuous, thin line of cells in layers IV/V of the "subiculum-backing cortex," (3) a group of highly immunoreactive cells associated with the medial entorhinal-subicular corner, (4) pericallosal cells just below layer VI and adjacent to the white matter, and (5) other sporadic, widely-disseminated HAP1-immunoreactive cells. HAP1 was found to be the first marker for the complex subiculum-backing cortex and a precise marker for several subfields in the retrosplenial-retrohippocampal area, verified through comparative staining with other neurochemicals. HAP1 may play an important role in protecting these cortical structures and functions for higher nervous activity by increasing the threshold to neurodegeneration and decreasing vulnerability to stress or aging.


Subject(s)
Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Hippocampus/cytology , Hippocampus/metabolism , Nerve Tissue Proteins/analysis , Animals , Corpus Callosum/cytology , Corpus Callosum/metabolism , Immunohistochemistry , Male , Neurons/cytology , Neurons/metabolism , Rats, Wistar
19.
Cell Signal ; 35: 176-187, 2017 07.
Article in English | MEDLINE | ID: mdl-28259758

ABSTRACT

Huntingtin-associated protein 1 (HAP1) was initially identified as a binding partner of huntingtin, mutations in which underlie Huntington's disease. Subcellular localization and protein interaction data indicate that HAP1 may be important in vesicle trafficking, cell signalling and receptor internalization. In this study, a proteomics approach was used for the identification of novel HAP1-interacting partners to attempt to shed light on the physiological function of HAP1. Using affinity chromatography with HAP1-GST protein fragments bound to Sepharose columns, this study identified a number of trafficking-related proteins that bind to HAP1. Interestingly, many of the proteins that were identified by mass spectrometry have trafficking-related functions and include the clathrin light chain B and Sec23A, an ER to Golgi trafficking vesicle coat component. Using co-immunoprecipitation and GST-binding assays the association between HAP1 and clathrin light chain B has been validated in vitro. This study also finds that HAP1 co-localizes with clathrin light chain B. In line with a physiological function of the HAP1-clathrin interaction this study detected a dramatic reduction in vesicle retrieval and endocytosis in adrenal chromaffin cells. Furthermore, through examination of transferrin endocytosis in HAP1-/- cortical neurons, this study has determined that HAP1 regulates neuronal endocytosis. In this study, the interaction between HAP1 and Sec23A was also validated through endogenous co-immunoprecipitation in rat brain homogenate. Through the identification of novel HAP1 binding partners, many of which have putative trafficking roles, this study provides us with new insights into the mechanisms underlying the important physiological function of HAP1 as an intracellular trafficking protein through its protein-protein interactions.


Subject(s)
Nerve Tissue Proteins/genetics , Vesicular Transport Proteins/genetics , Animals , Endocytosis/genetics , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , HEK293 Cells , Humans , Mice , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Organic Anion Transporters/genetics , Protein Interaction Maps/genetics , Protein Transport/genetics , Proteomics , Rats , Vesicular Transport Proteins/metabolism
20.
Neuroscience ; 340: 201-217, 2017 01 06.
Article in English | MEDLINE | ID: mdl-27984179

ABSTRACT

Huntingtin-associated protein 1 (HAP1) is a neuronal interactor with causatively polyglutamine (polyQ)-expanded huntingtin in Huntington's disease and also associated with pathologically polyQ-expanded androgen receptor (AR) in spinobulbar muscular atrophy (SBMA), being considered as a protective factor against neurodegenerative apoptosis. In normal brains, it is abundantly expressed particularly in the limbic-hypothalamic regions that tend to be spared from neurodegeneration, whereas the areas with little HAP1 expression, including the striatum, thalamus, cerebral neocortex and cerebellum, are targets in several neurodegenerative diseases. While the spinal cord is another major neurodegenerative target, HAP1-immunoreactive (ir) structures have yet to be determined there. In the current study, HAP1 expression was immunohistochemically evaluated in light and electron microscopy through the cervical, thoracic, lumbar, and sacral spinal cords of the adult male rat. Our results showed that HAP1 is specifically expressed in neurons through the spinal segments and that more than 90% of neurons expressed HAP1 in lamina I-II, lamina X, and autonomic preganglionic regions. Double-immunostaining for HAP1 and AR demonstrated that more than 80% of neurons expressed both in laminae I-II and X. In contrast, HAP1 was specifically lacking in the lamina IX motoneurons with or without AR expression. The present study first demonstrated that HAP1 is abundantly expressed in spinal neurons of the somatosensory, viscerosensory, and autonomic regions but absent in somatomotor neurons, suggesting that the spinal motoneurons are, due to lack of putative HAP1 protectivity, more vulnerable to stresses in neurodegenerative diseases than other HAP1-expressing neurons probably involved in spinal sensory and autonomic functions.


Subject(s)
Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/metabolism , Receptors, Androgen/metabolism , Spinal Cord/cytology , Spinal Cord/metabolism , Animals , Blotting, Western , Cell Count , Immunohistochemistry , Male , Microscopy, Electron , Photomicrography , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...