Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Publication year range
1.
J Radiat Res ; 65(3): 291-302, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38588586

ABSTRACT

This study was aimed to investigate the effect of hydrogen-rich solution (HRS) on acute radiation pneumonitis (ARP) in rats. The ARP model was induced by X-ray irradiation. Histopathological changes were assessed using HE and Masson stains. Inflammatory cytokines were detected by ELISA. Immunohistochemistry and flow cytometry were performed to quantify macrophage (CD68) levels and the M2/M1 ratio. Western blot analysis, RT-qPCR, ELISA and flow cytometry were used to evaluate mitochondrial oxidative stress injury indicators. Immunofluorescence double staining was performed to colocalize CD68/LC3B and p-AMPK-α/CD68. The relative expression of proteins associated with autophagy activation and the adenosine 5'-monophosphate-activated protein kinase/mammalian target of rapamycin/Unc-51-like kinase 1 (AMPK/mTOR/ULK1) signaling pathway were detected by western blotting. ARP decreased body weight, increased the lung coefficient, collagen deposition and macrophage infiltration and promoted M1 polarization in rats. After HRS treatment, pathological damage was alleviated, and M1 polarization was inhibited. Furthermore, HRS treatment reversed the ARP-induced high levels of mitochondrial oxidative stress injury and autophagy inhibition. Importantly, the phosphorylation of AMPK-α was inhibited, the phosphorylation of mTOR and ULK1 was activated in ARP rats and this effect was reversed by HRS treatment. HRS inhibited M1 polarization and alleviated oxidative stress to activate autophagy in ARP rats by regulating the AMPK/mTOR/ULK1 signaling pathway.


Subject(s)
Autophagy , Hydrogen , Macrophages , Oxidative Stress , Radiation Pneumonitis , Rats, Sprague-Dawley , Animals , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Hydrogen/pharmacology , Hydrogen/therapeutic use , Autophagy/drug effects , Autophagy/radiation effects , Macrophages/drug effects , Macrophages/metabolism , Macrophages/radiation effects , Radiation Pneumonitis/drug therapy , Radiation Pneumonitis/pathology , Radiation Pneumonitis/metabolism , Male , Rats , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinases/metabolism , Autophagy-Related Protein-1 Homolog/metabolism , Cell Polarity/drug effects , Cell Polarity/radiation effects , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/radiation effects , Acute Disease
2.
J Anesth ; 2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38493423

ABSTRACT

PURPOSE: This study aimed to determine whether the combination of H2 gas inhalation and administration of hydrogen-rich acetated Ringer's solution (HS) could protect against ischemic spinal cord injury in rabbits. METHODS: In Experiment 1, rabbits were randomly assigned to a 1.2% H2 gas group, HS group, 1.2% H2 gas + HS group (combination group), or control group (n = 6 per group). The H2 concentration of HS was 0.65 mM. H2 was inhaled for 60 min, starting 5 min before reperfusion. HS (20 mL/kg) was divided into six bolus injections at 10-min intervals, starting 5 min before reperfusion. Spinal cord ischemia was produced by occluding the abdominal aorta for 15 min. Neurologic and histopathologic evaluations were performed 7 days after reperfusion. In Experiment 2, H2 concentrations in spinal cord tissue according to the administration of 1.2% H2 gas or HS were compared by measuring the electric current through a platinum needle electrode (n = 2). In Experiment 3, rabbits were assigned to a 2% H2 gas group or control group (n = 6 per group). Spinal cord ischemia was produced and neurologic and histopathologic evaluations were performed as in Experiment 1. RESULTS: There were no significant differences among the groups in the neurologic and histopathologic outcomes in Experiments 1 and 3. Bolus administration of HS (10 mL) transiently increased the current to only 1/30th and 1/27th of the plateau current with 1.2% H2 gas inhalation in two animals. CONCLUSION: These results suggest that the combination of 1.2% H2 gas inhalation and administration of a hydrogen-rich solution does not protect against ischemic spinal cord injury and that the increase in H2 concentration in spinal cord tissue after administration of HS is very low compared to 1.2% H2 gas inhalation.

3.
Organ Transplantation ; (6): 300-2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-965056

ABSTRACT

Ischemia-reperfusion injury after lung transplantation is the main cause of primary graft dysfunction, which will subsequently reduce the function of lung allograft and lower the overall survival rate of lung transplant recipients. As a physiological regulatory molecule, hydrogen molecule has the functions of anti-inflammation, easing oxidative stress, alleviating direct cell injury and mitigating epithelial edema. Recent studies have demonstrated that hydrogen molecule and its products (hydrogen and hydrogen-rich solution) could significantly mitigate ischemia-reperfusion injury and postoperative complications after lung transplantation. In this article, the protective effect and exact mechanism of hydrogen molecule and its products in lung transplantation were reviewed, aiming to provide theoretical basis for the application of hydrogen molecule and its products as a novel treatment for lung transplantation-related complications, enhance the overall prognosis and improve the quality of life of lung transplant recipients

4.
J Thorac Cardiovasc Surg ; 159(5): 2110-2118, 2020 05.
Article in English | MEDLINE | ID: mdl-31780065

ABSTRACT

BACKGROUND: Molecular hydrogen can reduce the oxidative stress of ischemia-reperfusion injury in various organs for transplantation and potentially improve survival rates in recipients. This study aimed to evaluate the protective effects of a hydrogen-rich preservation solution against ischemia-reperfusion injury after cold ischemia in rat lung transplantation. METHODS: Lewis rats were divided into a nontransplant group (n = 3), minimum-ischemia group (n = 3), cold ischemia group (n = 6), and cold ischemia with hydrogen-rich (more than 1.0 ppm) preservation solution group (n = 6). The rats in the nontransplant group underwent simple thoracotomy, and the rats in the remaining 3 groups underwent orthotopic left lung transplantation. The ischemic time was <30 minutes in the minimum-ischemia group and 6 hours in the cold ischemia groups. After 2-hour reperfusion, we evaluated arterial blood gas levels, pulmonary function, lung wet-to-dry weight ratio, and histologic features of the lung tissue. The expression of proinflammatory cytokines was measured using quantitative polymerase chain reaction assays, and 8-hydroxydeoxyguanosine levels were evaluated using enzyme-linked immunosorbent assays. RESULTS: When compared with the nontransplant and minimum-ischemia groups, the cold ischemia group had lower dynamic compliance, lower oxygenation levels, and higher wet-to-dry weight ratios. However, these variables were significantly improved in the cold ischemia with hydrogen-rich preservation solution group. This group also had fewer signs of perivascular edema, lower interleukin-1ß messenger RNA expression, and lower 8-hydroxydeoxyguanosine levels than the cold ischemia group. CONCLUSIONS: The use of a hydrogen-rich preservation solution attenuates ischemia-reperfusion injury in rat lungs during cold ischemia through antioxidant and anti-inflammatory effects.


Subject(s)
Cold Ischemia/methods , Hydrogen/pharmacology , Lung Transplantation/methods , Organ Preservation Solutions/pharmacology , Protective Agents/pharmacology , Animals , Cytokines/analysis , Disease Models, Animal , Lung/drug effects , Lung/metabolism , Male , Rats , Rats, Inbred Lew , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control
5.
Aging (Albany NY) ; 11(24): 12097-12113, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31841441

ABSTRACT

Sepsis-related acute kidney injury (AKI) is known to be caused by inflammation. We explored the renal protective effects of aerosol inhalation of a hydrogen-rich solution (HRS; hydrogen gas dissolved to saturation in saline) in a mouse model of septic AKI. Septic AKI was induced through 18 hours of cecal ligation and puncture. AKI occurred during the early stage of sepsis, as evidenced by increased blood urea nitrogen and serum creatinine levels, pathological changes, renal fibrosis and renal tubular epithelial cell apoptosis, accompanied by macrophage infiltration and M1 macrophage-associated pro-inflammatory cytokine (Il-6 and Tnf-α) generation in renal tissues. Aerosol inhalation of the HRS increased anti-inflammatory cytokine (Il-4 and Il-13) mRNA levels in renal tissues and promoted macrophage polarization to the M2 type, which generated additional anti-inflammatory cytokines (Il-10 and Tgf-ß). Ultimately, aerosol inhalation of HRS protected the kidneys and increased survival among septic mice. HRS was confirmed to promote M2 macrophage polarization in lipopolysaccharide-stimulated RAW 264.7 cells. The TGF-ß1 receptor inhibitor SB-431542 partly reversed the effects of HRS on renal function, fibrosis, tubular epithelial cell apoptosis and senescence in mice. Thus, HRS aerosol inhalation appears highly useful for renal protection and inflammation reduction in septic AKI.


Subject(s)
Acute Kidney Injury/therapy , Hydrogen/administration & dosage , Macrophages/drug effects , Sepsis/complications , Acute Kidney Injury/blood , Acute Kidney Injury/immunology , Acute Kidney Injury/mortality , Administration, Inhalation , Animals , Cytokines/drug effects , Cytokines/metabolism , Drug Evaluation, Preclinical , Kidney/drug effects , Kidney/metabolism , Mice , Mice, Inbred C57BL , Nephrosclerosis/etiology , Nephrosclerosis/prevention & control , Oxygen/blood , RAW 264.7 Cells
6.
J Surg Res ; 239: 103-114, 2019 07.
Article in English | MEDLINE | ID: mdl-30825755

ABSTRACT

BACKGROUND: Hemorrhagic shock could induce acute lung injury (ALI), which is associated with cell hypoxia, lung tissue inflammation, free radical damage, and excessive cell apoptosis. Our previous studies demonstrated that hyperoxygenated solution could alleviate cell hypoxia. Furthermore, hydrogen-rich solution (HS) could relieve lung tissue inflammation, free radical damage and excessive cell apoptosis. Therefore we hypothesize that Hyperoxygenated Hydrogen-rich solution (HOHS) can protect the lung against ALI. MATERIALS AND METHODS: SD rats were randomly divided into five groups (n = 6 at each time point in each group) and were exposed to Hemorrhagic shock induced ALI, and then treated with lactated Ringer's solution (LRS), hyperoxygenated solution, HS, and HOHS, respectively. The protective effects of these solutions were assessed using methods as follows: arterial blood samples were collected for blood gas analysis; Bronchoalveolar lavage fluid was collected for cell count and protein quantification; lung tissue samples were collected to measure wet/dry ratio, as well as levels of T-SOD, MDA, TNF-α, and IL-6; Caspase-3 and TUNEL-positive cells, and pathological changes were observed under light microscope; ALI was scored using the Smith scoring method; ultrastructural changes of lung tissues were further observed with transmission electron microscopy. RESULTS: The results indicated that PaO2, PaCO2, and T-SOD increased in the three treatment groups (P < 0.05), most significantly in the HOHS group (P < 0.01) compared with the LRS group; and conversely that the levels of lactate, MDA, TNF-α and IL-6, cell count, protein content, caspase-3 and TUNEL-positive cells as well as ALI score decreased in the three treatment groups (P < 0.05), most significantly in the HOHS group (P < 0.01) compared with the LRS group. Morphological observation with optical microscope and electron microscopy showed that compared with the LRS group, cell damage in the three treatment groups improved to a varying extent, especially evident in the HOHS group. CONCLUSIONS: These findings demonstrate that HOHS can protect the lung against ALI induced by hemorrhagic shock.


Subject(s)
Acute Lung Injury/drug therapy , Fluid Therapy/methods , Resuscitation/methods , Shock, Hemorrhagic/complications , Solutions/administration & dosage , Acute Lung Injury/etiology , Acute Lung Injury/pathology , Administration, Oral , Animals , Disease Models, Animal , Humans , Lung/drug effects , Lung/pathology , Lung/ultrastructure , Male , Microscopy, Electron, Transmission , Random Allocation , Rats , Rats, Sprague-Dawley , Treatment Outcome
7.
Oncol Lett ; 16(1): 167-178, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29928398

ABSTRACT

The incidence of complications and mortality following open-heart surgery with cardiopulmonary bypass (CPB) is associated with the severity of the myocardial injury that occurs during surgery. Hydrogen-rich solution (HRS) may prevent antioxidant stress and inhibit apoptosis and inflammation. The present study was designed to investigate the effects of HRS on CPB-induced myocardial injury, and to investigate its potential regulation of the Janus-activated kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway. The HRS treatment resulted in the significant upregulation of malonyl dialdehyde (MDA) and myeloperoxidase (MPO), whilesuperoxide dismutase (SOD) levels were significantly downregulated, compared with the Sham group (P<0.05). Additionally, HRS treatment improved myocardial injury, and decreased the expression levels of cardiac troponins, heart-type fatty acid binding protein, interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, MDA and MPO, and increased SOD release in CPB rats (P<0.05). Additionally, in the CPB group without the HRS treatment, the expression levels of B-cell lymphoma (Bcl)-2, JAK2, phospho-JAK2 (p-JAK2), STAT3 and phospho-STAT3 (p-STAT3) were significantly decreased, and Bax was significantly increased, compared with the Sham group (P<0.05). By contrast, compared with the CPB group, the expression levels of B-cell lymphoma 2 (Bcl-2), JAK2, phosphorylated (p)-JAK2, STAT3 and p-STAT3 in the HRS group were significantly increased, and Bcl-2-associated X protein expression was significantly decreased (P<0.05). In JAK2 knockdown experiments using siRNA, HRS treatment following hypoxia/reoxygenation also significantly increased the viability of myocardial cells, decreased the rate of myocardial cell apoptosis, elevated the levels of SOD and suppressed the release of MDA and lactate dehydrogenase in the control siRNA and CPB groups (P<0.05). Furthermore, JAK2 siRNA attenuated these protective effects of HRS (P<0.05 vs. control siRNA, HRS and CPB groups). Additionally, the results demonstrated that the HRS treatment significantly increased the expression levels of p-JAK2, p-STAT3 and Bcl-2 in myocardial cells following hypoxia and decreased Bax expression in the control siRNA and CPB groups (P<0.05). In addition, JAK2 siRNA was determined to attenuate these effects of HRS (P<0.05 vs. control siRNA, HRS and CPB groups). Taken together, these results indicated that HRS may alleviate CPB-induced myocardial injury, inhibit myocardial cell apoptosis and protect myocardial cells through regulation of the JAK2/STAT3 signaling pathway.

8.
Eur J Cardiothorac Surg ; 51(3): 442-448, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28364439

ABSTRACT

Objectives: Anti-oxidant effects of hydrogen have been reported in studies examining ischaemia-reperfusion injury (IRI). In this study, we evaluated the therapeutic efficacy of immersing lungs in hydrogen-rich saline on lung IRI. Methods: Lewis rats were divided into three groups: (i) sham, (ii) normal saline and (iii) hydrogen-rich saline. In the first experiment, the left thoracic cavity was filled with either normal saline or hydrogen-rich saline for 1 h. Then, we measured the hydrogen concentration in the left lung using a sensor gas chromatograph ( N = 3 per group). In the second experiment, lung IRI was induced by occlusion of the left pulmonary hilum for 1 h, followed by reperfusion for 3 h. During the ischaemic period, the left thoracic cavity was filled with either normal saline or hydrogen-rich saline. After reperfusion, we assessed lung function, histological changes and cytokine production ( N = 5-7 per group). Results: Immersing lungs in hydrogen-rich saline resulted in an elevated hydrogen concentration in the lung (6.9 ± 2.9 µmol/1 g lung). After IRI, pulmonary function (pulmonary compliance and oxygenation levels) was significantly higher in the hydrogen-rich saline group than in the normal saline group ( P < 0.05). Similarly, pro-inflammatory cytokine levels (interleukin-1ß and interleukin-6) in the left lung were significantly lower in the hydrogen-rich saline group than in the normal saline group ( P < 0.05). Conclusions: Immersing lungs in hydrogen-rich saline delivered hydrogen into the lung and consequently attenuated lung IRI. Hydrogen-rich solution appears to be a promising approach to managing lung IRI.


Subject(s)
Antioxidants/pharmacokinetics , Hydrogen/pharmacokinetics , Lung/blood supply , Reperfusion Injury/prevention & control , Animals , Antioxidants/pharmacology , Cytokines/biosynthesis , Hydrogen/pharmacology , Inflammation Mediators/metabolism , Lung/metabolism , Lung Compliance/drug effects , Organ Preservation , Organ Preservation Solutions/chemistry , Organ Preservation Solutions/pharmacology , Oxygen Consumption/drug effects , Rats, Inbred Lew , Reperfusion Injury/metabolism , Reperfusion Injury/physiopathology , Sodium Chloride , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...