Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Environ Technol ; : 1-16, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39306691

ABSTRACT

Hydrogen fluoride (HF) corrosion of boiler water-cooled wall pipes at high temperature hinders the co-disposal of fluorinated hazardous wastes and coal by combustion. In this paper, common water-cooled wall pipes (15CrMoG and 20G) were utilized to perform gaseous HF corrosion experiments at high temperature on a horizontal tube furnace. The effects of temperature on HF corrosion of different water-cooled wall pipes in 0.2% HF were investigated. Corrosion kinetics curve was obtained by calculating the mass increase due to corrosion. The microscopic morphology and physical phase composition of water-cooled wall pipes after HF corrosion were analyzed. The corrosion resistances of the two water-cooled wall pipes decrease with increasing the temperature. The corrosion weight gain curves of 15CrMoG and 20G at 550 ℃ are ΔW1.9144 = 0.2100t and ΔW1.8356 = 0.1344t, respectively. The average corrosion rates of 15CrMoG and 20G are 0.0177 and 0.0125 mg/(cm2·h), respectively. The corrosion resistance of 15CrMoG is superior compared to 20G. The HF corrosion at high temperature consists of non-alternating fluorination and oxidation of the metal matrix. This study is of great significance for the protection of boilers with HF corrosion at high temperature.

2.
ACS Sens ; 9(8): 3921-3927, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39133300

ABSTRACT

Luminescence-based sensing provides a method for the rapid detection of nerve agents. Previous approaches have generally focused on sensing materials containing a nucleophilic group that can react with the electrophilic phosphorus atom found in nerve agents. Herein we report an alternative approach for the detection of phosphonofluoridate-based G-series nerve agents that utilizes the fact they contain hydrogen fluoride. We have developed silylated sensing materials based on an excited-state intramolecular proton transfer (ESIPT) reporter compound, 2-[benzo[d]thiazol-2-yl]phenol. Thin films of differently silylated 2-[benzo[d]thiazol-2-yl]phenol were found to react with the hydrogen fluoride found in di-iso-propyl fluorophosphate (DFP), a simulant of sarin (G-series nerve agent), and turn on the ESIPT emission of the reporter compound. The use of the ESIPT emission reduced the impact of background fluorescence and improved the sensitivity of the detection. The effectiveness of the approach was dependent on the stability of the silyl protecting group used, with the least sterically hindered (trimethylsilyl) found to be too unstable to the ambient environment while the most sterically hindered, e.g., tri-iso-propylsilyl and tert-butyldiphenylsilyl were found to be insufficiently reactive to be useful in a real detection scenario. The sensing material composed of the tert-butyl dimethylsilyl protected 2-[benzo[d]thiazol-2-yl]phenol was found to have the best balance between stability under ambient conditions, and reactivity and selectivity to hydrogen fluoride. In a 3 s exposure, it could detect hydrogen fluoride down to a concentration of around 23 ppm in DFP with 99% purity.


Subject(s)
Hydrofluoric Acid , Nerve Agents , Protons , Hydrofluoric Acid/chemistry , Nerve Agents/analysis , Nerve Agents/chemistry , Ethers/chemistry
3.
Dent Mater J ; 43(4): 504-516, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38825449

ABSTRACT

The surface treatment of glass-ceramic-based materials, namely, lithium disilicate glass (IPS e.max CAD), feldspar porcelain (VITABLOCS Mark II), and a polymer-infiltrated ceramic network (VITA ENAMIC), using aqueous fluoride solutions and their influence on luting agent bonding were investigated. Six experimental aqueous fluoride solutions were applied to these materials, and their effects were assessed by surface topological analysis. The obtained results were compared using non-parametric statistical analyses. Ammonium hydrogen fluoride (AHF) etchant demonstrated the greatest etching effect. Subsequent experiments focused on evaluating different concentrations of the AHF etchant for the bonding pretreatment of glass-ceramic-based materials with a luting agent (PANAVIA V5). AHF, particularly at concentrations above 5 wt%, effectively roughened the surfaces of the materials and improved the bonding performance. Notably, AHF at a concentration of 30 wt% exhibited a more pronounced effect on both etching and bonding capabilities compared to hydrofluoric acid.


Subject(s)
Ceramics , Computer-Aided Design , Dental Porcelain , Fluorides , Hydrofluoric Acid , Materials Testing , Surface Properties , Fluorides/chemistry , Ceramics/chemistry , Dental Porcelain/chemistry , Hydrofluoric Acid/chemistry , Dental Bonding/methods , Acid Etching, Dental , Aluminum Silicates/chemistry , Potassium Compounds/chemistry , Ammonium Compounds/chemistry
4.
Sensors (Basel) ; 24(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732911

ABSTRACT

Internal discharge and overheating faults in sulfur hexafluoride (SF6) gas-insulated electrical equipment will generate a series of characteristic gas products. Hydrogen fluoride (HF) is one of the main decomposition gases under discharge failure. Because of its extremely corrosive nature, it can react with other materials in gas-insulated switchgear (GIS), resulting in a short existence time, so it needs to be detected online. Resonant gas photoacoustic spectroscopy has the advantage of high sensitivity, fast response, and no sample gas consumption, and can be used for the online detection of flowing gas. In this paper, a simulated GIS corona discharge experimental platform was built, and the HF generated in the discharge was detected online by gas photoacoustic spectroscopy. The absorption peak of HF molecule near 1312.59 nm was selected as the absorption spectral line, and a resonant photoacoustic cell was designed. To improve the detection sensitivity of HF, wavelength modulation and second-harmonic detection technology were used. The online monitoring of HF in the simulated GIS corona discharge fault was successfully realized. The experimental results show that the sensitivity of the designed photoacoustic spectroscopy detection system for HF is 0.445 µV/(µL/L), and the limit of detection (LOD) is 0.611 µL/L.

5.
J Environ Radioact ; 276: 107441, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677042

ABSTRACT

Residues generated from the uranium purification process, characterized by a high uranium content, pose a significant challenge for recovery through leaching and present a considerable environmental threat. After using XRD and SEM-mapping characterization analysis combined with the BCR continuous graded extraction test to analyze the content of different states of uranium, it was found that the main reason why the uranium in the residue was difficult to leach because it was encapsulated by SiO2 crystals. Using NH4HF2 as a leaching agent, a leaching study of uranium in the residue was carried out, and the results showed that the H+ and F- produced by NH4HF2could react with SiO2, destroying the crystal lattice of SiO2 and causing the encapsulated uranium to come into contact with the leaching agent, facilitating the leaching of uranium in the residue. The optimum conditions for uranium leaching were 10% mass fraction of NH4HF2, a liquid-solid ratio of 30:1, a reaction temperature of 30 °C and a reaction time of 120 min, and the leaching efficiency of uranium from the residue was as high as 98.95%. The leaching kinetics of uranium by NH4HF2 were consistent with the mixed controlled model in the shrinking core models, indicating that the surface chemical reaction and mass diffusion dominated both uranium leaching processes. This may provide a viable method for resource recovery and the treatment of uranium purification residues.


Subject(s)
Uranium , Uranium/chemistry , Fluorides/chemistry , Ammonium Compounds/chemistry , Kinetics
6.
Front Chem ; 12: 1372981, 2024.
Article in English | MEDLINE | ID: mdl-38476650

ABSTRACT

Anhydrous hydrogen fluoride (AHF), a critical raw material for industries such as aluminum, pharmaceuticals, and petroleum, has traditionally been sourced from fluorite-a non-renewable mineral. The unsustainable reliance on fluorite has catalyzed the search for alternative AHF production methods. A promising substitute is fluorosilicic acid (FSA), a byproduct of the phosphate fertilizer industry previously deemed waste. Transforming fluorosilicic acid into AHF not only yields a valuable resource but also addresses the environmental and economic challenges associated with waste management. The innovative practice of producing AHF from fluorosilicic acid signals a shift towards sustainable chemical production by capitalizing on waste, potentially diminishing reliance on fluorite and reducing the industry's environmental impact. This review thoroughly dissects the AHF synthesis process from fluorosilicic acid. Despite the acknowledged importance of fluorinated compounds in numerous industrial applications, research on their synthesis from fluorosilicic acid is limited and fragmented. This review seeks to amalgamate this scattered information by closely scrutinizing diverse industrial processing methods. Additionally, it explores the current and future landscape, economic feasibility, and strategies to navigate the obstacles inherent in synthesizing AHF from fluorosilicic acid. It also assesses the environmental impact of these methods, thereby contributing to the dialogue in this emerging field. The primary aim of this manuscript is to foster further research and promote the industrial uptake of this sustainable process. Highlighting the challenges and proposing potential improvements, the review supports the responsible reuse of waste and advocates for advancements in industrial practices.

7.
Toxics ; 12(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38535917

ABSTRACT

In order to investigate the impact of environmental temperature and atmospheric humidity on the leakage and diffusion of hydrogen fluoride (HF) gas, this study focused on the real scenario of an HF chemical industrial park. Based on the actual dispersion scenario of HF gas, a proportionally scaled-down experimental platform for HF gas leakage was established to validate the accuracy and feasibility of numerical simulations under complex conditions. Using the validated model, the study calculated the complex scenarios of HF leakage and diffusion within the temperature range of 293 K to 313 K and the humidity range of 0% to 100%. The simulation results indicated that different environmental temperatures had a relatively small impact on the hazardous areas (the lethal area, severe injury area, light injury area, and maximum allowable concentration (MAC) area) formed by HF gas leakage. At 600 s of dispersion, the fluctuation range of hazardous area sizes under different temperature conditions was between 3.11% and 13.07%. In contrast to environmental temperature, atmospheric relative humidity had a more significant impact on the dispersion trend of HF leakage. Different relative humidity levels mainly affected the areas of the lethal zone, light injury zone, and MAC zone. When HF continued to leak and disperse for 600 s, compared to 0% relative humidity, 100% relative humidity reduced the lethal area by 35.7%, while increasing the light injury area and MAC area by 27.26% and 111.6%, respectively. The impact on the severe injury area was relatively small, decreasing by 1.68%. The results of this study are crucial for understanding the dispersion patterns of HF gas under different temperature and humidity conditions.

8.
J Mol Model ; 30(2): 26, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191945

ABSTRACT

CONTEXT: The reaction between Na and HF is a typical harpooning reaction which is of great interest due to its significance in understanding the elementary chemical reaction kinetics. This work aims to investigate the detailed reaction mechanisms of sodium with hydrogen fluoride and the adsorption of HF on the resultant NaF as well as the (NaF)4 tetramer. The results suggest that the reaction between Na and HF leads to the formation of sodium fluoride salt NaF and hydrogen gas. Na interacts with HF to form a complex HF···Na, and then the approaching of F atom of HF to Na results in a transition state H···F···Na. Accompanied by the broken of H-F bond, the bond forms between F and Na atoms as NaF, then the product NaF is yielded due to the removal of H atom. The resultant NaF can further form (NaF)4 tetramer. The interaction of NaF with HF leads to the complex NaF···HF; the form I as well as II of (NaF)4 can interact with HF to produce two complexes (i.e., (NaF)4(I-1)···HF, (NaF)4(I-2)···HF, (NaF)4(II-1)···HF and (NaF)4(II-2)···HF), but the form III of (NaF)4 can interact with HF to produce only one complex (NaF)4(III)···HF. These complexes were explored in terms of noncovalent interaction (NCI) and quantum theory of atoms in molecules (QTAIM) analyses. NCI analyses confirm the existences of attractive interactions in the complexes HF···Na, NaF···HF, (NaF)4(I-1)···HF, (NaF)4(I-2)···HF, (NaF)4(II-1)···HF and (NaF)4(II-2)···HF, and (NaF)4(III)···HF. QTAIM analyses suggest that the F···Na interaction forms in the HF···Na complex while the F···H hydrogen bonds form in NaF···HF, (NaF)4(I-1)···HF, (NaF)4(I-2)···HF, (NaF)4(II-1)···HF and (NaF)4(II-2)···HF, and (NaF)4(III)···HF complexes. Natural bond orbital (NBO) analyses were also applied to analyze the intermolecular donor-acceptor orbital interactions in these complexes. These results would provide valuable insight into the chemical reaction of Na and HF and the adsorption interaction between sodium fluoride salt and HF. METHODS: The calculations were carried out at the M06-L/6-311++G(2d,2p) level of theory which were performed using the Gaussian16 program. Intrinsic reaction coordinate (IRC) calculations were carried out at the same level of theory to confirm that the obtained transition state was true. The molecular surface electrostatic potential (MSEP) was employed to understand how the complex forms. Quantum theory of atoms in molecules (QTAIM) and noncovalent interaction (NCI) analysis was used to know the topology parameters at bond critical points (BCPs) and intermolecular interactions in the complex and intermediate. The topology parameters and the BCP plots were obtained by the Multiwfn software.

9.
J Colloid Interface Sci ; 644: 415-425, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37126891

ABSTRACT

Lithium (Li) metal batteries (LMBs), paired with high-energy-density cathode materials, are promising to meet the ever-increasing demand for electric energy storage. Unfortunately, the inferior electrode-electrolyte interfaces and hydrogen fluoride (HF) corrosion in the state-of-art carbonate-based electrolytes lead to dendritic Li growth and unsatisfactory cyclability of LMBs. Herein, a multifunctional electrolyte additive triallylamine (TAA) is proposed to circumvent those issues. The TAA molecule exhibits strong nucleophilicity and contains three unsaturated carbon-carbon double bonds, the former for HF elimination, the later for in-situ passivation of aggressive electrodes. As evidenced theoretically and experimentally, the preferential oxidation and reduction of carbon-carbon double bonds enable the successful regulation of components and morphologies of electrode interfaces, as well as the binding affinity to HF effectively blocks HF corrosion. In particular, the TAA-derived electrode interfaces are packed with abundant lithium-containing inorganics and oligomers, which diminishes undesired parasitic reactions of electrolyte and detrimental degradation of electrode materials. When using the TAA-containing electrolyte, the cell configuration with Li anode and nickel-rich layered oxide cathode and symmetrical Li cell deliver remarkably enhanced electrochemical performance with regard to the additive-free cell. The TAA additive shows great potential in advancing the development of carbonate-based electrolytes in LMBs.

10.
Environ Monit Assess ; 195(6): 752, 2023 May 29.
Article in English | MEDLINE | ID: mdl-37247106

ABSTRACT

Plants can serve as sensitive bioindicators of the presence of contaminant vapors in the atmosphere. This work describes a novel laboratory-based gas exposure system capable of calibrating plants as bioindicators for the detection and delineation of the atmospheric contaminant hydrogen fluoride (HF) as a preparatory step for monitoring release emissions. To evaluate changes in plant phenotype and stress-induced physiological effects attributed to HF alone, the gas exposure chamber must have additional controls to simulate otherwise optimal plant growth conditions including variables such as light intensity, photoperiod, temperature, and irrigation. The exposure system was designed to maintain constant growth conditions during a series of independent experiments that varied between optimal (control) and stressful (HF exposure) conditions. The system was also designed to ensure the safe handling and application of HF. An initial system calibration introduced HF gas into the exposure chamber and monitored HF concentrations by cavity ring-down spectroscopy for a 48-h period. Stable concentrations inside the exposure chamber were observed after approximately 15 h, and losses of HF to the system ranged from 88 to 91%. A model plant species (Festuca arundinacea) was then exposed to HF for 48 h. Visual phenotype stress-induced responses aligned with symptoms reported in the literature for fluoride exposure (tip dieback and discoloration along the dieback transition margin). Fluoride concentrations in exposed tissues compared to control tissues confirmed enhanced fluoride uptake due to HF exposure. The system described herein can be applied to other reactive atmospheric pollutants of interest in support of bioindicator research.


Subject(s)
Fluorides , Hydrofluoric Acid , Fluorides/toxicity , Gases , Environmental Biomarkers , Environmental Monitoring/methods , Plants
11.
Small ; 19(29): e2300411, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37029576

ABSTRACT

The introduction of electrolyte additives is one of the most potential strategies to improve the performance of potassium metal batteries (PMBs). However, designing an additive that can alter the K+ solvation shell and essentially inhibit K dendrite remains a challenge. Herein, the amyl-triphenyl-phosphonium bromide was introduced as an additive to build a stable solid electrolyte interphase layer. The amyl-TPP cations can form a cation shielding layer on the metal surface during the nucleation stage, preventing K+ from gathering at the tip to form K dendrites. Besides, the cations can be preferentially reduced to form Kx Py with fast K+ transport kinetics. The Br- anions, as Lewis bases with strong electronegativity, can not only coordinate the Lewis acid pentafluoride to inhibit the formation of HF, but also change the K+ solvation structure to reduce solvent molecules in the first solvation structure. Therefore, the symmetrical battery exhibits a low deposition overpotential of 123 mV at 0.1 mA cm-2 over 4200 h cycle life. The full battery, paried with a perylene-tetracarboxylic dianhydride (PTCDA) cathode, possesses a cycle life of 250 cycles at 2 C and 81.9% capacity retention. This work offers a reasonable electrolyte design to obtain PMBs with long-term stablity and safety.

12.
Article in Chinese | MEDLINE | ID: mdl-37006145

ABSTRACT

Objective: To analyze correlation of occupational hydrogen fluoride exposure to low doses of bone metabolism index through occupational epidemiological investigation and benchmark dose calculation. Methods: In May 2021, using cluster sampling method, 237 workers exposed to hydrogen fluoride in a company were selected as the contact group, and 83 workers not exposed to hydrogen fluoride in an electronics production company were selected as the control group. The external exposure dose and urinary fluoride concentration, blood and urine biochemical indicators of the workers was measured.The relationship between external dose and internal dose of hydrogen fluoride was analyzed. The external dose, urinary fluoride was used as exposure biomarkers, while serum osteocalcin (BGP), serum alkaline phosphatase (AKP) and urinary hydroxyproline (HYP) were used as effect biomarkers for bone metabolism of hydrogen fluoride exposure. The benchmark dose calculation software (BMDS1.3.2) was used to calculate benchmark dose (BMD) . Results: Urine fluoride concentration in the contact group was correlated with creatinine-adjusted urine fluoride concentration (r=0.69, P=0.001). There was no significant correlation between the external dose of hydrogen fluoride and urine fluoride in the contact group (r=0.03, P=0.132). The concentrations of urine fluoride in the contact group and the control group were (0.81±0.61) and (0.45±0.14) mg/L, respectively, and the difference between the two groups was statistically significant (t=5.01, P=0.025). Using BGP, AKP and HYP as effect indexes, the urinary BMDL-05 values were 1.28, 1.47 and 1.08 mg/L, respectively. Conclusion: Urinary fluoride can sensitively reflect the changes in the effect indexes of biochemical indexes of bone metabolism. BGP and HYP can be used as early sensitive effect indexes of occupational hydrogen fluoride exposure.


Subject(s)
Fluorides , Occupational Exposure , Humans , Fluorides/adverse effects , Hydrofluoric Acid , Benchmarking , Biomarkers , Occupational Exposure/adverse effects
13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-970737

ABSTRACT

Objective: To analyze correlation of occupational hydrogen fluoride exposure to low doses of bone metabolism index through occupational epidemiological investigation and benchmark dose calculation. Methods: In May 2021, using cluster sampling method, 237 workers exposed to hydrogen fluoride in a company were selected as the contact group, and 83 workers not exposed to hydrogen fluoride in an electronics production company were selected as the control group. The external exposure dose and urinary fluoride concentration, blood and urine biochemical indicators of the workers was measured.The relationship between external dose and internal dose of hydrogen fluoride was analyzed. The external dose, urinary fluoride was used as exposure biomarkers, while serum osteocalcin (BGP), serum alkaline phosphatase (AKP) and urinary hydroxyproline (HYP) were used as effect biomarkers for bone metabolism of hydrogen fluoride exposure. The benchmark dose calculation software (BMDS1.3.2) was used to calculate benchmark dose (BMD) . Results: Urine fluoride concentration in the contact group was correlated with creatinine-adjusted urine fluoride concentration (r=0.69, P=0.001). There was no significant correlation between the external dose of hydrogen fluoride and urine fluoride in the contact group (r=0.03, P=0.132). The concentrations of urine fluoride in the contact group and the control group were (0.81±0.61) and (0.45±0.14) mg/L, respectively, and the difference between the two groups was statistically significant (t=5.01, P=0.025). Using BGP, AKP and HYP as effect indexes, the urinary BMDL-05 values were 1.28, 1.47 and 1.08 mg/L, respectively. Conclusion: Urinary fluoride can sensitively reflect the changes in the effect indexes of biochemical indexes of bone metabolism. BGP and HYP can be used as early sensitive effect indexes of occupational hydrogen fluoride exposure.


Subject(s)
Humans , Fluorides/adverse effects , Hydrofluoric Acid , Benchmarking , Biomarkers , Occupational Exposure/adverse effects
14.
Photoacoustics ; 28: 100422, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36386294

ABSTRACT

Due to its advantages of non-contact measurement and high sensitivity, light-induced thermoelastic spectroscopy (LITES) is one of the most promising methods for corrosive gas detection. In this manuscript, a highly sensitive hydrogen fluoride (HF) sensor based on LITES technique is reported for the first time. With simple structure and strong robustness, a shallow neural network (SNN) fitting algorithm is introduced into the field of spectroscopy data processing to achieve denoising. This algorithm provides an end-to-end approach that takes in the raw input data without any pre-processing and extracts features automatically. A continuous wave (CW) distributed feedback diode (DFB) laser with an emission wavelength of 1.27 µm was used as the excitation source. A Herriott multi-pass cell (MPC) with an optical length of 10.1 m was selected to enhance the laser absorption. A quartz tuning fork (QTF) with resonance frequency of 32,767.52 Hz was adopted as the thermoelastic detector. An Allan variance analysis was performed to demonstrate the system stability. When the integration time was 110 s, the minimum detection limit (MDL) was found to be 71 ppb. After the SNN fitting algorithm was used, the signal-to-noise ratio (SNR) of the HF-LITES sensor was improved by a factor of 2.0, which verified the effectiveness of this fitting algorithm for spectroscopy data processing.

15.
Angew Chem Int Ed Engl ; 61(49): e202212115, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36224095

ABSTRACT

The synthesis of N-CF3 compounds through fluorination or trifluoromethylation of N-containing compounds has been extensively investigated. However, general access to N-CF3 compounds simply from N-CF3 secondary amines is hampered by the challenging preparation and instability of these amines, as well as a much lower reactivity due to the strong electron-withdrawing nature and steric bulk of the trifluoromethyl moiety. Herein, we report a general and highly efficient synthesis of N-CF3 secondary amines with excellent isolated yields via the addition of the in situ generated difluoromethyl imine (R-N=CF2 ) intermediates with hydrogen fluoride, which is mildly produced by triethylsilane and silver fluoride. N-CF3 sulfonamides, highly desirable but scarce at present, are easily accessible from these valuable building blocks through an unprecedented route. This study will bring new vitality to the synthesis of N-CF3 compounds.

16.
Foods ; 11(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36230195

ABSTRACT

Protein phosphorylation is a reversible post-translational modification (PTM) with major regulatory roles in many cellular processes. However, the analysis of phosphoproteins remains the most challenging barrier in the prevailing proteome research. Recent technological advances in two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MS) have enabled the identification, characterization, and quantification of protein phosphorylation on a global scale. Most research on phosphoproteins with 2-DE has been conducted using phosphostains. Nevertheless, low-abundant and low-phosphorylated phosphoproteins are not necessarily detected using phosphostains and/or MS. In this study, we report a comparative analysis of 2-DE phosphoproteome profiles using Pro-Q Diamond phosphoprotein stain (Pro-Q DPS) and chemical dephosphorylation of proteins with HF-P from longissimus thoracis (LT) muscle samples of the Rubia Gallega cattle breed. We found statistically significant differences in the number of identified phosphoproteins between methods. More specifically, we found a three-fold increase in phosphoprotein detection with the HF-P method. Unlike Pro-Q DPS, phosphoprotein spots with low volume and phosphorylation rate were identified by HF-P technique. This is the first approach to assess meat phosphoproteome maps using HF-P at a global scale. The results open a new window for 2-DE gel-based phosphoproteome analysis.

17.
Int J Mol Sci ; 23(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35955461

ABSTRACT

We investigate dissociative electron attachment to 5-fluorouracil (5-FU) employing a crossed electron-molecular beam experiment and quantum chemical calculations. Upon the formation of the 5-FU- anion, 12 different fragmentation products are observed, the most probable dissociation channel being H loss. The parent anion, 5-FU-, is not stable on the experimental timescale (~140 µs), most probably due to the low electron affinity of FU; simple HF loss and F- formation are seen only with a rather weak abundance. The initial dynamics upon electron attachment seems to be governed by hydrogen atom pre-dissociation followed by either its full dissociation or roaming in the vicinity of the molecule, recombining eventually into the HF molecule. When the HF molecule is formed, the released energy might be used for various ring cleavage reactions. Our results show that higher yields of the fluorine anion are most probably prevented through both faster dissociation of an H atom and recombination of F- with a proton to form HF. Resonance calculations indicate that F- is formed upon shape as well as core-excited resonances.


Subject(s)
Electrons , Hydrofluoric Acid , Anions , Fluorouracil/chemistry , Hydrogen/chemistry
18.
Exp Eye Res ; 222: 109169, 2022 09.
Article in English | MEDLINE | ID: mdl-35820464

ABSTRACT

Corneal injuries induced by various toxicants result in similar clinical presentations such as corneal opacity and neovascularization. Many studies suggest that several weeks post-exposure a convergence of the molecular mechanisms drives these progressive pathologies. However, chemical agents vary in toxicological properties, and early molecular responses are anticipated to be somewhat dissimilar for different toxicants. We chose 3120 targets from the Dharmacon Human Druggable genome to screen for chloropicrin (CP) and hydrogen fluoride (HF) corneal injury as we hypothesized that targets identified in vitro may be effective as therapeutic targets in future studies. Human immortalized corneal epithelial cells (SV40-HCEC) were used for screening. Cell viability and IL-8 were analyzed to down-select hits into validation studies, where multiplex cytokine analysis and high content analysis were performed to understand toxicant effect and target function. Some endpoints were also evaluated in a second human immortalized corneal epithelial cell line, TCEpi. Over 20 targets entered validation studies for CP and HF; of these, only three targets were shared: NR3C1, RELA, and KMT5A. These findings suggest that early molecular responses to different toxicants may be somewhat distinctive and present dissimilar targets for possible early intervention.


Subject(s)
Corneal Injuries , Epithelium, Corneal , Corneal Injuries/metabolism , Epithelial Cells/metabolism , Epithelium, Corneal/metabolism , High-Throughput Screening Assays , Humans , Hydrocarbons, Chlorinated , Hydrofluoric Acid/metabolism , Hydrofluoric Acid/pharmacology , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology
19.
J Hazard Mater ; 437: 129323, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35749895

ABSTRACT

Accidental chemical leaks and illegal chemical discharges are a global environmental issue. In 2012, a hydrogen fluoride leak in Gumi, South Korea, killed several people and contaminated the environment. This leak also led to a significant decline in crop yield, even after the soil concentration of hydrogen fluoride decreased to below the standard level following natural attenuation. To determine the cause of this decreased plant productivity, we designed direct and indirect exposure tests by evaluating the metabolome, transcriptome, and phenome of the plants. In an indirect exposure test, soil metabolomics revealed downregulation of metabolites in vitamin B6, lipopolysaccharide, osmolyte, and exopolysaccharide metabolism. Next-generation sequencing of the plants showed that ABR1 and DREB1A were overexpressed in response to stress. Plant metabolomics demonstrated upregulation of folate biosynthesis and nicotinate and nicotinamide metabolism associated with detoxification of reactive oxygen species. These results demonstrate impaired metabolism of soil microbes and plants even after natural attenuation of hydrogen fluoride in soil. The novel chemical exposure testing used in this study can be applied to identify hidden damage to organisms after natural attenuation of chemicals in soil, as well as biomarkers for explaining the decline in yield of plants grown in soil near pollutant-emitting industrial facilities.


Subject(s)
Soil Pollutants , Soil , Gene Expression Profiling , Humans , Hydrofluoric Acid/metabolism , Metabolome , Plants/metabolism , Soil/chemistry , Soil Pollutants/metabolism , Transcriptome
20.
Article in Chinese | MEDLINE | ID: mdl-35255587

ABSTRACT

Objective: Using CFD technology to grasp the distribution and diffusion of hydrogen fluoride in an electrolytic fluorine plant, provide guidance and scientific basis for enterprises to carry out occupational health management in enterprises, install hazardous substance alarm devices, and protect workers' occupational health. Methods: In July 2019, the diffusion law of hydrogen fluoride gas produced in an electrolytic fluorine plant is selected as the research object. Through the establishment of models and grids, the Fluent numerical simulation method is finally used to simulate the diffusion and distribution of hydrogen fluoride gas under ventilation conditions. Results: The results showed that the average concentration of hydrogen fluoride was 0.045 mg/m(3) in the workplace, and the absorbed zone height (1.5 m) was 0.02 mg/m(3) in the inspection channel, which was in accordance with the national standard. However, there is eddy current above the electrolyzer near the inlet, may lead to the accumulation of hydrogen fluoride gas. Conclusion: The research of CFD numerical simulation method on the distribution and diffusion of hydrogen fluoride concentration in electrolytic fluorine plant can be applied to the prevention, control and management of occupational hazards in electrolytic fluorine plant.


Subject(s)
Occupational Exposure , Occupational Health , Computer Simulation , Fluorides , Humans , Hydrofluoric Acid , Occupational Exposure/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL